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The tight-binding scattering-theoretical method for the calculation of electronic properties
of relaxed and reconstructed surfaces is described in detail and applied to the relaxed
GaAs(110) surface and the reconstructed Si(100)-(2x 1) surface. For the underlying bulk
electronic structure, we employ realistic empirical tight-binding Hamiltonians retaining
first- and second-nearest-neighbor interactions. In our calculations we have used surface-
structural models, proposed in the literature on the basis of total energy minimization calcu-
lations. These models are in good agreement with low-energy electron-diffraction data.
Relaxation- and reconstruction-induced changes in the interaction matrix elements with in-
teratomic distance d are taken into account by the d ~2 scaling law, as proposed by Harrison.
We discuss our results in terms of surface band structures and wave-vector—integrated as
well as wave-vector—resolved layer densities of states. These theoretical data allow for a de-
tailed discussion of the origin and physical nature of the surface-induced features. In par-
ticular, the effects of relaxation or reconstruction on the ideal surface electronic properties
can transparently be analyzed in the framework of the current method. Comparison of our
results with both angle-integrated and angle-resolved photoemission data shows very good
agreement confirming the charge-transfer bond-angle relaxation model for GaAs(110) and
the asymmetric dimer model for Si(100)-(2 X 1).
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I. INTRODUCTION

The electronic structure of semiconductor sur-
faces has become a subject of large theoretical and
experimental activity during the past decade. This
is due to both the intrinsic fundamental interest in
the problem and to the practical relevance of the
subject. Nevertheless, bulk electronic properties of
crystals continue to be much better understood than
surface electronic properties. This is related to both
experimental and theoretical reasons. For the theor-
ist, a surface introduces two new complications as
compared to the bulk electronic structure problem:
First, there is the lack of periodicity perpendicular
to the surface plane and second, there occurs a rear-
rangement of atoms in the outermost layers near the
surface. These structural changes are referred to as
relaxation or reconstruction, depending on whether
the movement of the atoms leads to .a symmetry
change of the surface unit cell or not. Until now,
the surface-layer atom positions cannot be deter-
mined with the same accuracy as for bulk atoms, be-
cause there exists no experimental method for
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surface-structure determination which is equivalent
to the standard bulk techniques. Low-energy elec-
tron diffraction (LEED) readily yields the transla-
tional symmetry of the surface layer and the orienta-
tion of the surface unit mesh with respect to the
underlying bulk structure but it does not directly re-
veal atomic positions within the unit cell.

For the determination of the surface atomic coor-
dinates two complementary approaches are used
currently which are both based on joint theoretical
and experimental studies. One is LEED combined
with dynamical diffraction theory, which has been
applied to a large number of semiconductor sur-
faces. The other is angle-resolved photoelectron
spectroscopy together with surface electronic struc-
ture theory. For certain assumed structural models
the calculated electronic structure is compared to
the angle-resclved ultraviolet photoelectron spectros-
copy (ARUPS) data in order to either confirm or
rule out the chosen structural model. A precise
knowledge of the electronic structure, therefore, is
very helpful for determining the relaxation or recon-
struction behavior of a given surface.
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Many different theoretical methods are currently
used to study electronic properties of surfaces: the
cluster, slab, superlattice, matching, transfer-matrix
or scattering-theoretical methods. For the details of
these methods, we refer the reader to Refs. 1—14,
together with the included references. The
scattering-theoretical method has been applied suc-
cessfully to the study of ideal surfaces' and relaxed
surfaces.!*~17

In the present paper we describe in detail the for-
mal extensions of the scattering-theoretical method
necessary for the treatment of relaxed or recon-
structed surfaces and present some applications of
the formalism. As examples, we have chosen sur-
faces which have gained much interest in the past,
namely the relaxed GaAs(110) surface and the
reconstructed Si(100)-(2X1) surface. This allows
for comparison of our results with experimental
data and with theoretical results obtained by other
methods. Despite the large amount of both theoreti-
cal and experimental information on these surfaces,
they still remain a subject of current interest, show-
ing that the detailed electronic structure has not yet
reached a state of common agreement.

In the scattering-theoretical method (STM) a sur-
face is treated as a localized perturbation of a bulk
solid. The bulk crystal is described by an empirical
tight-binding Hamiltonian. In the examples we
present, second-nearest-neighbor interactions are in-
cluded in the bulk Hamiltonians, leading to a realis-
tic bulk electronic structure, at least for the occupied
states. The ideal surface is then created by remov-
ing two layers of atoms (since second-nearest-
neighbor interactions are included) so that two
semi-infinite decoupled crystals result. In addition,
the necessary changes of the tight-binding matrix
elements of the relaxed or reconstructed surface are
taken into account by an empirical scaling of the in-
teractions with interatomic distances. The modifi-
cations of the directions and the distances between
the atoms in the surface layers give rise to pro-
nounced changes in the surface electronic structure
of relaxed and reconstructed surfaces as compared
to ideal surfaces. On the basis of the present for-
malism we have studied these changes by calculating
the new bound-state energy-level positions and
wave-vector—resolved layer densities of states. An
analysis of the latter allows for a detailed investiga-
tion of the relaxation- or reconstruction-induced
shifts of state-density peaks within the projected
bulk band continua.

The scattering-theoretical method has several vir-
tues:

(a) Starting from a realistic empirical tight-
binding bulk Hamiltonian we arrive at results for
the surface electronic structure of real semi-infinite

solids, which are quantitatively meaningful. They
do not only allow us to discuss general physical
trends but they can also be compared successfully
with experimental data.

(b) The bound-state energies and the wave-
vector—resolved densities of states can directly be
obtained, once the bulk Hamiltonian and the surface
atomic structures are specified. These quantities can
be related to experimental data as obtained, e.g., by
ARUPS measurements.

(c) The expensive part of the calculations (i.e., the
setup of the bulk Green’s function in a layer-orbital
representation) needs to be done only once, when
different structural models are to be investigated. A
large amount of useful information is obtained by a
modest numerical effort. The STM is thus a very
efficient and fast approach for the study of electron-
ic properties of surfaces with high spectral resolu-
tion.

This paper is organized as follows: In Sec. II we
develop the general theory for the treatment of re-
laxed or reconstructed surfaces within the Green’s
function approach. In Sec. III we apply the formal-
ism to a relaxed surface and discuss the electronic
structure of ideal and relaxed GaAs(110). Section
IV is devoted to the study of the reconstructed
Si(100)-(2X 1) surface. A short summary in Sec. V
concludes the paper.

II. SCATTERING-THEORETICAL METHOD
FOR RELAXED AND RECONSTRUCTED
SURFACES

The determination of the electronic structure of
ideal surfaces using the scattering-theoretical
method has been described in detail in Ref. 1. In or-
der to establish the nomenclature, we briefly recall
the basic equations for the general formalism and its
application to ideal surfaces before discussing the
cases of relaxed and reconstructed surfaces in some
detail.

A. General formalism

In the scattering-theoretical method surfaces are
treated as localized perturbations of a perfect,
three-dimensionally periodic bulk solid. The pertur-
bation U that creates a surface is two-dimensionally
periodic parallel to the surface and highly localized
perpendicular to the surface.

