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Rotator and melting transition in paraffins
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A theory of the melting of paraffins is developed based on dislocation theory. The tran-

sition from two- to three-dimensional melting behavior, when proceeding from the small-

to large-chain limit, is qualitatively described by this theory. It also yields a tentative ex-

planation of the tendency of large-chain polymer crystals to crystallize in a folded struc-
ture. The structural properties of the paraffin lamellae above the rotator transition and

below the melting point are studied by considering vortex loop defects. The geometrical
implications of the motion of vortex and dislocation loops on the lamellar structure is stud-

ied, and a roughening of the surfaces of the lamellae is predicted. The possibility of a
nematic ordering of the melt is discussed.

I. INTRODUCTION

Paraffins crystallize in lamellar form with a layer
thickness approximately equal to the extended chain
length. For the series of paraffins between C44 and

C~oo the melting point T is known to be given by
the simple equation'

~~(n+a) T, n+a
hS'(n+b) ~™

n+b '

where ddE* and ES* represent, respectively, the
heat and entropy of melting per CH2 unit, n the
chain length, a and b the end group heat and entro-

py of melting. T~ is the asymptotic melting point
as n~00 and should correspond to the extended
chain polyethylene. Flory and Vrij and others
have presented modifications of Eq. (1). In Fig. 1,
Tm is plotted against n.

The purpose of this work is to study some aspects
of the melting transition (which is usually preceded
by a so-called rotator transition) as a function of
layer thickness, in terms of the two- and three-
dimensional dislocation theory of melting. In
fact, even the short-chain problem can only be con-
sidered as quasi-two-dimensional, due to interlayer
coupling. The possible transitions of such a short-
chain system from smectic 8 to smectic A to nemat-
ic and finally to the isotropic liquid have already
been studied by Hubermann et al. using a disloca-
tion theory. Accordingly, in this paper, emphasis is
given to the thickness dependence of the phase-
transition phenomena. The crucial problem is how
to handle dislocations, constructed on extended ob-
jects like polymers, within a melting theory.

In the low-temperature phase of paraffin the po-
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FIG. 1. Melting temperature Tm of paraffin as a func-
tion of crystal thickness, measured in CH2 units n.

lymers form an orthorhombic structure. Here the
CH2 units of a single chain are arranged on a low-
angle zig-zag structure, where the zig-zag planes of
neighboring chains are orthogonal. The disordering
of the zig-zag planes occurs during the rotator tran-
sition at T,. It is accompanied by an orthorhom-
bic to hexagonal structural transition and a consid-
erable expansion of the lattice. Although the rota-
tor transition does not alter the system's long-range
1ateral hexagonal order, it seems that the layer
structure becomes ill defined. Obviously, the elas-
tic constants entering the dislocation theory of
melting are those of the disordered-rotator phase,
and will depend on the magnitude of (T~ —T„)/Tr
as well as upon the strength of the discontinuity of
the rotator transition (i.e., on the short-range order
of the twisted zig-zag planes of the CHz units
which remain above T„). Consequently, a quantita-
tive prediction of melting temperatures will not be
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attempted, but only a qualitative theory of the poly-
mer length dependence of T will be given. In ad-
dition, the geometrical implications for the polymer
arrangements, arising from the presence of disloca-
tions, and also the vortex defects which appear in
the rotator phase, will be studied.

In Sec. II the melting problem is studied in a sim-
plified model which ignores the complications aris-
ing from the rotator degrees of freedom. In Sec. III
the disordered-rotator phase is treated assuming
that the transition is driven by the generation of
vortices. The interrelation between the rotational
and translational degrees of freedom is studied in
Sec. IV in connection with a possible smectic A or
nematic structure of the paraffin melt. In Sec. V a
discussion of the results and its shortcomings are
given.

II. SIMPLIFIED TREATMENT
OF PARAFFIN MELTING

We assume in this section that the paraffin layers
are reasonably well defined, and that the interlayer
structure is of a highly plastic, or even viscous, na-
ture in the relevant temperature region, such that a
decoupled layer approximation may be employed.
The correct melting criterion of one layer can be
developed by considering the asymptotic behavior
of the following correlation function:

(expiK (r "—r }), (2)

where K is a reciprocal-lattice vector. This vector
may lie either within or perpendicular to the layer

l

where
(3a)

S- -=S'- .+p- .qj qj qj (3b}

is a decomposition of the Fourier transformed dis-
placement S- into elastic (S~) and plastic (I'q) dis-

placements. Employing the Einstein summation
convention, we may write P - . as'

plane. In the former case exponential decay of Eq.
(2) marks fluid behavior with respect to shear forces
in the layer plane, and in the latter case with respect
to shear forces normal to the layer plane. The
former melting transition is produced through dis-
sociation of edge dislocation pairs whose Burgers
vectors b~~ lie in the plane. The latter melting tran-
sition is produced when pairs of screw dislocations
with Burgers vector b normal to the plane dissoci-
ate. Pairs of dislocations which penetrate the
lamella fully are termed "bridging loops. " In this
paper we will consistently denote loops as edge or
screw type, according to their edge or screw charac-
ter at the points where they penetrate the lamellar
surfaces, even in the case where the loop begins and
ends on a single surface.

