
PHYSICAL REVIEW B VOLUME 27, NUMBER 8 15 APRIL 1983

Dielectric constant of a composite inhomogeneous medium
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We derive an expression for the effective dielectric constant of a composite medium con-
sidering the contributions from both the electric and the magnetic dipole terms. We show
that the form of the size distribution of small metallic particles determines the value of the
volume fraction at which a sharp increase in ac absorption of a composite material occurs.
Depending on the width and mode radius of the size distribution, the effective dielectric
constant of a composite medium can be increased by several orders of magnitude.

I. INTRODUCTION

The electromagnetic properties of inhomogeneous
composite materials have been of considerable in-
terest for a long time because of the great variety of
situations in which these materials occur. Recent
increases in activity in the field are at least partially
caused by the interest in selective absorbers of solar
and infrared radiation, '

by an increasing number of
applications in astronomy and atmospheric physics,
and by the indications that the electromagnetic
behavior of the composite system may be very dif-
ferent from the behavior of individual components.

Propagation of electromagnetic waves in such in-
homogeneous composite media is often treated by
assigning an effective dielectric constant to the com-
posite medium. The best known examples of
effective-medium theories are the Maxwell-Garnett
theory and the Bruggeman theory. It has been
shown' ' that the effective dielectric constant can
be invoked by requiring the forward scattering am-
plitude to be equal to zera for the case of scattering
of electromagnetic waves of given frequency on
small particles forming a composite material, when
placed in an effective medium. If particles of one
material are dispersed in a continuous host of anoth-
er material, we talk about a separated-grain structure
which can be approximated by a layered sphere
model. This case leads to the Maxwell-Garnett rule
and its generalizations. If the space is filled by a
random mixture of two or more constituents, we
talk about an aggregate structure. This aggregate
structure is modeled by a random mixture of homo-
geneous spheres of individual materials, and it leads
to the well-known Bruggeman rule and its generali-
zations.

Until now the results of the scattering approach
to the effective-medium theory have been derived as-
suming either a discrete size distributian of indivi-
dual grains, or assuming all grains of the same size.

We present the generalization of the scattering ap-
proach to the effective-medium theory by (a) consid-
ering a continuous size distribution of grains, (b)
considering an arbitrary number of components of a
composite material, and (c) taking into account both
the contribution of electric and magnetic dipole
terms.

In Sec. II we present a generalization of the
Bruggeman-type effective-medium theory, including
magnetic dipole and size distribution effects in an
aggregate structure model. In Sec. III general equa-
tions of an aggregate structure model are reduced to
a form suitable for numerical calculations consider-
ing a y-type and log-normal size distributions. Nu-
merical calculations demanstrate an increase in the
imaginary part of a dielectric constant of a compa-
site medium due to magnetic dipole and size distri-
bution effects. In Sec. IV we present a generaliza-
tion of Maxwell-Garnett-type arguments, including
magnetic dipale and size-distribution effects in a
separated-grain model. Results are summarized in
Sec. V.

II. AGGREGATE STRUCTURE MODEL

Consider a medium compased of a random mix-
ture of several small particle constituents with bulk
dielectric constants eJ. Such an aggregate structure
can be modeled by a random mixture of hamogene-
ous spheres of individual materials. Let nt(r} be the
size distribution of grains of the jth components.
Then the forward scattering amplitude S(0}has the
form '

S(0)= z g g(2n +1)fnj(r)[a„(r,e&)

+b„(r,ej )]dr, (1)

where the sum over j runs over all components of a
composite medium, the sum aver n runs over all
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e —13 J(a) )j = 3 lxj
Ej+2

(2)

(b] )j 4& ixj (Ej 1 )

contributing partial waves, and a„and b„are the
corresponding partial-wave scattering amplitudes
(Mie scattering functions). We assume that all par-
ticles are much smaller than the wavelength A, of the
considered electromagnetic radiation. In this case
only n = 1 partial wave will contribute to the scatter-
ing amplitude. Expanding ai and b& in the power
series of the sphere's radius r, and keeping the lead-
ing term of each expansion, we obtain (in Ref. 9 an
incorrect minus sign in the b

~
term is given)

where x =2'/A, is the size parameter of a spherical
particle of radius r. The partial-wave scattering am-
plitudes a

&
and b

&
represent the electric and magnet-

ic dipole contribution to the scattering amplitude.
They are also referred to as surface-phonon and
surface-plasmon modes. ' ' " Since a

&
-x and

b& -x, b& is usually neglected. However, in the re-

gions of large dielectric constant, the b~ term can
become important. Therefore, we retain the magnet-
ic dipole term b j, and only when we want to obtain
simple formulas which can be compared with the
Bruggeman rule will we neglect the bi contribution
to the scattering amplitude.