The unperturbed bulk solid is described by an ef-
fective one-electron Hamiltonian H,. The bulk
band structure and the corresponding eigenstates are
obtained by solving the Schrodinger equation:

Hy |n,K)=E,(K)|n,k), (1)
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where n is the band index and K is the Bloch wave
vector. The bulk Green’s function G, is defined as

Gy(E)= lim (E +ie—H,)™!

e—~0t

=(E*—H,)™! )

and the bulk density of states (DOS) is given by
Ny(E)=—7"'TrImG,(E) . (3)

The Hamiltonian of a crystal with two surfaces
which are infinitely far apart from one another is
given by

H,=H,+U; 4)

where U; formally describes the creation of the sur-
faces. The specific form of U is, of course, dif-
ferent for ideal, relaxed, or reconstructed surfaces
and will be given below. It should be noted that it is
only the localized perturbation U that changes for
the different types of surfaces. The main part of
Hy, namely H,, is unaffected thereby.

The Green’s function of the perturbed system H;,
i.e., of a crystal with two surfaces infinitely far apart
from one another, is determined by the Dyson equa-
tion,

G;(E)=Gy(E)+G,(E)U;G,(E) . (5)
The formal solution for G,(E) is given by
G;(E)=Gy(E)+G,(E)T{(E)Gy(E) (6)

in terms of the bulk Green’s function G,(E) and the
surface scattering matrix

T,(E)=U,[1—G,(E)U,]~". )]

Scattering of bulk eigenstates at the surface can
give rise to bound surface states or resonances (an-
tiresonances). The bound surface states are deter-
mined by the poles of the surface scattering matrix,
i.e., by the solution of

D(E)=0, (8)
where
D(E)=det||1—G,(E)U;|| . 9)

Resonances and antiresonances induce increases or
decreases in the unperturbed (i.e., bulk) density of
states, respectively. They can be identified by calcu-
lating the total change in the density of states,

AN(E)=n"'TrIm[G,(E)—G,(E)]
=—n"d¢(E)/dE , (10)
where the phase shift ¢(E) is defined as

#(E)=argD (E) . (11)

The localization properties of bound states as well
as resonances can be obtained from the layer densi-
ties of states (LDOS). They are obtained by taking
partial traces of the imaginary part of G,(E) in a
layer-orbital representation.

B. Linear combination of atomic orbitals representation

In order to apply the general formalism, we need
an explicit representation of Hy, H,, U, and the
corresponding Green’s functions. We use an ortho-
normal set of localized orbitals @,(T) to expand the
wave functions. Symmetry-adapted linear combina-
tions thereof are used to represent the operators.

In T representation, the bulk wave functions
¥, p(D=(T|n, k ) are expanded as follows:

v, (H=3Ca (k W), (12)
with

iKK;+7) . =3
XaV( Ee J v ‘Pa( T "‘Rj _ Tv)

‘/_
(13)

where ﬁj is a Bravais-lattice vector and 7, specifies
the positions of the atoms in the unit cell. N3 is the
number of lattice points in the normalization
volume of the bulk lattice. For semiconductors like
Si, Ge, or GaAs the set of localized orbitals is usual-
ly restricted to atomic s and p functions since these
orbitals are mainly involved in the chemical bonding
of the materials. For the bulk description, we use
the empirical tight-binding method (ETBM) as in-
troduced by Slater and Koster.!® In this approach,
the bulk Hamiltonian matrix elements

(@ulT) | Hy | @gT—R; —7,)

are treated as parameters. They are chosen such
that the resulting ETBM band structure E, (k) op-
timally fits the results of more sophisticated, self-
consistent bulk band-structure calculations or exper-
imental ultraviolet photoelectron spectroscopy
(UPS) and reflectivity data, or both.

When only a finite number of atomic orbitals per
site is taken into account (s, py, p,, and p,, in our
case) this approach has the great advantage that the
solution of Eq. (1) is reduced to diagonalizing small
matrices (typically 8 X8 in size). When only first-
and second-nearest-neighbor interactions are re-
tained in the bulk Hamiltonian matrix, the surface-
creating perturbation U; is small in size and the
mathematical operations involved in the calculation
of bound surface states and resonances [Egs.
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(5)—(11)] can easily be done on a computer.

A natural basis set for surface calculations, which
completely exploits the translational symmetry, is
the layer-orbital basis. A surface retains a transla-
tional symmetry parallel to the surface plane, so that
a two-dimensional Bloch wave vector q can be in-
troduced to classify the eigensolutions of the system.
Layer-orbitals are then given in T representation by

N N 1 igF+A™
<I' Im’a),u';q)= ze ! #
1

V' N,
XQulT— 1= A .
(14)

The number of Bravais-lattice points per layer nor-
malization area is N,; m labels layers, p; are the lat-
tice vectors of the two-dimensional Bravais lattice,
and A ;' are the positions of the atoms in the unit
cell. This vector can be decomposed into a surface-
parallel component &' and a perpendicular com-
ponent k™, which specifies the distance of layer m
from the origin, such that

Kp=am+k*r. (15)

Thus both sets of vectors {;’J’,,)—;Z’} and [l_ij,?v}
span the entire bulk lattice.

The bulk Bloch wave vector k can be decomposed
accordingly into a surface-parallel component q + g
and a surface-perpendicular component k| as

K=4+E+K,, (16)

where g is a reciprocal-lattice vector of the two-
dimensional net. Since k is restricted to the first
bulk Brillouin zone, g+ g is also restricted to the
same Brillouin zone.

We are now prepared to represent the operators in
Egs. (2)—(11) in the layer-orbital basis. Since the
surface perturbation Uj is different for the different
types of surfaces we will discuss its representation
separately. The bulk Green’s function G,(E) is, of
course, the same in all cases.

Introducing a collective index [ =(m,a,u), the
bulk Green’s function is given in the layer-orbital
representation by

Gl (GE)= (g |nk){nk|Iq)
nE Et—E,(k)

(17)

which reduces to!

N. K A RM—Rm) (T T

Gl (G E) =S 3" ST
3% 7

<3 CMG+8,K)C! (G+E,K)
Y EY—E,q+8.k)

(18)

The sum over g involves only those g vectors for
which k=qd+¢+k, lies inside the first bulk Bril-
louin zone. This sum can always be eliminated by
employing bulk symmetry properties,’ yielding the
final expression

Cr(g,K)CE " (G,K,)
Et—E,(4,k,)
(19)

where L, is the length of the normalization volume
perpendicular to the surface. The k| -integration in-
terval —x; to x; depends on the particular surface
considered!; e.g., for a (100) surface of a diamond-
type lattice, x is equal to 27 /a.

>

C. Ideal surfaces

For the study of the electronic structure of ideal
surfaces, a perturbation U.¢ is introduced which “re-
moves” sufficiently many layers from the bulk crys-
tal to completely decouple the two resulting sur-
faces. The removal is accomplished by shifting the
on-site matrix elements on all atoms to be removed
to infinity.! The corresponding surface-creating
perturbation U is given by

. N
(I;q| Usld 17:d) =u1i_£1:°u5aa’8##'8mM' 2 S, m"

m'=1
(20)

in layer-orbital representation. The sum over m" is
restricted to the N layers to be removed. This num-
ber is typically one or two, respectively, if the bulk
crystal is described by a first- or a first- and
second-nearest-neighbor ETBM Hamiltonian. In
consequence, the surface-creating U matrix is very
small in size, e.g., 16X 16 for ideal GaAs(110) when
a second-nearest-neighbor bulk Hamiltonian is used
with s, ps, p, and p, orbitals per atom.