It can be shown that the transition of Eq. (2)
from an algebraic decay law to exponential decay
can be studied by means of the renormalized cou-
pling constants of the theory' (Hooke's tensor).
This tensor can be obtained by means of the follow-

ing series of steps. In the harmonic approxima-
tion' the displacement correlation function can be
presented in the form

Ji q,j= @-qk(q) g g I e 'q'"
Ck, ; b q, d r

o (loop a)
(4)

where Ck((;))q is Hooke's elastic tensor (temperature renormalized, due to phonon excitations}, and N is the total
number of lattice units (CH2 groups). The integral is performed over the surface X spanned by the disloca-

tion loop with Burgers vector b, where 0 =
~ ~

or l implies the direction parallel or perpendicular to the lamel-

lar plane. The sum g~& ~
is taken over all loops of given 0. The quantity 4 '(q) is the unperturbed prop-

agator defined by

(S' S' -,. )=2ksT@i (q) .

Inserting Eq. (4) into Eq. (3) one obtains using Eq. (5}

(S .S,. ) =2kiiTIqIb '(q)[I+2m+(q)]I. ;,
where I is the unit matrix and X( q ) is the generalized susceptibility tensor defined by

I I

X (q)=- g f e q Cq, b'q d r' ''g f,e'~'''Cq, ,p'm'bP q, d~r j4q ', (q) .4k' cr

(7)
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The thermal average is taken over the grand canoni-
cal ensemble of dislocation loops. Because the in-
verse propagator 4J, (q) is linearly dependent on
Hooke's tensor, one needs only to invert Eq. (6) to
obtain the renormalized Hooke's tensor. After
some calculation we obtain

C~", ~, ——lim[I+2nX(q)] k'Ck, J,
q —+0

Because for short-range interacting systems
'(q) —1/q, the limit in Eq. (8) exists, as can be

seen from the form of Eq. (7).
In a similar way Eq. (2) can be studied' using the

decomposition given by Eq. (3b). The transition
from algebraic to exponential decay is then a conse-
quence of the divergence of P(q). In order to
evaluate g( q ) one of several methods can be used. '

Depending on the assumption as to the nature of
the screened pair interaction, a continuous or
discontinuous melting transition can be obtained.
As this problem remains unsettled in the case of
two- as well as three-dimensional systems, we will
not attempt to develop a precise theory of the tran-
sition. Instead we will derive a qualitative formula
for the melting temperature, based on a simple in-

stability criterion.
Dislocation loops will be termed "closed" if they

are contained fully within a single lamella. Those
dislocations piercing through the surface of the
lamella are considered to end there since the inter-
lamella coupling is very weak. Those loops pierc-
ing through both surfaces ("bridging loops" ) are
most effective in screening shearing motions. Such
bridging loops are most probably formed at a single
interlamellar surface in the form of a small loop
which begins and ends on this surface. The loop
then grows through a thermally activated process
until one point of the loop touches the opposite
lamellar surface to form a bridging loop. Although
this nucleation process may be an inherent aspect of
the melting transition, in this paper it will be ig-

. nored and a finite density of bridging loops will be
assumed to exist below T .

The evaluation of Eq. (7) for such bridging dislo-
cation loops (for the sake of simplicity also called
pairs in the following) whose core lines are more or
less straight can be done approximately as follows.
Equation (7) contains integrals over the surfaces X
and X whose boundaries are the more or less
straight dislocation lines, and the "orientation vec-
tors" +r characterize their lateral extension and
orientation. Accordingly, the integral will be pro-
portional to d . Furthermore, the number of lattice
units N (CH2 groups), will satisfy X =X~d/I, where

The interaction energy entering the thermal aver-

age in Eq. (9) will be calculated within the same ap-
proximation as that leading to f „that is, periodicp

boundary conditions will be imposed perpendicular
to the lamellar plane. It follows from this and the
form of Eq. (9) that as long as we are interested in
susceptibilities within the lamellar plane (i.e.,
qz

——q, ), the interaction energies of pairs may be ex-

pressed as

Uellrr(r) = [ln(r/ro) ——cos28]
4~ 0

+2Plld+2FII(T'd)

b~IC~(r)d
U,rr(r) = ln(r /ro )

4m

+2pgd +2F f (T,d), (10b)

where r0 is the dislocation core cutoff, p' represents
the core energy of a dislocation of type o(—=

~ ~, &),
and d &pl is assumed. The first expression applies
to the interaction energy between pairs of edge
dislocations a distance r apart. Here Ell(r) is the
renormalized shear coupling constant in the plane
and 8 is the angle between b~~ and the separation
vector of the pair. Fll ( T,d) represents the free ener-

gy of the kinked dislocation core. Similarly, Eq.
(10b) applies to pairs of screw dislocations. Because
the two-dimensional packing is hexagonal, isotropic
coupling has been assumed for shear in the layer
plane as well as perpendicular to it. It should be
noted that Eqs. (10a) and (10b) represent a decom-
position into the elastic interaction energy plus the