Using Eqs. (1)—(3), the forward scattering ampli-

tude can be written as

3. '2

S(0)=i +fr n (r) + r (e I) dr .— (4)

From the condition that the forward scattering
amplitude S(0) vanishes when scatterers are placed
in an effective medium characterized by an effective
dielectric constant e, follows the equation for e in
the form

gf r nj(r} + — (ei e)r —dr=0,
6j+26' 30 c

where the circular frequency co and c are used in-

stead of A,.
The third moment of the size distribution n&(r) is

proportional to the volume Vj occupied by the parti-
cles of dielectric constant Ej'by the relation

4m

3
r nJ(r)dr= Vs .

The fifth moment of the size distribution

f r'nj(r)dr has no obvious direct physical meaning

and in general it cannot be expressed as a function
of only the bulk characteristics (that is, the volume

V~ and the bulk dielectric constant e~} of com-
ponents forming a composite inhomogeneous medi-
um.

Thus the basic equation for an effective dielectric
constant e, for the case of a separated-grain struc-
ture, is

1 '2
2n a)g VJ + — (eJ —e)f r nJ(r)dr =0,J ej+2e 45 c

('7)

where nj(r) is the size distribution and Vj is the
volume fraction occupied by particles of dielectric

constant ej..
We conclude that the size distribution of the

grains nj(r) enters the equation for a dielectric con-
stant e of a composite medium only through the
magnetic dipole term b& in the form of the fifth mo-

ment f r n(r)dr of the size distribution. Numerical

examples of how the grains' size distribution can af-
fect the dielectric constant of a composite medium
are treated in the following section.

If magnetic dipole terms in Eq. (7) are neglected,
we have

which is the usual result well known as the Brugge-
man mixing rule.

If all grains of the material characterized by a
dielectric constant Ej'are of the same size, the size-
distribution function nj(r) has the form of a 5 func-
tion

n~(r) =NJ5(r rj ), —

where Nz is the number of grains of the jth type per
unit volume. In this case the basic equation (7) for a
dielectric constant of a composite medium reduces
to

'2
ej —e 1 d'or.

g Vi ~ (ei E) =0—, (10)
ej+2e 30 c

which is identical with the equation (3.2) of Stroud
and Pan.

Consider a two-component composite material,
where one of the components is a dielectric e~ (for-
mally there is no distinction between the treatment
of metals and insulators; by dielectric we mean the
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case when magnetic dipole term is small and can be
neglected) and the other component is a metal
characterized by a dielectric constant e2. Then gen-
eral equation (7) for the effective dielectric constant
e has the form

'2
&2—& 2m e+ V2 + — (~,—~)

m~+2m ~2+ 2e 4S c

X f r n(r)dr =0,

where V~ and V2 ——1 —V& are the volume fractions
of considered components and n(r) is the grains'

size distribution of a metallic component.
For completeness of our discussion we notice that

if some of the components forming a composite
medium contain grains for which the size is compar-
able to the wavelength A, of the considered elec-

trornagnetic radiation, then higher partial waves in

the scattering amplitude have to be considered. In
this case, the effective dielectric constant e can be
obtained by solving numerically the equation

'2'3

+ — (e e) f—r n (r}dr
c . 4~ 'e+2e 30 cJ

+ —,
' g g(2n +1}fnk(r}[a„(r,ek,'E}+b„(r,ek,'e}]dr=0, (12)

where

A(1 —V)+8(e)
A(1 —V) —2B(e) ' (13)

. 12mA=s-
A3

and

B(e)=fg(2n+1)[a„(r,e2le)

+b„(r,e2le)]n(r)dr .

The first estimate of e can be obtained from Eq.
(11), assuming particles much smaller than the
wavelength. This estimate is used to calculate B(e)
and a new value of e is obtained from Eq. (13).

where the sum over j runs over all components con-
tributing to the scattering amplitude only through
the n =1 partial wave, the sum over k runs over the
components for which higher partial waves cannot
be neglected, and the sum over n runs over all con-
tributing partial waves. Standard expressions for
the partial-wave scattering amplitudes a„andb„for
a case of a homogeneous spherical particle can be
found in several available monographs. '

For the case of a two-component insulator-metal
composite with metallic grains' size comparable to
the wavelength A, , a simple iteration scheme for a
dielectric constant e of a composite medium can be
developed. If e& and e2 are dielectric constants of
dielectric and metallic components, respectively, and
V and n(r) are a volume fraction and the size distri-
bution of metallic components, the effective dielec-
tric constants e of a composite may be obtained
from the equation

III. NUMERICAL EXAMPLES

n(r)=ar e (14)

where a, b, and a are constants characterizing the
size distribution.