The bound states at an ideal surface are given by
the solutions of

D'Y(q,E)=det'|| -G/ (4,E)||=0, @1)

as can be seen by inserting Eq. (20) in Egs. (8) and
(9) and carrying out the limit u to infinity. The
prime at the determinant is meant to indicate that /
and /' are restricted to the subspace of the removed
layers [see Eq. (20)] Layer-, atom-, and orbital-
resolved densities of states are given by

Ni(q,E)=—7"'ImG{,(q,E), 2)



5016 M. SCHMEITS, A. MAZUR, AND J. POLLMANN 27

with the surface Green’s function calculated from
Eq. (6) in the layer-orbital representation (for details
see Ref. 1) and U according to Eq. (20).

D. Relaxed surfaces

Surface-structural changes which are induced by
movements of atoms in the outermost layers without
changing the translational symmetry of the surface
system are referred to as surface relaxations. They
do not change the surface unit cell and surface Bril-
louin zone so that the q vector ranges over the same
area as for the corresponding ideal surface.

The modifications of the atomic positions in the
outermost layers, however, give rise to changes in
the interaction matrix elements between these atoms
and the other atoms of the system. The surface
creating perturbation U™ thus needs to consist of
two contributions: one which creates an ideal sur-
face and a second part which simultaneously takes
into account the relaxation-induced changes. This
task is accomplished by the following U matrix:

vl o

Usre] = 0 Wel

. (23)

In the layer-orbital representation, the relaxation
matrix 7™ reads

(L | 7™ 1I54)=(1;q | H, | I;q)
—(Lq|Hy |15G), (24

and describes the changes of the interaction matrix
elements due to relaxation. In the two-center ap-
proximation, the Hamiltonian matrix elements be-
tween s and p orbitals are given by

- - = Ti
(¢S(I)IH |¢pi(r'—7)>=7Vsp ’
TiTj
(@u(T) | H | @ (F=7) =" (Vpo— Vpps]
+8¥ppr (25)

with i,j=x,y,z. Not only the direction cosines but
also the interactions ¥ change when the atomic dis-
tances between neighboring atoms are changed. For
these changes we employ the empirical scaling law
suggested by Harrison,!® according to which intera-
tomic matrix elements vary as d ~? with varying in-
ternuclear distance d. This scaling law has also been
used with great success by Chadi®!? for his studies
of relaxed and reconstructed semiconductor sur-
faces. If ¥} are the matrix elements for the ideal
crystal, variations with distance are thus included by

2

d
21, (26)

Vi=V?|—

where d;, and d are the interatomic distances before
and after relaxation, respectively. Equations (25)
and (26) show how distance changes as well as angu-
lar displacements induced by relaxation are taken
into account.

Inserting (24)—(26) in (23) and using the general
formalism of Sec. I A, bound states can be calculat-
ed from Eq. (8) and layer densities of states are
given by Eq. (22) where U™ has to be used in the
calculation of the surface Green’s function. Since
U;d creates two equivalent ideal surfaces, it is com-
putationally most efficient to set up 2™ in such a
way that it relaxes only one of the two surfaces.
Applying Eq. (22) on both sides of the “surface-
creating cut” yields then simultaneously the proper-
ties of the relaxed surface and those of the ideal sur-
face (for reference’s sake).

E. Reconstructed surfaces

In most of the formalisms for the evaluation of
electronic properties of surfaces, a reconstructed sur-
face constitutes an entirely new system as compared
to the corresponding ideal surface. This is not the
case in the scattering-theoretical method nor is it the
case in nature. The reconstruction of a surface can
introduce interactions between the eigenstates of the
ideal surface system which were symmetry-
forbidden at the ideal surface. The symmetry reduc-
tion at the reconstructed surface changes the selec-
tion rules and thus allows for new interactions previ-
ously forbidden. The eigenstates of the ideally ter-
minated semi-infinite solid scatter at the
reconstruction-induced surface net. These physical
facts become directly apparent in our current for-
malism.

When a surface reconstructs, the translational
symmetry is changed and, therefore, the surface unit |
cell is modified. The basis vectors of the new unit
cell b; are expressed as integer multiples of the old
basis vectors @; by

El =Qa 131 N (27)
B,2 =a,d,,

for commensurate reconstructions without rotations
being involved; a; and a, are integers referring to a
a;Xa, reconstructed surface. If rotations are in-
volved, the vectors b; depend on both @; and 4,.
For the sake of simplicity, we restrict our discussion
to the simple case given above, since we will present
in this paper only applications to the Si(100)-(2X 1)
surface as an example. Extensions of the formalism
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to more complicated reconstructions are straightfor-
ward. The reconstruction introduces a new recipro-
cal surface lattice whose unit vectors are given by
the corresponding ideal surface unit vectors divided
by a; and a,, respectively. The new surface Bril-
louin zone (SBZ) in consequence, covers only an in-
teger fraction of the ideal surface Brillouin zone.
The two-dimensional wave vector of the reconstruct-
ed SBZ, which we will label § for clarity’s sake, is
thus restricted to an area which is 1/a,a, smaller
than the ideal SBZ. The number of orbitals per
layer unit cell increases correspondingly, which
merely represents the fact that the total number of
electronic states is conserved.

Surface reconstruction is now described in our ap-
proach by the following surface perturbation matrix:

U o

Usmc= 0 yree

) (28)

which is formally similar to the surface relaxation
matrix. There is one distinct difference, however,
for reconstructed surfaces, as compared to relaxed
surfaces. For the representation of U;*° and the cor-
responding Green’s functions a layer-orbital repre-
sentation is needed that takes into account the re-
duced symmetry and is thus different from the ideal
surface layer-orbital representation. There are thus
two distinctly different features to be taken into ac-
count. One is the new basis and the other are the
explicit effects of 77™°. It is interesting to discuss
one at a time and to pursue how the formal results
change when the new basis is used to represent the
operators even without “switching on” the
reconstruction-induced interactions in 7™, This is

(m,a,&;q | Go(E) | m',a’,€';q)
Nz

equivalent to studying the electronic structure of an
ideal surface using artificially a too large, i.e., the
reconstructed unit cell. Such a procedure results in
a superposition of electronic properties of the un-
reconstructed 1X1 surface. The 1X1 electronic
structure becomes backfolded a,a, times onto the
reconstructed SBZ. The reconstruction matrix 7™
finally leads to interactions, mixings, and splittings
of these backfolded states.

The backfolded ideal surface-electronic structure,
therefore, constitutes a valuable intermediate step in
the treatment of reconstructed surfaces. As the
symmetry-adapted basis, we use (in T representation)

- = 1 GG ™
(T|ma,6q)=——=e T
VN5
Xq’a(?_ﬁl_x:l)
(29)

N, the number of unit cells in the normalization
area, is given by N,/a;a,. Vectors and functions
with a tilde in the following correspond to the
reconstructed surface symmetry. The expression
(29) is formally equivalent to (14). Note, however,
that the surface-parallel component in Am e is given
by o' 7 which determines the position of atom € in
the mth layer of the reconstructed crystal. At the
reconstructed surface there are a;a, times as many
atoms in the unit cell as there were in the ideal unit
cell. Correspondingly the number of § values in the
reconstructed SBZ is 1/a;a,-times the number of q
values in the corresponding ideal SBZ.