N& is the number of polymers and / is the projected
length of one CH2 unit along the polymer axis. In
this approximation Eq. (7) becomes

X(q)-d(f, ([r qll, dqj], tr~])), (9)

where q qq qll q~) and (~~, J.) signify as usual

components parallel and perpendicular to the lamel-
lar plane. The function f 0 is bilinear in the r 's.

q

Because in the derivation of Eq. (7) the boundary
conditions at the lamellar surfaces on the propaga-
tor 4& '(q) have been ignored, periodic boundary
conditions must be imposed normal to the lamella

plane, implying ~q~ ~
)q, —:2m/d.

For T & T, where the bridging loops consist of
bound pairs, the exponential factors in Eq. (7) can
be set equal to one and lead to
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b E"(oo)y
(12)

conformational free energy of the dislocation line.
This is only sensible as long as the "center of gravi-
ty" of each dislocation line of the pair is well de-
fined as is suggested by the derivation of Eq. (9).
This implies that Eqs. (10a) and (10b} apply to al-
most straight dislocation lines at any r, or for dislo-
cation lines with a strong lateral spread and large r.

The usual instability criterion for the dissociation
of a pair of type 0. is '

( r /r o )~ oo, o.—:I,
~ ~

.

One immediately obtains, with the use of Eqs. (10a)
and (10b)

4az= 1+ n(r)0
zoyo

(12')

where z =g /d and the reduced melting tempera-
ture g is defined as follows:

16~
b E'y (14)

In the ideal gas approximation the quantity
n (r )0 may be explicitly evaluated as

express the renormalized coupling constant K (r) in
terms of E' in the manner of Eq. (8), Eq. (12) be-
comes

4
where yz ——-1 and 1 &y~~ & —,. For y~~

——1 it must be
assumed that nonconservative motion of disloca-
tions is easily possible, a problem which will be dis-
cussed later. The upper limit, y~~

= —,, corresponds
to purely conservative motion. " For screw disloca-
tions this problem does not arise. In order to calcu-
late E" ( oo ) one notes that P( q), given by Eq. (7),
involves a pair-pair correlation function which for
bound pairs, can be evaluated by setting the ex-

ponentials equal to 1 and letting q~0. With the
use of the approximate expression given by Eq. (9)
one obtains in leading order the following shear sus-

ceptibilities

X (0)=, g ((r "M )(r "M ))
4m kgT1V

XexpI 2[y'+f—(g,d)]/z I,
(15)

where we define the dimensionless quantities

y =16vrp /(b E'y ) (15a}

f (g,d)= (y /p d)F" (T—,d) . (15b)

Here y refers to the core contribution of a straight

dislocation bridge, whereas f represents the free

energy of an arbitrary bridging loop with y sub-

tracted out. Substitution of Eq. (15) into Eq. (12')

yields

(13)

where M is an arbitrary unit vector in the lamellar
plane, and a is a factor of order 1. This parameter
is introduced to account for the separation of shear
contributions to the susceptibility from the elastic
constants IC~, J, }, embodied in E'. ' In Eq. (13)
the subindex 0 is used to indicate that the thermal
average should be taken with unrenormalized in-
teractions.

Under the assumption that all pair-pair correla-
tions can be neglected, only the diagonal terms of
Eq. (13) contribute, and one obtains

X (0)=, n (r')o. (13')
8m kgT

Equation (13') neglects all higher-order effects on
the susceptibility such as Lorentz field corrections,
etc., and n represents the density of pairs of type
O.

Using the simplified susceptibility of Eq. (13') to

z (1—z~)
ln —=e(z ),

CX~ Z~

(16)

where a' =(vr/2)a Equation (1.6) forms the basis

of our description of the melting transition.
For short polymer chains with d less than some

value do, the melting temperature becomes so low

that the thermal excitation of kinks in the solid
state cannot occur. In this "stiff polymer" limit

only straight dislocation bridges are possible so that

f vanishes. If the renormalization of the interac-
tion due to screening is neglected (i.e., a' =0), it
follows from Eq. (12') that z =1. For a &0, Eq.
(16) admits two solutions, one of which is greater
than 1, the other, less than 1. Only the latter is

physically significant since it implies a lowering of
T in the screened case as can be seen from Eqs.
(12') and (14). Calling z (a ) the solution of Eq.
(16) for d & do, one obtains from Eq. (14)
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b E'
ksT = y z (a )d, d&do. (17)

Therefore, one obtains the expected linear depen-
dence of T~ on the lamella thickness in the stiff po-
lymer limit. Here it should be noted that since

f =0 for d &do, z is independent of d as can be
seen from Eq. (16).