For the kth moment mk we obtain

I (a+k+1)
mk

—= r n(r)dr =a
0 ba+k+1 (1S)

Obviously, the zeroth-order moment is related to the
total number of grains N per unit volume

X=rno= fn(r)dr=a I (a+1)
ha+1 (16)

The effect of a magnetic dipole term in Eq. (10)
on the effective dielectric constant has been dis-
cussed at length by Stroud and Pan. They found
that inclusion of this term can increase the far-
infrared attenuation constant by a factor of
10 —10 . The purpose of our numerical study will
be to show that in addition to the above-mentioned
increase the form of the size distribution can further
increase the effective dielectric constant of a compo-
site medium by several orders of magnitude, even if
the mode radius of the size distribution and the
volume fraction of metallic components are kept at
the same value. Our numerical example has been
chosen purely to illustrate the magnitude of the
size-distribution effect. Application to high infrared
absorption in metal-dielectric composites will be at-
tempted later.

Log-normal and y-type size distributions have
been generally used for describing size distribution
of small particles growing by coalescence. ' ' A y-
type size distribution is given by
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and the third-order moment m3 is related to the
volume fraction V of the considered component

3 3 I (a+4)V=m3 —= r n(r)dr =a
4m be+4 (17)

3 I (a+6)
4~ b I (a+4)

(18)

Furthermore, the parameter b of the size distribu-
tion is related to the mode rM of the size distribution
by the relation

ab=
rM

(19)

Consequently, the fifth moment of the y-type distri-
bution (14) can be written as a function of the mode
rM and parameter a in the form

3 y p 1(a+6)m5= rM 24~ a I (a+4)
(20)

Thus from Eqs. (13) and (20) follows

E'2 —6
V) + V2

E')+ 26 62+ 2E'

'2
1 co I (a+6}+ V2 rM, (e2 —e)=0,

30 c a2I (a+4)

(21)

which is a cubic equation for an effective dielectric
constant E.

In general, if a composite medium consists of
several dielectric and several metallic components
and if each metallic component is characterized by a
y-type size distribution, we obtain a more general
form of Eq. (21),

ej —e 1 ~ 2
I (a +6}

y ~j + y ~m "Mm
ej+2e 30 c a I'(a +4}

The fifth moment of the size distribution then can
be expressed in the form of the third moment or of
the volume fraction Vas

I (a+6)m5= r n(r)dr=a
b a+6

If a log-normal size distribution

1 ln(r /r& )
n(r)= exp

r~2mlnos ~21nos

with a geometric mean radius r~ and standard devia-
tion cd is used instead of a considered y-type size
distribution, a slight change in the equations for nu-

merical calculations is needed. The mode radius rM

and the factor I (a+ 6)/a I (a+4) of the y-type
size distribution have to be replaced by a geometric
mean radius rs and a factor of exp[8(lncrs) ], respec-
tively.

To demonstrate the effect of the metallic grains'
size distribution on the effective dielectric constant e
of a composite medium, we consider a two-
component composite with dielectric constants
e~ ——1 and e2 ——eD, where Drude dielectric function
eD is given by

2
COp

eD ——1—
co(co+i Ir)

Plasma frequency cop and the relaxation time ~ are
chosen in such a way that cop~=100. Considered
frequency co is determined by co/cop: 10

Given the size distribution n (r), Eq. (21) can be
used to calculate the effective dielectric constant e as
a function of the metallic component filling factor
(volume fraction). The width of the size distribution
(14) is determined by the constant a. The larger a
is, the narrower is the size distribution. In Fig. 1 we
have plotted n (r) In(r~) where r~ is a mode radius
for a = 1, 3, 10, and 100.