Representing the bulk Green’s function in the new
layer-orbital basis (29), we find (see the Appendix)

~ - ~ i -
Zme(q+g'r’kl)czrm’e’(q"’gnkl)

Ly — . (30)

P E*—E,(G+8,,K))

The k, integration extends over the same interval as in (19). The sum over i includes only a finite set of
reciprocal-lattice vectors of the reconstructed surface given by (for a rectangular surface net)

si_2m b1 2w B
e by by by
with m =0,1,...,a;—1 and n =0,1,..

(31)

.,a@;—1. This sum contains aa, g ,-vectors. The g+ g, vectors are

equivalent with respect to the reconstructed surface symmetry but they are inequivalent with respect to the
ideal surface symmetry. We can relate the bulk Green’s function in the new representation (29) to the bulk
Green’s function in the ideal-surface layer-orbital representation yielding

(m,a,6q | Go(E) | m",a’,€';3)

N3 igiTm-7

=—3 T map G+ E

L Gy(E) | m'a' ;3 +EL) (32)
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where 1 and p’ have to be chosen such that ¢ and o°¢" as well as o' "and @7 correspond to the same atom,
respectively. This result transparently expresses that the ideal-surface features at the various q+ g, points
contained in the sum are “backfolded” onto q in the reconstructed SBZ. Off-diagonal matrix elements carry a
phase factor [see (32)] which contains information about the new surface symmetry. The diagonal matrix ele-

ments, which are needed for calculating the bulk layer density of states

N oG, E)=—

are simply given by

~ ~ N} ~
(m,a,e;fl' | G(b)(E) | m,a,e;fi ) = J—z'(m,a’#ya'i'—g.
i

N,

We thus find

‘N ,E) , 35
alazzi [(q+gr ) ( )

NY(G,BE)=

where L is the collective ingex (m,a,€). The bulk
layer density of states at a 4 vector in the recon-
structed SBZ is thus given by simple superposition
of the LDOS’s at the different g+ g points in the
ideal SBZ.

Not only the bulk features become backfolded but
also the electronic states of the ideal surface. This
can easily be shown in our formalism. The existence
condition for bound states [Eq. (8)] can be rewritten
in the |m,a,€;q) representation and can again be
related to the corresponding determinants in the
| m,a,u;q) representation, as shown in the Appen-
dix. The existence condition then reads

p(g, E)—HD(q+g£,E)=o . (36)

This equation immediately reveals that the bound

surface states which occur at any of the a'—{-_g",
wave vectors of the ideal SBZ are found simultane-

ously at q of the reconstructed SBZ. They are thus

all backfolded onto a’
Correspondingly, the total change in the density
of states introduced by an ideal surface is given at a

particular q value of the reconstructed surface by

AN(G,E)=——'AN(G+ELE), (37)

a)a;
showing that the changes at different lci'+'g'; are
simply superimposed. This follows from the factor-
ization of D(q,E) which in turn leads to the result
that the phase shift ¢(g_,E) is just the sum of the
different phase shifts ¢(q+g -, E).

Finally, the layer density of states of an ideal sur-

face at a d value in the reconstructed SBZ is given
by

ilm(m,a,e;fi’ | Gy(E) | m,a,64),

33)

L Gy(E) | m,a,u;G+EL) (34)
[

Ni(§,E)= S'Ni(G+ELE), (38)

122 7

which again demonstrates the backfolding of the
ideal-surface properties onto the reconstructed sur-
face Brillouin zone.

Until now, we have discussed the backfolding ef-
fects introduced into the ideal surface properties by
layer-orbital bases appropriate for the reconstructed
surface. The remaining task is to identify and to
analyze the effects which occur if we switch on the
reconstruction-induced interactions contained in
7. They give rise to mutual interactions between
the backfolded states so that shifts and splittings can
occur. These effects cannot be made transparent by
analytical results. Explicit calculations are neces-
sary and will be presented in Sec. IV. As far as the
explicit form of the reconstruction matrix is con-
cerned, we use the same prescription as discussed for
the relaxed surface in connection with ™. A
surface-structural model is assumed, the new in-
teractions are calculated according to (24)—(26), and
with U;* according to (28) the surface Green’s func-
tion for the reconstructed surface is calculated from
Eq. (6). Also in the case of a reconstructed surface
we operate with 7™ only on one of the two sur-
faces created by Ul so that again the ideal-surface
properties are obtained simultaneously for
reference’s sake.

One major advantage of the current method for
relaxed and reconstructed surfaces, as compared to
other formalisms for surface electronic structure
calculations, is noteworthy, in particular. For the
study of different surface-structural models the
time-consuming part of the calculations, i.e., the set-
up of G,(E) in the appropriate layer-orbital basis,
needs to be done only once in STM. Many different
structures, formally described by ™ or 2™ in
Eqgs. (23) or (28), respectively, can be dealt with by
fast multiplications and inversions of small ma-
trices. For example, in the slab approach, on the
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other hand, any change of the surface geometry calls
for an entirely new calculation.

III. IDEAL AND RELAXED GaAs(110)
SURFACE

As a typical example for the application of the
STM to relaxed surfaces we have chosen GaAs(110)
which is the prototype nonpolar natural cleavage
face of III-V semiconductors. This important sur-
face has been investigated previously by several
groups. We would like to mention only the more re-
cent studies. Calandra and co-workers* studied
GaAs(110) using the slab method based on an
empirical tight-binding bulk description. Mele and
Joannopoulos® determined electronic surface states
using the transfer-matrix technique. Chadi investi-
gated the sensitivity of the GaAs(110) surface elec-
tronic structure on surface geometry for various
structural models.® His calculations were based, as
well, on a slab geometry and an empirical tight-
binding Hamiltonian, which retains only first-
nearest-neighbor interactions. Tougaard’ has stud-
ied the electronic properties of (110) surfaces of
zinc-blende crystals using the Green’s-function
method. His calculations could be performed
analytically since they were based on a simplified
tight-binding model. More realistic investigations of
various (110) surfaces of zinc-blende crystals have
been carried out by Dow and co-workers?® who used
first-nearest-neighbor sp’s* Hamiltonians. Self-
consistent studies of GaAs(110) have been reported

FIG. 1. Arrangement of atoms in the topmost layers of
ideal GaAs(110). Shaded circles denote cations and open
circles denote anions.

as well. Chelikowski and Cohen® used local pseudo-
potentials in their study while Zunger® recently re-
ported the results of self-consistent surface electron-
ic structure calculations based on nonlocal pseudo-
potentials.

Numerous experimental investigations have
shown that the GaAs(110) surface relaxes after
cleavage without changing the size or the symmetry
of the surface unit cell. The unit cell contains one
anion and one cation, as shown in Fig. 1. Each
surface-layer cation (labeied C; in figure) is bonded
to two surface-layer anions (4, and 4}) and to one
anion (4,) on the first subsurface layer. The fourth
cation bond is broken and left dangling upon surface
creation. The surface-layer anions have the corre-
sponding cation-neighbor configuration and one of
the As bonds is broken and left dangling on the sur-
face as well. At present, the generally accepted
surface-structural model is the bond-angle relaxation
model.?! In this model the surface-layer As atoms
move outward and the surface-layer Ga atoms move
inward in the y-z plane (see Fig. 1 for coordinate
system) without destroying the mirror symmetry of
the (110) surface. The atomic movements lead to a
tilt angle of the surface Ga—As bond of about 27°
with respect to the ideal surface plane. This
geometry results from an analysis of inelastic low-
energy electron diffractions (ILEED) data""? and is
in accordance with the results of total-energy
minimization calculations.”> We have based our cal-

TABLE 1. Empirical tight-binding parameter sets for
GaAs and Si. The Si parameters are from Ref. 46. Ener-
gies are in eV, the zero of the energy scale is the top of the
valence bands.