For d &do it is assumed that kinks may be ther-
mally generated in the dislocation core line, imply-
ing f (g,d &do) &0, since conformations of the
dislocation bridges must lower the free energy of
the system. The qualitative behavior of e (z ) de-

fined by Eq. (16) is sketched in Fig. 2(a). It takes
the value 0 at z~ given by

(a)

I

I

I

I

I

I

I

I

I

I

Z(y
I

z /z =1+2 0 I (z dd),
zo

(16')

where z is the value of z for d =do. Use of Eq.
(16') in Eq. (17) shows explicitly this convex
behavior. For the following discussion the thermo-
dynamic relations should be observed:

B(f d) Bff (g,d) &0, &0, and &0 .
o

(19)

The total derivative of Eq. (16) may be written as

z' =( I+a' /2) j 1 —[1—((+a' /2) ]'/
J (18)

and is positive in the interval [z,1 ]. Since

f (g, d & do ) & 0 implies that the e (z ) decreases
from its value in the stiff polymer limit, and since
s (z ) decreases monotonically with decreasing z
in the interval [z*,1], it follows that zo(d) &z( for
d &do. In view of Eq. (17) the convex behavior of
T as a function of d becomes apparent.

For d & do, i f (g,d)
i «y must still hold to a

good approximation and Eq. (16) takes the simpli-
fied form

CIQ CI JM

/
/

/
/

(c) do d„
FIG. 2. (a) Schematic plot of e (z ), defined in Eq.

(16). The quantity z* moves to the right for decreasing
a and to the left for increasing a . The parameter a is
introduced in Eq. (13). (b) Schematic plot of the reduced
melting temperature g as a function of crystal thickness
d for Bf /M &0. The dashed-dotted curve shows the
behavior without screening, whereas the solid and dashed
curves are typical for weakly and strongly screened dislo-
cation pairs, respectively. The indices ( +, (x),0) are ex-
plained in the text. (c) Schematic plot of g vs d for
Bf /Bd &0. The dashed-dotted and solid curves illus-
trate the behavior for no and weak screening, respective-
ly, where it has been assumed that f (g, oo)=0. The
dashed curve shows the strongly screened case with

f (g, oo)(0.8, 80'+
&d

= —,(gQ ' —gg ')g(z ),
cr

(20)

where the zo denotes the minimum of e (z ) [see
Fig. 2(a)]. If Bf /Bd & 0 in Eq. (20) one obtains

where

(1—z~)
g (z~)—:—ln

a~
1+z~

+
1 z

(21)

g(z )&0, z &z

g(z )&0, z &z
(22)

and f~:—Bg /Bd. One should note in the following
discussion that:

Bf
(I,(z )—: (23)

From Eqs. (19)—(23) it follows that in the domain
g' &0, g' &g /d for z &z, and that f &0 for
z &z . Furthermore, since z —+0 when d —+~ it
follows that f (g (oo), oo)+y =0.

The qualitative behavior of the reduced melting
temperature go as a function of layer thickness d is
illustrated in Fig. 2(b). The physical situation of
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af. af.
(24a)

and g' &0 for z &z . Furthermore, the following
inequalities must hold. For g' = g /d

weak-pair screening with a' & 0 is shown as the bold
solid curve. The unscreened curve a'=0 shows a
linear dependence on d, whereas the case of strong
screening is given by the dashed curve.

For the physical case, the linear behavior was lost
for d &do, as discussed earlier. The quantity d* is
obtained as the solution to e =—0, whereas d„
denotes the value at which g takes a maximum.
For d &d„, the d dependence of the screening of
the elastic interaction in our model becomes so
strong as to increase the stability of the liquid state
over that at d . In Sec. IV, however, we argue that
the effective thickness of a layer decreases with in-

creasing temperature. As will be discussed there,
this leads to freezing at d„, and offers a tentative
explanation of a possible polymer folding instability
for ultralong polymer chains that are grown from
the melt. We indicate these regions of possible in-

stability with cross hatching in Figs. 2(b) and 2(c).
Although paraffins of sufficient length have not
been attained in the laboratory, the possibility of ob-

serving this instability is intriguing.
The behavior of g vs d for af /ad &0 is shown

in Fig. 2(c). From Eq. (20) one obtains

f (g,d)=f (g, oo)+0(1/d), (25)

also in this regime that Eq. (13) is not at all well ap-
proximated by Eq. (13'). In fact the overlap of
bound pairs may already occur for d &dp. This
point may partially be remedied through the intro-
duction of a Van der Waal's approximation for the
gas of bound pairs.

A typical edge dislocation bridge, as we have de-
fined in Sec. I, has small portions which run paral-
lel to the lamellar plane of screw character. These
segments are formed in the polymer crystal by ag-
gregates of kinks. This induces substantial pulling
and dragging of the molecules as a whole. In a
proper treatment of the problem the free energy as-
sociated with this effect, as well as that of the core
energy of the kinked dislocation segments, must be
included in f~(g~, d). Furthermore, the elastic in-
teraction arising from the kinked segments must be
included in f as well. These contributions will

remain small only as long as the essentially straight
bridging character of the dislocations is preserved
near the melting point. This is only possible if d is
small enough to maintain the essentially two-
dimensional character of the problem.

