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Electric field gradient of single impurities in aluminum
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Single substitutional impurities of Mg, Zn, Ga, Ge, and Si in Al universely show very small

electric field gradients at the second-nearest-neighbor sites, in obvious disagreement with

theoretical calculations. We show that this does not likely reflect the neglect of nonspherical

contributions to the induced charge density around the impurity.

The quadrupolar moment interaction of a host lat-
tice nuclei with the electric field gradient (EFG) in-

troduced by impurities provide detailed information
about the shape of the screening charge density
n ( r ) around such perturbations. ' s Since charge-
density calculations for single impurities in metal
hosts (and in particular in simple metals) have gained
in sophistication ' better agreements have been re-
ported with such EFG measurements. ' For an
aluminum lattice with single substitutional impurities
of Mg, Zn, Ga, Ge, and Si reasonable agreement
between theory and experiment is found for first,
third, and fourth neighbors from the impurity site.
Invariably, however, all theoretical predictions grossly
overestimate the EFG at the second-nearest neigh-
bor, which experimentally is found to be much small-

er (basically zero}. Since this discrepancy persists for
all of these impurities, with their expected different
screening density n ( r } (e.g. , different phase of os-
cillations in the asymptotic limit) it is not likely a
result of the impurity but rather that of the host Al
lattice. This led to the suggestion that the anisotropy
of n ( r ) (which is largely a property of the lattice)
could account for these differences. However, the
calculation of nonspherical corrections n„,( r } to the
charge density around an impurity is difficult and has
been largely ignored. In this Brief Report we show
that within our approximations such corrections are
very sma11 at the first few nearest neighbors, and
therefore not likely to account for the discrepancy at
the second-nearest neighbor.

For calculating the density n ( r ) around the im-

purity, two distinct approaches are possible. The
first' starts with the Al lattice, and the corresponding
Bloch states $-„(r ), to which the effect of the spher

ical impurity potential V (r ) is added. The seconds
focuses on the impurity potential, with its spherical
wave functions, and charge density no(r ), and

U( r ) = Uo(r) + U„,( r )

where

U(r)= X U, (r —R&)
Rl kaid 0

and

U„,( r ) = X Ut (r ) Yi„(e,4 ),
4'

l gs'-0

(la)

(&b)

(1c)

the RI are the lattice sites of the unrelaxed Al host,
and U~( r ) is a pseudopotential representation of the
Al-ion potential. For Ur( r ) we choose the smooth
Heine-Abarenkov form' '

corrects it by adding the effect of the lattice potential
U( r ) [the potential of the Al ion at the location of
the impurity r = 0 is removed from U( r )]. We as-
sume that the environment around the impurity is
the most important in determining the EFG at the
few nearest-neighbor sites and that the lattice plays a
secondary role, particularly in a weak scatterer such
as Al. We therefore solve for n ( r ) using the
second approach. We nevertheless hasten to add that
since the Fermi surface of Al intersects the
Brillouin-zone boundaries, the wave functions at
these points will be Bragg scattered creating large
corrections to the Bloch states at these points. Our
calculation will fail to account for that but we expect
such corrections to n ( r ) to be small, particularly
close to the impurity. In fact, to some extent, our
study of the density response to an impurity in
copper" and also the density profile of the perfect Al
lattice support this contention.

The calculation for the nonspherical corrections
n„,( r ) to n ( r ) [n ( r ) = ns(r )+n„,( r )] proceeds
as follows. " We decompose the potential U( r ) in
terms of the spherical harmonics Y4 .
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( ) J
d q, 4n Ze D sin(qR, )

( ) ( )
trl-lo)

(2e )' q' qR,
(2)

with Z 3, core radius R, = 1.09 a.u. , well depth
D =0, and damping parameter qo= 5.5kF. The
spherical density no(r ), induced by the impurity, is

now solved by first calculating the self-consistent
charge density nt(r ) for the potential U0(r ) + V(r )
[ V (r ) is the full potential of an aluminum ion,
V(r) = Z'e2/—r with Z'=13]. The numerical solu-
tion of such a charge density is well documented in
previous papers. 9 '2 We next replace V(r ) by the