Parameter GaAs Si
Ef -3.0 —4.2
Ef 1.40 0.19
E? —17.51 —42
E; 0.28 0.19
Ve —1.76 —2.08
124 1.98 2.12
Ve 2.46 2.12
VTU 2.49 2.32
Vz,, —-0.32 —-0.52
vl —0.05
ye? —0.03
Vira 0.65 0.58
Voo 0.40 0.58
Vesn —0.16 —-0.1
Vs 0.05 —-0.1
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FIG. 2. Calculated GaAs bulk band structure and density of states in direct comparison with UPS data (Ref. 24), reflec-
tivity data (Ref. 25), and XPS data (Ref. 26). Our valence-band DOS is also shown after Lorentzian broadening (by 0.25
eV) in order to ease the comparison with the XPS spectrum of Ref. 26.

culations on the structural model worked out by
Chadi.’*'* The anions and cations are displaced by

Ay, =0.18, Az,=0.19,
Ay, =0.35, Az,=—0.46,

in angstrom (A) units, where z is perpendicular to
the surface plane and y lies in the surface plane (see
Fig. 1).

Having specified the surface system, we can now
apply the formalism of Sec. II. First, we have to set
up an empirical tight-binding description of bulk
GaAs. We have determined the parameters defining
our bulk Hamiltonian by fitting experimental UPS
data?® and reflectivity data.> The parameters are
given in Table I. Figure 2 shows our GaAs bulk
band structure and density of states (DOS) together
with the experimental UPS, reflectivity, and x-ray
photoemission spectroscopy (XPS) data.?® It should
be noted that we have used in the fitting procedure
only the UPS and reflectivity data at I', X, and L.
Figure 2 convincingly demonstrates that the result-
ing ETBM bulk Hamiltonian nicely reproduces the
measured band structure throughout the bulk Bril-
louin zone. This good agreement for the occupied
states is further confirmed by the favorable compar-
ison between the calculated DOS and the XPS spec-
trum of Ley et al.?® Even the lowest conduction
band is in excellent agreement with the reflectivity
data of Aspnes et al.?® This good agreement is
reached, however, on the expense of less-accurate
higher conduction bands. In particular, the total
conduction-band width in our bulk band structure is

too small, a problem which is inherent in second-
nearest-neighbor ETBM bulk descriptions. This
shortcoming could be removed by either taking into
account third-nearest-neighbor interactions?’ or tak-
ing into account d orbitals. Both cures considerably
enhance the complexity of the calculations without
yielding any relevant changes within the valence
bands.® Since we are mainly interested in the
ground-state properties of the surface system, i.e., in
the occupied states and resonances within the pro-
jected valence bands, our Hamiltonian is optimally
suited for the calculations. It goes without saying
that care is needed in the interpretation of the re-
sults for empty surface states.

In Figs. 3(a) and 3(b) we show the surface band
structures for the ideal and the relaxed GaAs(110)
surface in direct comparison. The projected bulk
band structure is plotted as a point pattern which
gives a visual impression of the density of projected
bulk states at any given k|| and E. The origin and
nature of the various surface-state bands can most
easily be analyzed by considering the corresponding
wave-vector—resolved layer densities of states. Typ-
ical examples for the ideal and the relaxed surface
are given in Figs. 4(a) and 4(b).

Let us first briefly summarize the properties of
the ideal surface shown in Figs. 3(a) and 4(a). There
are four pronounced bands of surface states S,, S,,
D,, and D,. They are anion or cation derived, as in-
dicated by the indices, and are either mainly s-like
backbond states or predominantly p-like dangling-
bond states, respectively. Figure 4(a) reveals the
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FIG. 3. Surface electronic structure for ideal (a) and relaxed (b) GaAs(110) surface. The labeling of various surface
features is discussed in detail in the text.

(a) (b)
; o
{ GaAs(110)ideal } s, GaAs(110)relaxed *
% —Ga-LDOS : { — Ga-LDOS
. --- As-LDO0S N 5 --- As-LDOS

LDOS at X (arbitrary units)
LDOS at X (arbitrary units)

1 1 1 '
2 A0 -8 -6 b -2 Ez=0

ENERGY (eV) ENERGY (eV)
FIG. 4. Wave-vector—resolved LDOS’s on the first three layers of ideal and relaxed GaAs(110). The bulk layer DOS is

given for further comparison.
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atomic character of the different surface states at
the X point. Our cation-derived dangling-bond band
D, [see Fig. 3(a)] lies too low in energy by about 0.5
eV, as compared to the results of other calculations.
This is an artifact resulting from the too small
conduction-band width of our bulk Hamiltonian.
The changes in the surface electronic structure,
induced by the bond-angle relaxation are shown in
Figs. 3(b) and 4(b). Since these results are relevant
for the interpretation of experimental data on occu-
pied surface states, we have included in Fig. 3(b)
pronounced resonances by dashed lines as well. We
see that the surface relaxation has only very small
influence on the bands S, and S,. The reason for
this result lies in the fact that nearest-neighbor dis-
tances are changed in the present relaxation model
at most by 3%, so that s states are only marginally
affected. The mainly p-like-bonding band region be-
tween —4 and 0 eV is strongly influenced by the
bond-direction and bond-length changes at the re-
laxed surface. Note the dramatic change in the
surface-layer and subsurface-layer densities of states
between the ideal and the relaxed surface in this en-
ergy range (see Fig. 4). The figure demonstrates that
the electronic structure very sensitively reacts to
surface-geometrical changes. First, we note that the
occupied dangling-bond band D, moves down in en-
ergy (almost rigidly) by about 0.8 eV upon relaxa-
tion, thus lowering the total energy of the system.
In addition new relaxation-induced states (reso-
nances) P,, and P,. occur, which are p-like in na-
ture. They result from the second-nearest-neighbor
distance and bond-direction changes between
surface-layer cations (anions) and subsurface-layer
anions (cations), as compared to the ideal surface
binding environment. These changes give rise to a
rehybridization of the sp® orbitals at the atoms in
the surface region. The inward rotation of the cat-

TABLE II. Measured peak positions in ARUPS spec-
tra for GaAs(110) in comparison with theoretical results.
The experimental detector geometry corresponds to the X
point in the surface Brillouin zone. The theoretical results
are peak positions in the bulk layer DOS, on the one
hand, and peak position in the angle-resolved initial-state
spectra. Energies are measured in eV relative to the top
of the valence band, at E,,=0 eV.

Theory Experiment
Bulk ARISS Ref. 29 Ref. 30 Ref. 31 Ref. 32
—55 =57 —5.55
—-3.6 —3.6 —4.0
—2.8 —28 —-3.0 —2.8 —-29 —-2.7
—-2.0 —-2.1 —1.8 —-2.1 —2.2
—1.2 —1.2 —1.2 —1.0

ion is responsible for the creation of the state P,
whereas the outward rotation of the anion causes the
state P,,.