In fact, if the kinked segments appear essentially
in pairs of opposite sense along the dislocation
bridge, then their long-range interaction is essential-

ly screened out, so that the following approximation
ay be made for large d:

af af
ad ag.

=~'

and for g~=, g~/d

(24b) where the last term is due to surface effects. In this
case g, as indicated in Fig. 2(b), will be essentially
given by z "d„=z~d„. If we expand Eq. (16)
about the maximum of g we obtain

af
ad

(24c)

for z~= z, respectively. These latter equations are

not very restrictive for the behavior of g~(d), but
obviously Eq. (24c) fails for d~ oo, since g' & g /d,
preventing z from vanishing. In Fig. 2(c) two pos-
sible screened-case behaviors are indicated, although
an exact discussion requires a knowledge of
f (g,d).

According to Fig. 2(a), e &0 in the region
0 &z & z~, and from Fig. 2(b) for the physical case
(bold line), this corresponds to d &d~. However,
this does not necessarily indicate an instability in
the system for g & g', since the elastic interaction

energy of the pairs is not included in e . Further-
more, Eq. (15), which is based on the ideal gas ap-
proximation, may fail in this regime. One sees that .

for z &z~, n~(r )0 may approach the order of 1,
so that bound pairs may considerably overlap. It is

af z" (2—z )

2 af - (1
'2

d —d
(26)

This formula can easily be fitted to the experimen-
tal curve, given in Fig. 1 between n =40 and 110
for the weakly screened case [bold curve in Fig.
2(b)], if we assume that n =110corresponds to d „.
For n g40, the experimental curve bends more
strongly downward than Eq. (26) suggests, indicat-
ing that further terms in the Taylor series are need-
ed.

A calculation of f (gd, d), using matrix methods
developed by DiMarzio and Rubin, ' is currently
being carried out by one of us, and will be published
elsewhere. ' There, the relative importance of
bridging versus nonbridging dislocations to the
behavior of T (d) is being estimated, as well as the
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contribution due to bridges which wander largely in
a direction perpendicular to the polymer chain axis.

It should be emphasized perhaps at this point
that the long-range interactions are of an elastic na-
ture and due to steric constraints. For df /dd p 0,
because of the thermodynamic relations, Eq. (19),
one may be lead to consider the following large d
behavior off (g,d)

f (gd, d)= g" d— (27)

where the constants y & 1 and x & 0. In this case g
vs d behaves as shown in Fig. 2(c) (dashed curve).
Equation (27) implies a linear dependence of g on
d for large d, a dependence which is not observed
experimentally. This fact leads us to suspect that a
different type of instability occurs for large d crys-
tals which are grown from the melt.

As mentioned earlier, the kink conformations of
the polymers tend to drag and push along their
main axis as a whole. Supposing that Eq. (25) is in-

validated by Eq. (27) for very large d (for example
d &d ), then the long-range elastic energy due to
kinking may be considerably reduced in a folded
polymer structure. In that case only that part of
the molecule corresponding to the folding period
must be dragged or pushed when the kink portions
of the dislocation bridge are generated or annihilat-
ed. Because the average end-to-end length d,ff of
the polymers in the melt is rather small compared
to their extended length, they will not be able to
fluctuate into their extended form when entering
the hatched regions of Fig. 2 for fixed d and de-
creasing g, but in fact will solidify at the tempera-
ture g,rr, corresponding to d,rr. This discussion
lends further support to the possibility of a folding
transition for d somewhat larger than that attained
at present for n-paraffin crystals.

"the rotator phase. " The crystal structure in this
phase is hcp. A study of the transition at T„which
parallels that given in Sec. II for T may be carried
out, in which vortex pairs play the role of disloca-
tion point defects. For this case we expect a discon-
tinuous transition, due to the compressibility of the
lattice.

Instead of pursuing this point further, we will

concern ourselves in this section with the structural
properties of the rotator phase. In the low-

temperature phase the rotational degrees of freedom
are essentially discrete, whereas in the more loosely
packed hexagonal phase the rotators should move

more freely. The defects in the anisotropic rotator
model are domain walls and vortices. ' A pair of
point vortices of opposite strength is indicated-in
Fig. 3(b) by (+,—) for a simple monolayer. The
spins on opposite sides of the dashed line are rotat-
ed by +m as indicated by the dashed arrows in the

P ~ r~

/ /

r i r \

III. ROTATOR PHASE

Due to the planar zig-zag structure of the poly-
mer chains, the molecules, viewed in cross section
(i.e., in a plane perpendicular to the chain axis),
have an orientation, which we may denote with a
planar vector. At the lowest temperatures the crys-
tal structure is orthorhombic, and the orientation
of the molecules is as shown in Fig. 3(a). In this
figure a pair of defects in the structure is also indi-
cated, and it is obvious that this aspect of the sys-
tem may be described by an anisotropic rotator
model on a compressible lattice. At a temperature
T„near and below T these rotators become disor-
dered in the lamellar plane, a state which we term

(bj
FIG. 3. (a) Zig-zag plane orientation of polymer mole-

cules in the orthorhombic structural phase of paraffin.
Arrows indicate this orientation as viewed from the sur-
face of the lamella. Two single polymer orientational de-
fects are also shown in the dashed boxes. (b) Pair of
point vortices (+,—) in a hypothetical paraffin mono-
layer at low temperatures. The spins above and below
the dashed line are rotated through +m as indicated by
the dashed curved arrows.