The effect of the mode radius on the effective
dielectric constant e of a two-component composite
medium is shown in Fig. 2 for the case of a size dis-
tribution with a=1.0 and with the mode radius rM

I.O

O.s

R

~ 06-

Qt-

X(e —e)=0, (22)
0.2-

where the summation over j runs over all com-
ponents and the summation over m runs over all
metallic components (over components with non-
negligible magnetic dipole contribution). The y-type
size distribution n (r) of the metallic components
are characterized by the mode radius rM and a con-
stant a

Qof lo

FIG. 1. With increasing parameter a, the size distribu-

tion, n(r)/(n(r ), changes from broad (with a=1) to nar-

row, close to being a 5-function distribution (with

a = 100).
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FIG. 2. Imaginary part of the dielectric constant of a
composite material, Im(e), as a function of volume frac-
tion V of the metalliclike component. The calculations
are performed for a size distribution with a =1;co~~= 100
and co/co~=10 . The values of the scaled mode radius
co~r~/c=0. 1, 0.5, and 1. For comparison, Im(e) calculat-
ed from the Bruggeman mixing rule is also shown (curve
B). The increasing mode radius r~ shifts the percolation
threshold (which occurs at V=0.33 in the Bruggeman
case), toward the smaller volume fractions.

given by zopf~/c=0. 1, 0.5, and 1.0. For compar-
ison, also the effective dielectric constant e calculat-
ed from a simple Bruggeman mixing rule (8) is
shown. The dielectric-to-metal transition (percola-
tion threshold) occurs in the Bruggeman case around
the value of the filling factor V=0.33 as expected.
If we generalize the percolation threshold for
nonzero frequencies the effect of magnetic dipole
term is to shift the percolation threshold towards
small values of the filling factor. The amount of
shift is a function of the mode radius. With
copr~/c=1, the percolation threshold is shifted to
about V=0. 1 at co/cop =10

Even below the value of the percolation threshold,
the metallic grains size distribution has a consider-
able effect on the value of the effective dielectric
constant e. In Fig. 3 we have plotted Im(e) as a

FIG. 3. Imaginary part of the dielectric constant of a
composite medium, Im(e), for the Bruggeman case (B)
and for three different values of the mode radius r~. In
these cases a=1, cop~ ——100, and co/co& ——10

function of the volume fraction V for the case of
a=1 and copp~/c=0. 1, 0.5, and 1.0 on a log-log
scale. For comparison the Bruggeman case is also
shown. We see that the increase of a mode radius by
a factor of 10 (keeping the volume fraction V con-
stant) can increase the imaginary part of the effec-
tive dielectric constant of a composite medium by a
factor of 10 .

Figures 4 and 5 similarly show the effect of the
width of the size distribution on the percolation
threshold and the imaginary part of effective dielec-
tric constant e. Depending on the width of the size
distribution, the imaginary part of dielectric con-
stant can be increased up to a factor of 10 com-
pared to the value given by the Bruggeman mixing
rule.

We conclude that the finite width of the grains'
size distribution and the distribution's mode radius
can produce a shift of percolation threshold towards
smaller values of volume fraction of metallic com-
ponents. Also, the value of the effective dielectric
constant of a composite medium can be increased by
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FIG. 4. For a given value of the mode radius rM

(co~rM/c =1), the width of the size distribution has a con-
siderable effect on the position of the percolation thresh-
old (dielectric-metal transition) and on the magnitude of
an effective dielectric constant of a composite medium.
Apart from considered y-type size distributions, results of
the 5-type size distribution (a=1000) and the Bruggeman
case (8) are also shown. co&~——100 and co/co& ——10 have
been used to determine the dielectric constant of the me-
talliclike component.

several orders of magnitude not only from the value
predicted by Bruggeman model, but also from the
value predicted by 5-type function size distribution
(a= 1000).

The anomalous far-infrared absorption of two-
component small particle composites is a well-
known fact. ' ' Theoretical calculations are 1—3
orders of magnitude below the measured far-
infrared absorption. We suggest that proper con-
sideration of the metallic grains' size distribution
may at least bring theoretical calculations closer to
experimental results. The case of 1-pm palladium
particles in the KC1 matrix is treated by Chylek
et al. ' It is possible that for considerably smaller

I

FIG. 5. Imaginary part of the dielectric constant of an
effective medium, Im(e), as a function of the metallic
component volume fraction V for the considered y-type
distribution, 5-type distribution (a= 1000), and the
Bruggeman case (8). The mode radius co~rM/c=1,
co~~= 100, and co/co& ——10

metallic particles the bulk dielectric constant e and
plasma frequency co~ will have to be modified due to
boundary effects.