The high sensitivity of surface states and reso-
nances with respect to relaxation shows that com-
paring the results of surface electronic structure cal-
culations with ARUPS data can indeed be a helpful
tool in confirming surface-structural models pro-
posed on the basis of LEED analyses. We have re-
ported in a short communication'® calculations of
angle-resolved initial-state spectra (ARISS) using the
scattering-theoretical method on the basis of our
bulk Hamiltonian for the present relaxation model.
Comparing the calculated ARISS’s with measured
angle-resolved electron-density curves (AREDC’s)
we arrived at a detailed interpretation of the experi-
mental data (see Ref. 16). To emphasize this point,
we present in Table II a comparison of calculated
and measured peak positions? =32 at X. The table
convincingly demonstrates that both bulk-derived as
well as surface-derived peaks in the calculated
angle-resolved initial-state spectra at the X point
nicely agree with the experimental data. This agree-
ment proves that we have arrived at a quantitative
description of the occupied surface states.

GaAs(110)
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FIG. 5. Comparison of XPS (Ref. 26) and UPS (Ref.
34) spectra with calculated LDOS’s (angle-integrated) on
the first three layers of GaAs(110) and on a bulk layer.
Pronounced surface features are labeled according to their
nature [see also Figs. 3(b) and 4(b)].
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The empty dangling-bond band D, is shifted up in
energy by about 0.6 eV (again almost rigidly) upon
relaxation (see Fig. 3). Nevertheless, it still resides
within the projected band gap. The relative
relaxation-induced shift is in good agreement with
the result of other calculations. The absolute posi-
tion of our band D, is not in good agreement with
other theoretical or with experimental results*® for
the reasons discussed already in connection with the
bulk conduction bands and with the band D, at the

ideal surface.
We conclude our discussion of the application of

the STM to the relaxed GaAs(110) surface with a
comparison of wave-vector—integrated layer densi-
ties of states on the first, second, and third surface
layer as well as on a bulk (110) layer with measured
XPS and UPS spectra.?®3* This comparison is
made in Fig. 5. The figure explains that the main
changes in the UPS spectrum, as compared to the
XPS spectrum, are induced by the anion backbond
band S,, the cation-dominated backbond S., and
most pronounced by the As dangling-bond band D, .
We find very good agreement between the peak posi-
tions in the calculated LDOS’s and the measured
EDC’s.

IV. IDEAL AND 2x1 RECONSTRUCTED
Si(100) SURFACE

For our first application of the STM to a recon-
structed surface, we have chosen Si(100)-(2X1).
LEED (Ref. 35) and He-diffraction®® data show that
Si(100) undergoes either a 2X1, 2X2, or 4X2
reconstruction. The 2X 1 pattern seems to be by far
the most dominant. In the present paper we discuss
only the electronic structure of the 2 X 1 reconstruct-
ed surface. Various structure models have been pro-
posed for this surface. We mention the vacancy
model,” the conjugated-chain model,*® the pairing
model,”® and the asymmetric dimer model.!>!%4
The first three of these models had to be discard-
ed*"*? since they yield electronic densities of
states'"!2 which disagree with photoemission data.*!
Only the asymmetric dimer model'>'*% yields a
semiconducting surface, in agreement with experi-
ment.*! Further support for this model was ob-
tained by dynamical LEED analyses,>* by ion-beam
crystallography,43 and by core-level spectroscopy
data.** Very recently, a generalized valence-bond or-
bital calculation based on a molecular geometry by
Redondo et al.*® has been published, which yields a
symmetrical surface dimer as the building block of
the reconstruction. This finding contradicts earlier
total-energy—minimization calculation results!>!440
and the experimental evidences for the asymmetric

T)’ (a)

Y

—_ —0 - —

FIG. 6. Surface geometry of the (a) ideal Si(100) sur-
face and (b) the 2X 1 reconstructed Si(100) surface. The
corresponding unit cells are shown by heavy dashed lines.
The largest circles show surface-layer atoms. The atoms
on the following three layers are shown as well.

dimer geometry.>>*>* In our calculations we have
used, therefore, the surface-structure model of Thm,
Cohen, and Chadi.'* Using that model, we can
directly compare our theoretical results with the re-
sults of Refs. 13 and 14.

The arrangement of atoms at the ideal and at the
2x 1 reconstructed surface is shown in Fig. 6. In
the asymmetric dimer model, Si surface-layer atoms
become displaced in a way that is similar to the Ga
and As atom movements at the relaxed GaAs(110)
surface. The two Si atoms considered move towards
each other so that they essentially become first-
nearest neighbors. In addition one of the two atoms
moves outwards (in the following referred to as the
“up” atom) whereas the second atom moves inward
(referred to as the “down” atom). This is similar to
the bond-angle relaxation at GaAs(110). The
Si—surface-atom displacements are!*

Axup=0.46, Azup=0-04 ,
Axdownz —1.08, Azdown =-—0.435,

in units of 10\, where z is perpendicular to the surface
plane and x lies in the surface plane [see Fig. 6(b)].
We have evaluated the surface electronic structure
of the semi-infinite Si crystal terminated by the ideal
(100) surface and by the reconstructed 2 X 1 surface.
The bulk crystal is described by the ETBM Hamil-
tonian of Pandey and Phillips* which retains first-
nearest-neighbor and some second-nearest-neighbor
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FIG. 7. Surface Brillouin zones of the ideal 1X 1 and
the reconstructed 2X1 surfaces of Si(100). High-
symmetry points have been labeled according to the sur-
face geometry [ideal (1X 1) and reconstructed (2X1)].
Note that the I' and J' points are not changed by a 2X 1
reconstruction.

interaction matrix elements. The parameters are
listed in Table 1.

We begin our discussion of Si(100) with the ideal
surface. The surface Brillouin zones for the 1X1
and the 2X 1 surfaces are shown in Fig. 7. We will
present the ideal surface-band structure using the
2X 1 unit cell. This means that we have to fold
back the ideal surface-band structure, which was
given already in Ref. 1, onto the 2X1 zone. The
backfolding process superimposes the projected bulk
states and the surface states of the 1X1 zone onto
the 2 X1 zone. The result is shown in Fig. 8. First
we note that the surface states in that figure between
Jox1 and K,y are all twofold degenerate (apart
from spin degeneracy) since the J,y K, line is
folded onto itself (see Fig. 7). The full lines in Fig. 8
are all surface-state bands which belong to bound
states at the ideal surface. Those which coincide
with the projected bulk bands of the 21 surface
Brillouin zone become resonant with bulk states due
to the reconstruction-induced surface umklapp. We
have discussed this effect in detail in Sec. II. The
prominent features of the ideal surface electronic
structure are the predominantly s-like backbond
bands around —6 and —9 eV, which correspond to
the bands S, and S, at the GaAs(110) surface and
the dangling-bond and bridge-bond band D and Br,
respectively, which occur in the band-gap energy re-
gion. Note that large parts of the backfolded
dangling-bond band are resonant with bulk states.
They can couple to the latter at the reconstructed

surface due to the reduced symmetry which yields
new selection rules.