]

full impurity potential (e.g. , Z'= 12 for Mg) and re-
peat the calculation for n2(r). The results are
displayed in Fig. 1 along with Zn, Ga, Ge, and Si.
no(r) is now given by n2(r) —nt(r). To calculate

n„,( r ) we follow Ref. 12. Briefly we introduce

U„,( r ) [Eq. (1c)] as a linear perturbation in the pres-
ence of nt(r ) and n2(r ) and calculate the response
using a statistical form for the kinetic and exchange
energy 1 e 12 16 17

G[n(r )] (3 2)2r3 ~'d, „r (-, )+ 1 (3)

If we take the functional derivative and linearize it around n ~(r ) [or n ~(r ) ], the following equation for n„,( r )
results,

J' ~~X 1/3
2 2

U (-)~ 'd3, ns& j ~ (3 2)y3 ( ) 2r3 1 3 ( ) 2r3 ~'7 n(r)~ V n(r)
( )36n'(r ) 36n'(r )

'r7n„, ( r ) Vn(r )'

where n (r ) is either nt(r) or n2(r). For each com-
ponent UI, (r) [Eq. (lc)], Eq. (4) produces the same
I and m components of n„', ( r ), i.e.,

n„', ( r ) = X nI,
' (r ) Yt (8, Q)

(,m
I&0

The nonspherical screening charge is given by

n„,( r ) = n„', ( r ) —n„', ( r ). In Fig. 2 we display Eq.

006
I

I

(5) for Mg in an Al host for I =4, m =4. From sym-

metry

n4' 4(r) =n4'4(r)
and

n 4 0 (r ) = ( „)'~'n J 4 (—r )1/2 1

n„,( r ) is also plotted in Fig. 2 and clearly its contri-
bution is very small. n„,( r ) is of course the
pseudo-density but the core orthogonalization factor
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FIG. 1. Solid curve is the spherical charge density around
an aluminum ion in pseudopotential representation of the
remaining lattice [i.e., V(r) + Uo(r) in the text). The other
curves represent the same calculation with V(r) the full po-
tential for Mg ( ), Zn (——), Ga (—-—-), and Si
(———) (Ge results were nearly identical to those of Si and
therefore have not been plotted separately). The induced
charge density no(r ) for the different impurities is given by
subtracting the solid curve from the rest.
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FIG. 2. The contribution of the 1=4 and m =4 com-
ponent to the nonspherical charge density n»( r ). The
solid curve is the n4 4 (r ) corresponding to a full magnesi-
um potential V(r) and a pseusopotential lattice Uo(r). The
dashed curve is the difference in n „,( r ) —n„, ( r ) when

V(r) is replaced by Al. The scale for the solid curve is on
the left and the dashed on the right ordinate.
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does not change this result. We have carried Eq. (5)
to I 12 and the same conclusions persist. The EFG
necessary to explain the above discrepancy at the
second-nearest neighbor is of the order of 10"
cga units and n„( r ) of Fig. 2 provides at best 10'0

cgs units. We must conclude that nonspherical con-
tributions of the screening charge density to EFG are
too small and we do not expect our approximations
(see above) to be off by a factor of 10'.

The universal behavior of the EFG at second-
nearest-neighbor sites of Mg, Zn, Ga, Ge, and Si in

Al obviously cannot depend strongly on the proper-
ties of the impurity. Aside from possible pathological
clustering configurations, which would have to signi-

ficantly reduce the EFG only at the second-nearest
neighbors, and which are highly unlikely for such
small concentrations, our experience' suggests that
lattice relaxation may account for the discrepancy.
We are pursuing such lattice relaxation calculations
and their effect on the corresponding EFG.
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