IV. SEPARATED GRAIN MODEL

Consider a case when several materials with
dielectric constants ej are dispersed in a form of
small grains in a host material of dielectric constant
eJ. A simplified model of this separated-grain
structure consists of a spherical nucleus of dielectric
constant ej surrounded by a spherical shell of the
host medium with dielectric constant eq. The for-
ward scattering amplitude $(0) for the scattering of
plane electromagnetic waves on an ensemble of such
layered spheres can be written in the form

S(0}=—,g g(2n+1}f fnj(r, R)[a„(r,R,ej,eq)+b„(r,R,e~,eq)]dr dR
j n
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where nJ(r, R ) is the size distribution of the layered spheres with the dielectric constant »J of the inner sphere
of radius r and radius R of the outer sphere. The functions a„and b„arepartial-wave scattering ampli-
tudes ' for the scattering of electromagnetic waves on a layered sphere. Summation over n runs over all con-
tributing partial waves, and the summation over j runs over all components of the composite medium.

In the case where the size of the layered spheres is considerably smaller than the wavelength of the incoming
radiation, and where dielectric constants of the components are not too large, we keep only the leading terms of
ai and bi,

(»J 1 )(» . +2»~ ) + ( r /R )'( 2»J + 1 )(» —»J )
a

&

——+ix—
3 (»J+2)(»J+2»~)+2(r/R) (»g —1)(»J »J)—

b, =+ix „[(»J——1)+(»J »&)(r—/R) ],

(24)

(25)

where x =2+R /A. is the size parameter of the outer spherical shell of radius R.
The general expression (23) for the forward scattering amplitude S(0) contains the layered spheres' size-

distribution function n/(r, R ), which gives the number of layered spheres per unit volume with the inner radius

between r and r +dr and the outer radius between R and R+dR. While the radius r of the inner sphere is

given by the size distribution nJ (r) of the grains of material with the dielectric constant »&, the radius R of the
outer spherical shell of the host material with dielectric constant »z is subjected to our choice within definite

limits. To simplify the mathematical treatment of the model, we choose the ratio r/R to be the same for all
layered spheres with the same material of an inner sphere. Therefore, for each j we can write

= v'" (26)

with V& being the fractional volume of a component with dielectric constant »J. Using Eqs. (23)—(26), the for-
ward scattering amplitude can be written as

'3
(»z —1}(»J+2»J)+VJ(2»+J1)(»J »g)S(0}=i r3nJ(r)

VJ (»J +2)(»J +2»J )+2 Vj(»g —1)(»J »g)—
'2

+ z&3r [(»J—1}+VJ (»J —»~} dr .
1 2n. 1 & 5/3

30 A, y,'. ' (27)

From the consideration that the forward scattering amplitude $(0) vanishes when scatterers are placed in an
effective medium characterized by an effective dielectric constant e, the basic equation for e follows in the
form

'2
(»g —»)(»J+2»J)+ VJ(2»J+»)(»J —»J)

5~3 +»J »J r nJ(r}dr—=0.
(»g+ 2»)(»I +2»J ) + 2VJ(»g »)(»J »J—) 4—5 C

(28)

We see again that the grains' size distribution

n&(r) enters the equation for an effective dielectric
constant e through the magnetic dipole term in the
form of the fifth moment of the size distribution.

By setting»J » in Eq.——(28} we obtain the case of
homogeneous spheres considered earlier. In this
case Eq. (28) reduces to Eq. (7) as expected.

If magnetic dipole terms in Eq. (28) can be
neglected, the equation for the effective dielectric
constant e of a composite medium simplifies into

(»J —»)(»J +2»J )+ VJ(2»J +»)(»J —»g ) =0,
(»J+2»)(» +2»g)+2V (»g »)(» »J—)—

(29)

which represents the generalization of the Maxwell-

(», +2»~)+2V (» —»J)
E'=EJ

(Ej +26J ) Vj(Ej E'J )
(30)

which is just the Maxwell-Garnett mixing rule.
If the 2VJ(»q »)(»/ —»g—) terms are neglected

with respect to the (eJ +2@)(ej+2eJ) terms in
denominators of Eq. (29), we obtain

1+2+V,(» —»q)/(» +2»q)
jE'= E'J

1 gV (» », )/(», +2»J)— —
j

(31)

I

Garnett mixing rule following from the "no-
scattering" condition.