The surface-band structure for the reconstructed
surface is shown in Fig. 9. We have plotted true
bound states as full lines and indicated surface reso-
nances (which were not shown in Fig. 8 for the ideal
surface) by dashed lines. In the energy region below
—6 eV we find five bands of surface states (reso-
nances) which all have strong s character. The
states S| and S, are entirely reconstruction induced
while S;—S5s correspond. to the backbond states
B,—B;, already present at the ideal surface. Of
course, S3—S's are slightly shifted in energy, as com-
pared to B;—B;. Between —5 and 0 eV we find five
bands of surface states which are predominantly p-
like (P;—Ps). One of these bands, namely P3, can be
identified as the dimer-bond band. Within the
band-gap energy region four bands of surface states
(labeled D, Dyown, P}, and P3) are found.

The origin, the character, and the localization
properties of the various surface states (resonances)
can again be inferred from atom-, orbital-, and
wave-vector—resolved layer densities of states. In
Fig. 10, we show one example, namely the LDOS’s
on the first three layers at the K point in direct com-
parison with the corresponding bulk layer density of
states. The figure clearly shows the character and
strength of the various surface features at the K
point (see Fig. 9 for comparison). It highlights their
localization properties and indicates how the surface
features are related to underlying bulk electronic
properties. Within the STM it is easy to identify the
orbital character of the various surface features in
great detail. This is exemplified in Fig. 11, where
we analyze the surface layer DOS at the K point in
the energy region from —5 to + 3 eV (see Fig. 10
for comparison) with respect to the up and down
atoms in the surface unit cell and with respect to
their  p,,s,px,py wave-function character.
Remember that z is perpendicular to the surface and
that x is the dimer-bond direction. Figures 10 and
11 convincingly demonstrate that D, is a dangling-
bond state at the up atom, while D4y, is a
dangling-bond state at the down atom. Both
features have very strong p, contributions. The p,
contribution gives rise to a tilt angle of these two
dangling bonds with respect to the (100) plane (see
the inset for comparison). The dangling bond at the
up atom has considerable s admixture which lowers
its energy position relative to Dyoyyn. The band D,
is fully occupied, whereas Dy, is empty, the two
bands being separated by an indirect gap of 0.15 eV.
Therefore, the surface is semiconducting, in agree-
ment with experiment. The states P} and P; lie
both close to the conduction-band edge. Having a
dominant p character, they can be considered as the
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FIG. 8. Surface-band structure of ideal Si(100) back-
folded onto the 2 1 surface Brillouin zone. The bridge-
bond band, the dangling-bond band, and the backbond
bands are labeled Br, D, and B, to B3, respectively.

antibonding states of P;—Ps.

These results lead us to conclude that the major
effects of reconstruction occur in the band-gap ener-
gy region, as a consequence of the rehybridization of
the p orbitals following the displacement of the two
surface atoms. Indeed, as compared to the ideal sur-
face, the dimerization leads to an enhanced interac-
tion between the p, orbitals and the p, orbitals on
the two atoms. Henceforth, the degeneracies of the
dangling-bond (D) and the bridge-bond (Br) bands in
the backfolded band structure of the ideal surface
(see Fig. 8) are lifted between J,,; and K,,; and
the resulting states repel each other. Owing to the
fact that the p, orbitals interact through a V,,, in-
teraction, and the p, orbitals interact through a
much weaker Vpp,, interaction, the shift of the
bridge-bond states is much stronger than the shift of
the dangling-bond states. As a consequence, the
bridge-bond states enter into the projected bulk band
regions and interact with these bulk bands. In the

Si (|00)-(2x|)
T
'!Im

ENERGY (eV)

[;x1 J2x1 KZX'I J2><‘I r2x1

FIG. 9. Surface-band structure of Si(100)-(2x1) for

the asymmetric dimer model. The surface-state bands are

labeled according to their origin and nature. For details
see the discussions in the text.

valence-band region they disappear, except for a’
values between J,.; and K,,; where the dimer-
bond state P; subsists. For the asymmetric dimer
these shifts are stronger than for the symmetric di-
mer, as the asymmetric dimer allows p, (p,) orbitals
on the up atom to interact with p, (p,) orbitals on
the down atom, giving rise to a charge transfer from
the down atom to the up atom. This behavior is
similar to that of the relaxed GaAs(110) surface, the
up atom playing the role of the anion and the down
atom playing the role of the cation.

We turn now to a brief comparison of some of our
results with the available experimental data.
Angle-resolved photoemission measurements have
been reported by Himpsel and Eastman,*! van Hoof
and van der Wiel,*” and Uhrberg et al.*® All experi-
ments seem to show that the surface is semiconduct-
ing, which is in agreement with our theoretical re-
sults. In all experiments a structure is observed in
the energy region just below the top of the valence
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FIG. 10. Wave-vector—resolved layer densities of
states on the first three layers of the reconstructed
Si(100)-(2 X 1) surface at the K point. The bulk layer DOS
is shown for comparison by dashed lines. Pronounced
peak positions are labeled according to the nomenclature
introduced in Fig. 9. For the dashed box in the upper-
most panel, see Fig. 11.

bands which corresponds to the occupied, lower
dangling-bond state D,. In Fig. 12 we compare our
calculated dispersion of the D, band with the ex-
perimental data of Refs. 41, 47, and 48. Note that
our calculated surface-state band is in very good
agreement with the experimental data as far as the
energetic position, the dispersion, and the bandwidth
are concerned. The theoretical bandwidth is 0.6 eV
whereas experimentally one observes 0.5,*! 0.7,*” and
0.65 eV .*8

We have included, as well, in Fig. 12 the D, band
as it results from Refs. 13 and 14, respectively.’ In
Ref. 13 this band is a factor of 2 too wide which re-
sults from the used first-nearest-neighbor bulk Ham-
iltonian. The self-consistently calculated band from
Ref. 14 agrees better in dispersion with the experi-

RPRPR P D
A

Surface Layer DOS at K point (arb. units)

ENERGY (eV)

FIG. 11. Atom- and orbital-resolved density of states
on the surface layer of Si (100)-(2 X 1) at the K point (cor-
responding to the dashed box in Fig. 10). The full lines
show the LDOS on the “up” atom and the “down” atom
contribution is shown by the dashed lines. The dangling
orbitals corresponding to D,, and Dgg, are shown
schematically in the inset.

mental data but lies roughly 0.8 eV too high in ener-
gy-
In addition to the dangling-bond state, Uhrberg
et al.*® found a surface state in the energy range
from —2 to —2.3 eV, which disperses downward in
energy from the middle of the J,5 K, line to the
K,y point. This feature was attributed to the di-
mer bond and it corresponds very well with our
dimer-bond band P; extending from J,y; to K.
Himpsel and Eastman*! have reported a second
state above the projected valence bands at J)y
which lies about 0.6 eV above D,. There is no indi-
cation for such a state in our results for the 2X1
surface. This feature, as well, was not reported by
the other experimental groups. In Ref. 47 it is sug-
gested that this feature could be due to the presence
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FIG. 12. Comparison of the experimentally determined
dispersion of the most prominent occupied surface state at
the Si(100)-(2x 1) surface with our calculated band D,
(full line) and with the corresponding bands of Refs. 13
and 14. The experimental data points are taken from Ref.
41 (O), Ref. 47 (X), and Ref. 48 (O).

of additional domains of other reconstructions like
2X2 or 4X2. Indeed both would lead to an addi-
tional backfolding which superimposes I';»; on
J2x1 and could henceforth explain the experimental-
ly observed second peak. Experimental observations
of other states have not been reported up to now.