27 ROTATOR AND MELTING TRANSITION IN PARAFFINS 519

figure. This line may be thought of as a cut in the
planar crystal, where rotator couplings on opposite
sides are broken and then reestablished after the ro-
tations are carried out.

For a lamella of finite thickness d, the dashed
line corresponds to one boundary of a cut surface,
as illustrated in Fig. 4(a). This cut surface is a
plane whose normal lies parallel to the lamellar sur-
face, its border being a vortex loop which begins at
(+ ) and ends at ( —) on the upper lamellar surface.
The polymers to either side of this surface are twist-
ed through +m and —m, respectively. The twist is
indicated as being rather localized at a distance lp

below the lamellar surface at a depth at which the
vortex line runs parallel to it. In Fig. 4(a) the poly-
mers shown are on one side of the cut surface, and
are represented as structures of an elliptical cross
section of major axis rz. The arrows at either end
of the polymers indicate the orientation of the zig-

zag planes.
If such a vortex loop touches the opposite lamel-

lar surface, two vortex lines of opposite strength are
created. The dissociation of such pairs can be treat-
ed analogously in discussing the rotator phase tran-
sition at T„as was done in Sec. II for Tm. The
convex shape of T„(d) is a consequence then of the
entropy generating configurations of such vortex
bridges.

We now consider the motion of vortex loops of
the type illustrated in Fig. 4(a), which may occur
thermally or in response to external stresses. In a
static situation the energetically most favorable situ-
ation is such that the cut surface is planar with nor-
mal in the lamellar plane. The geometrical reason
for this becomes obvious if one considers a planar
vortex loop, whose cut surface is parallel to the
lamellar plane. Then, of necessity, all polymer mol-
ecules piercing through this cut surface are twisted

by a full revolution, clearly an energetically un-

favorable situation. This problem does not arise for
the usual planar rotator model, and is a feature im-

posed by the connectivity constraint on the polymer
molecules.

In a dynamic situation a macroscopic vortex loop
cannot move as a whole in a direction perpendicular
to its cut plane in discrete hops of one-lattice spac-
ing. This would require that the loop overcome a
macroscopically large energy barrier proportional to
the loop's interaction energy. Accordingly, the
vertical portions of the vortex loop develop kink
segments, which slide down along the chain axis
direction, as illustrated in Fig. 4(b). Finally, a pair
of bridging vortices of opposite strength resuIt,
which are displaced one-lattice spacing. from the
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(0) LOWER SURFACE ~
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o ee ee eo'eo e
g „b i c d e

8 8 8
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FIG. 4. (a) Vortex loop in a polymer lamella. Poly-
mers are indicated as structures of elliptical cross section,
whose major axes indicate the orientation of the zig-zag
planes (arrows at the polymer ends). The polymers
shown, lie to one side of the plane of the vortex loop,
those to the other side of this plane (not shown) are twist-

ed in the opposite sense by the same amount. The situa-

tion as viewed from the upper lamellar surface would ap-

pear as in Fig. 3(b). (b) Motion of a macroscopic vortex

loop perpendicular to its cut surface. The loop develops

parallel kink segments in the direction of motion (oblique

to the figure surface) (a)~(b), which slip downward

along the direction of the polymer axis (b)~(c), until the
loop has moved one-lattice spacing in a direction normal

to its cut plane (into the figure plane) (d). In the step
(c)—+(d) the hatched surface, which lies parallel to the
lamellar surface moves to the lower surface, creating a
pair of bridging vortices. This pair continues to move

through the development of further parallel kink steps
{d)~(e).

original position of the loop in a direction perpen-
dicular to it.

As is apparent from the figure, a small hatched
step in the cut surface appears during the motion
with the energetically unfavorable orientation (i.e.,
parallel to the lamellar surfaces). The hatched step
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bg =27Tmfp, (28)

where m f's-some integer. %e expect these condi-
tions on the lattice displacements to be favorable for
steric reasons. Since each pair of screw dislocations

then proceeds to move downward until it disappears
at the lower lamellar surface. The resulting bridg-
ing vortex pair continues to move through further
kink pair formation near the upper lamellar surface,
and subsequent sliding of the resulting step to the
lower surface.