In the simplest case of a two-component compo-
site with dielectric constants»J and»z, Eq. (29)
leads to
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which is a form of generalized Maxwell-Garnett rule

for the case of a multicomponent system obtained

by Wood and Ashcroft. '

Instead of neglecting terms 2VJ(e/ e—)(e, s—J } in

(29) we may use the binomial expansion for denomi-

nators in Eq. (29) and keep only terms proportional

up to VJ.. We obtain a new simple algebraic expres-

sion for an effective dielectric constant e of a com-
posite medium

If all grains of the jth medium are of the same

size, the size distribution function n/(r) can be taken
in the form of the 5 function (9), and the basic equa-

tion (28) for the effective dielectric constant e
reduces to

(e/ e—)(e/+2E/)+ Vj(2E/+'e)(eI '—eJ )

(e/ +2e )( E& +2E/ ) +2 VJ (EJ e—)(ej —EJ )

6'J 6J —E'J
e=—~ 1+9+VJ

4 E) +2'
Nrj

30 c
Eg —6

5/3 +eJ EJ VJ ——0, (33)
VJ.

2

+ 1+9+V, ' +8
) 6J +2E'J

1/2 '

(32)

Since the last equation is the result of an approxima-
tion to Eq. (29) for the case of more than two com-

ponents, it should not be used for the case of a two-

component composite medium, which can be solved

exactly and which leads to the Maxwell-Garnett re-

lation (30}.

which is an analogy of Eq. (10}for the case of lay-
ered spheres. Similarly an analogy of Eq. (12) can
be written for the considered case of the separated-
grain model.

Finally, the use of y-type size distribution func-
tions of the form (14} allows us to replace the fifth
moments of the size distributions in Eq. (28), by the
volume fractions VJ, and Eq. (28) reduces to

(EJ E)(FJ—+2'EJ)+ V'j(2e/+ E)(ej E/ }'I co—rM~+
(e/+ 2e)(e/+ 2' )+2 VJ (e/ e)(E) E/—) 30 c—

'2
e/ —e I (aj +6}
VJ5/3 J / J

~21 ( +4)
=0, (34)

where rMJ is the mode radius and az is a parameter
of the size distribution function (14}.

For the case of log-normal size distributions the
mode radius rMJ and the factor
I (a, +6)/aj I (aj +4) has to be replaced by a
geometric mean radius r~ and a factor of
exp[8(lno&) ], respectively, but the form of the
equation remains the same.

An explicit form of an equation for an effective
dielectric constant of a composite medium in a
separated-grain model depends on considered
geometry. We have assumed (r/R)~ =const for all

grains of the jth kind (the same assumption is made

by Hashin and Shtrikman' in their variational ap-
proach). Different geometry may lead to a different
form of an expression for the dielectric constant of a
composite medium. This has been found earlier for
the case of electric dipole interaction. o Regardless
of assumed geometry the inclusion of magnetic di-

pole interaction brings additional terms proportional
to the fifth moment of the size distribution.

V. CONCLUSION

Assuming the no-scattering condition in the form

of vanishing forward scattering amplitude and con-

sidering continuous size distribution of grains, arbi-

trary number of components, and contributions

from both the electric and the magnetic dipole
terms, we have derived Eqs. (7) and (28} for the ef-

fective dielectric constant e of a composite medium

using an aggregate structure model and separated-

grain structure, respectively. We have found that in

both cases the electric dipole contribution is depen-

dent only on the bulk characteristics of components,
namely on the volume fractions VJ and dielectric
constants ej. On the other hand, the magnetic di-

pole contribution to the forward scattering ampli-

tude depends on the microstructure of grains

through the fifth moment of the size distribution

f r'nj(r)dr. Consequently, the effective dielectric

constant of a composite system depends on the form
of the size distribution of metallic grains.

For the case of two dielectric components compo-

sites, our Eqs. (7) and (28) reduce to usual Brugge-

man and Maxwell-Garnett mixing rules. For the

case of multicomponent dielectric composites, Eq.
(7) is identical to the generalized form of the

Bruggeman mixing rule as derived by many
researchers before. On the other hand, Eq. (28)
reduces to a form given by Eq. (29}, which

represents the generalized form of the Maxwell-
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Garnett mixing rule for a multicomponent system,
as it follows from the "no-scattering" assumption.

Numerical examples demonstrating the effect of
the size distribution were calculated for the case of
aggregate structure model using a y-type size distri-
bution function. Numerical results suggest that the
width and mode radius of the metallic grains' size
distribution can shift the percolation threshold to-
ward smaller values of the volume fraction of metal-
lic component, and it can increase the effective
dielectric constant of a composite material by
several orders of magnitude.
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