As the cut surface of a bridging vortex loop ap-
proaches a given polymer from infinity, this poly-
mer rotates about its axis through +m with respect
to its original orientation, before which it pierces
the step in the cut surface. Then, that portion of
the polymer above the step twists through +m. about
its axis, whereas that portion below twists through

Clearly, the twisted region of the polymer,
which is localized near the step, slides from the top
lamellar surface to the bottom, as the cut surface of
the vortex pair undergoes a displacement of one-
lattice spacing in the direction of its normal. Since
these 2m twists appear first at the upper lamejLlar

surface, the polymers, piercing the step, contract by
a length r~ at their upper ends, r~ characterizing the
polymer's cross section. As is shown in Fig. 5, the
twisted section slips to the lower end of the polymer
during the vertical motion of the step, 'drilling" it
into the neighboring lamella a distance of order r&.

Thus, the motion of a bridging pair in the direc-
tion of the normal to its cut surface sweeps out a
depressed area on one lamellar surface, and a corre-
sponding raised area on the other. In this way a
pair of straight steps is traced out on each lamellar
surface.

It should be noted that if the cut surface of the
bridging pair moves parallel to its plane, kink
motions of the vertical segments do not involve the
energetically unfavorable intermediate-step areas
[hatched areas in Fig. 4(b)]. Such motion will be
termed "cross slip" in analogy with dislocation-loop
terminology. Obviously, the polymers involved in
this motion are only rotated through +m on either
side of the moving loop, and the drilling effect, and
corresponding distortions of the lamellar surfaces
are absent.

Thus in an arbitrary vortex pair trajectory, pairs
of surface step segments should appear. The end
points of these surface step segments may be associ-
ated with the points at which screw dislocations,
with Burgers vectors +b, along the polymer axis
direction, pierce the lamellar surfaces, if the follow-
ing condition is met:

UPPER

SURFACE

cog r

LOWER

(g) SURFAC

FIG. 5. Twisting and drilling motion of a single poly-
mer, due to its passage through the cut plane of a bridg-
ing vortex pair. The 2m twist is assumed to be rather lo-
calized in the sliding step of the cut plane of the bridging
vortex pair [hatched area of Fig. 4{b)].

tends to annihilate in order to reduce the crystal
strain, the motion of the vortex pair in the direction
along the normal to its cut surface will be impeded,
perhaps prohibitively.

Thus we conclude from the above discussions
that the random motion of vortex loops, generated
by thermal fluctuations, could lead to a roughening
of the lamellar surfaces, or even to a complete des-
truction of the lamellate ordering, without destroy-
ing the lateral hexagonal order. The degree and
very nature of this type of disordering depends
upon the detailed coupling mechanism between
moving vortices and screw dislocations. This prob-
lem is currently being studied.

Finally it should be noted that, even in the ab-
sence of the rotator phase and the presence of mov-
ing vortex pairs, the edge dislocations of Sec. II will
considerably roughen the lamellar surfaces in the
thicker lamellates near T~. In the static case of
thermal production of edge pairs with lateral screw
segments, shortening of those polymers contained in
the cut plane of the randomly produced pairs will
lead to surface roughening. This static edge pair
roughening disappears for d &do (see Sec. II) how-
ever, since in this region the polymers may be con-
sidered quite stiff, so that no lateral screw segments,
which are necessary for polymer shortening, can
form.

Furthermore, for d &do the cross-slip motion of
the edge pairs may proceed through the vertical
sliding of steps in a manner similar to that
described in Fig. 4(b) for vortex pairs. In this case
the step sliding may be viewed as a kink in those
polymers which pierce the step, the vertical sliding
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of the kink pulling the polymers along their axes
out of the lamellate without rotation, a distance of
the order of one-lattice spacing. Thus the cross-slip
motion of edge pairs also leads to the appearance of
surface-step segments, whose end points are the
points at which a pair of bridging screw disloca-
tions pierce the lamellar surface. Thus we expect a
certain degree of surface roughening even when an
intermediate rotator phase is absent for d g do.

IV. ORDERING IN THE PARAFFIN MELT

So far we have considered three defect types
which may be operative in the melting of paraffin.
The dissociation of bridging vortex pairs may des-

troy the orthorhombic orientation of the polymer
zig-zag planes, precipitating the rotator phase. The
dissociation of bridging edge dislocations may des-

troy the lateral hexagonal order of the rotator

phase, and the dissociation of screw dislocation
pairs may destroy the lamellate ordering. Consider-
ing only these effects one would predict a nematic
state for the melt. Here we wish to argue that the
motion of edge dislocations may destroy the axial
order of the paraffin chains, as well as the lamellate
structure which we described in Sec. III, so that the
dissociation of the bridging screw dislocations asso-
ciated with their motion (see end of Sec. III) can
destroy the axial and lamellate order simultaneously
for d )do.

It is well known that nonconservative dislocation
motion in normal crystals proceeds by absorption
and emission of vacancies which diffuse into the
crystal from the surface, the energy of formation
for an interstitial-vacancy pair in the bulk being ex-

tremely high. The diffusion into the bulk of a poly-
mer vacancy, produced near a free surface of the
crystal, is illustrated in Fig. 6. Here the vacancy is
shown as a dashed line, and the polymers near the
free surface as solid lines in Fig. 6(a}. Through po-
lymer jogging the vacancy becomes increasingly
partitioned [Figs. 6(b) —6(d)j, so that in thermal
equilibrium a distribution of vacancy segments are
available in the bulk to initiate nonconservative
motion of dislocation loops. Thus an initially
planar-edge dislocation bridge of the type discussed
in Sec. II will absorb and emit vacancy segments
during nonconservative climb processes, becoming
three dimensional in nature. We therefore expect
that the nonconservative edge motions will enhance
the production of lateral segments in bridging edge
dislocations for d &do. These additional disloca-
tion segments lead to polymer conformations out of
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the original slip plane of an edge pair. Thus, we ex-

pect an increased predominance of polymer confor-
mations with a substantial lateral component. This
increased deviation from axial order of the poly-
mers can be enhanced by the intersection of edge
dislocations with the lateral polymer segments as
shown in Fig. 7. Here the slip plane of a straight
bridging edge dislocation (dashed line} is taken to be
the figure plane; whereas the plane of the con-
formed polymer (solid line) is taken to intersect this
slip plane at an angle of m/3. This is usually the
case for the hexagonal structure, when the polymer
under consideration is not involved in nonconserva-
tive dislocation motion. (In that case it would not
lie on a plane, but the general conclusions of the
case shown in Fig. 7 would still be valid. } The ar-

rows in Fig. 7 indicate the forces on the polymer,
due to the slip constraint, imposed by the presence
of the dislocation. We see that the polymer is
stretched laterally by such encounters.

It should be emphasized that the jogged portions
of the polymer are participating in lateral screw

segments of edge dislocations, so that the encounter
shown in Fig. 7 actually represents the intersection

FIG. 7. Intersection of a conformed polymer (solid

line) with a straight bridging edge dislocation (dashed
line). The slip plane of the dislocation is that of the fig-
ure, whereas the plane of the conformed polymer cuts the
figure plane at an angle of ~/3. Arrows indicate the
direction of force on the polymer, due to the slip con-
straint imposed by the presence of the dislocation.

(a} (b)

FIG. 6. Formation process of a partitioned polymer
vacancy, created near a free surface, through the
mechanism of polymer jogging.
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of two edge dislocations (at least) in different al-

lowed slip planes of the hexagonal structure. From
Fig. 7 we see that such processes involve a lateral
dragging of the polymer molecules, and we suspect
that they will be an important factor in the destruc-
tion of nematic order near TM for lamellates in
which polymer kinking is possible in the solid state

V. DISCUSSION

In Sec. II of this paper we have developed a melt-

ing theory of paraffin crystals, based on the dissoci-
ation of screened bridging edge dislocations in a
lamellate of thickness d. Although the theory gives
a qualitatively correct description of TM(d), no
quantitative comparison has been possible, due to
our incomplete knowledge of f (g,d) Furth. er-

more, our restriction to treating only nearly straight
bridging edge pairs is a severe one. And as we have
seen in Sec. III, a proper melting theory must in-
clude the detailed structure of the rotator phase.

In fact, the vortex-motion surface roughening in
the rotator phase may be so strong as to destroy the
lamellate, leaving only axial and hexagonal lateral
order with a longitudinal-correlation length
(along the polymer axis), which must replace the
length d in the melting theory of Sec. II. A more
severe surface roughening may produce liquidlike
properties longitudinal to the polymer axis already
within the rotator phase.

The melting theory of Sec. II predicts a max-
imum in TM(d) at d, which has not been observed
experimentally. We believe that this maximum is
not an artifact of our approximations, but rather
that a folding instability of the pojkymer experimen-
tally occurs at d „.

In our discussion of the defects associated with
the rotator transition in Sec. III, we considered only

those of the vortex loop type, although domain
walls may also be present near T, . Obviously
domain walls which run parallel to the lamellar sur-
faces must involve polymer twisting across their
boundaries, due to the connectivity of the polymers.
We expect such twisted layers to be highly unfavor-
able energetically. The walls which exist perpendic-
ular to the lamella, and which bridge it, will lead
inevitably to T, -d for reasons similar to those
given in Sec. II for the dissociation of straight
bridging edge dislocation pairs, leading to T~-d.
Since the entropy associated with the energetically
unfavorable configurations of the domain walls
with large flat regions parallel to the lamellar sur-
face are needed to explain the bending over of T„(d)
for d & do, we believe that domain-wall defects play
only a minor role in the precipitation of the rotator
phase.

Finally in Secs. III and IV we discuss the effect
of vortex pairs and dislocation lines on the layered
structure, which we imposed on our calculation in
Sec. II. There we have argued that cross-slip
motion of vortex pairs in the rotator phase may lead
to a "drilling" of polymers along their axes, out of
the lamellate, to which they initially belong, leading
to surface roughening. Also we have shown that
the motion of edge pairs may cause surface
roughening through a similar mechanism, and that
intersection of such defects, lying in different slip

planes, may lead to a complete destruction of
nematic order in the melt.
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