V. SUMMARY

We have presented the formal extensions of the
scattering-theoretical method necessary for the treat-
ment of relaxed and reconstructed surfaces. We
have illustrated the various advantages and the high
effectivity of the method when it is used in conjunc-
tion with an empirical tight-binding bulk descrip-
tion. Backfolding of ideal surface states at a recon-
structed surface were made transparent analytically.
Using realistic bulk Hamiltonians which retain first-
and second-nearest-neighbor interactions, we have
applied the STM to the relaxed GaAs(110) surface

and to the reconstructed Si(100)-(2 X 1) surface. The
evaluation of the GaAs(110) surface electronic struc-
ture of the 27° bond-angle rotation model yields
wave-vector—integrated LDOS’s as well as angle-
resolved initial-state spectra which were found to be
in good agreement with experimental data. An
analysis of the surface electronic structure for the
asymmetric dimer model of Si(100)-(2X1) has
shown good agreement between the available
ARUPS data and our results. This holds in particu-
lar for the most prominent surface-induced feature,
namely the occupied dangling-bond band originating
from the up atom in the dimer.
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APPENDIX

In this appendix we set up the expression for the
bulk Green’s function in the layer-orbital representa-
tion {|m,a,6;q)}; ie., the layer-orbital representa-
tion of the reconstructed surface unit cell. We re-
strict our discussion to the case of a 2XX 1 recon-
struction of a (100) surface of an fcc lattice. The
general case can be treated along the same lines.

The bulk Green’s function is given in the layer-
orbital representation by

(maeq]G,,(E)|m,a € q)

-3 (m,a,e;21'|n,k)(n,k |m’,a’,e’;ﬁ)
"t E*—E, (k)

b

(A1)
where € and €' run over the two atoms in the recon-
structed unit cell.

Inserting the expressions (12), (13), and (29) in Eq.
(A1) yields

—m' i —m —»m')'l'(’
1

i(a —ag)g, (k7 —«

(mae,q|G,,(E)|m ,a',€';

e

2 3 <
n,T('J_ i

*—E,(G+8,,k))

XCh e G+ By, K )Ch e (G+E, K (A2)

The sum over g, runs only over a restricted set of
recnprocal lattice vectors. For a glven q ponly those
g, must be included, for which q+¢g,=k lies
within the projection of the first bulk Brillouin zone
onto the (100) surface plane. It is very important to
note that the boundaries for the summation over k;

[

in (A2) depend sensitively on g, The vectors
A ™ are defined analogously to A ,’f [see relation (15)]
so that the set {p},A ¢'} spans the entire bulk lattice.

In order to discuss the various reciprocal-lattice
vectors entering the sums in (A2), we show in Fig.
13 the surface Brillouin zone (SBZ) together with
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FIG. 13. Surface Brillouin zone for the ideal 1X 1 and
for the reconstructed 2 X 1 Si(100) surface (heavy line) to-
gether with the projection of the three-dimensional bulk
Brillouin zone onto the (100) plane. The various k|| re-
gions inside the SBZ of the 21 surface (4o to Go) and
outside the SBZ but inside the projected bulk Brillouin
zone, which need to be considered for the sums in Eq.
(A2), are labeled explicitly. The heavy dots show
reciprocal-lattice points reached by the é’: vectors of the
2X 1 surface. For more details, see text.

the projection of the bulk Brillouin zone onto a (100)
plane. The SBZ has been subdivided into areas 4,
to Go. For g vectors lying in one of these different
areas, different boundaries on the k ., sum have to be
implied. Consider, for example, a q residing in the
central area Ay. In this case, the reciprocal-lattice
=0 51 -3

vectors grr g,, and g, have to be retained in Eq.
(A2). For g,= g?, the kK, sum in (A2) runs from the
bottom to the top of the first bulk Brll]oum Zone,
ie., from —27/a to 2w/a. For = g,, we find
that the k, integration runs only from —27/a +8
to 27/a —& as shown in Fig. 14. The figure shows
as well the k, _summation interval for
g = g,, which is —8 < kl<8

Usmg bulk symmetry, it is simple to show that
the g, and the g. contributions with their appro;
priate K | Tegions are equivalent to one single, say, g,
contribution with —2m/a <k, <27 /a as boundaries

2nia

FIG. 14. Cut of the bulk Brillouin zone perpendicular
to the (100) surface containing the line '-J,y-J;x;. For
details see the Appendix.

for the k, sum. This is seen as follows: The bulk
wave functions and energies obey the following sym-
metry requirements:

=
iG 7T,

cr(K)=CL(k+Ge' =~ ", (A3)
and
E,(K)=E,(k+G), (A4)

where G is a reciprocal-lattice vector of the three-
dimensional bulk lattice.
If we choose

G=(—2g,,72n/a) (AS)

we can rewrite E=ﬁ+_g’i+ kK, by adding a
bulk reciprocal-lattice vector G, as
K+G=(3+8,.K)) (A6)
where now k, runs from —27/a to —2m/a 46 and
over 2m/a —§8 to 2m/a [see Fig. 14]. In pother
wg)rds, combining the contributions due to "g’,l and
g, is equivalent to taking only the term with g, and
extending the k,; summation over the full interval
from —2m/a to +27/a. Thus only two reciprocal-
lattice vectors need to be taken into account effec-
tively, as one would have expected for a 2X 1 sur-
face. With the help of Figs. 13 and 14 and Table
IIL, it is simple to_go through the same symmetry
considerations for q vectors lying in the other areas
B, to Gy of the SBZ. For every q region in the
SBZ, Table III lists the g, vectors contributing to
the sum (A2) together with the corresponding region
of the projected bulk Brillouin zone. The labeling of
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TABLE III. Table of reciprocal-lattice vectors, which
are involved in the evaluation of the Green’s function in
layer-orbital representation defined on the reconstructed
surface unit cell.

'a’ domain 1 2 3 4
Ao ghAo gh A ghA]
BO gPyBO grzyB(’) gr‘,Bl gravB'l
CO ggrcﬂ g:;cf') gr‘rcl gv?;c,l
DO g?yDO grz’D:) ng)Dl grsyDll
EO g?yEO g:yE;) grl)El grsyEll
Fo &Fo  ghFo g Fi  gnFi
GO groyGO 8;‘,66 gg’Gll g:;G{I

these regions is introduced in Fig. 13. In general,
for any q four reciprocal-lattice vectors g, contri-
bute. Therefore, there are four columns of g, vec-

tors in Table III. Using the same bulk symmetry ar-
guments which we have discussed above for only
one particular g vector, it is easy to show that con-
tributions from the first two columns in the table

il

(a,m,&G | Gy(E) |a',m’,€’;3)

=+ {{a,m ;3 | Gy(B) | o', m' ;G ) +e”

—m —.m')_-»
Oe—0g )8

can always be transformed as to yield [with
-0
gr=(0y0)]

=~ N3 e
T](q)= N 2' 2 ~ -
3 "n k,€[-2n/a2n/a) ET —E,(q,k,)

X Clhe( G K )C e (G, K ) -
(A7)
Similarly the contributions corresponding to ‘g’i vec-
tors from columns 3 and 4 in Table III can be com-
bined to yield
TG =e" 7o 7T G4E)) . (A8)
The final expression then is
{a,m,€;q | Gy(E) | o',m',€;q)
=TY(D+T5(J), (A9

which is Eq. (32).

If one compares (A7)—(A9) with expression (18)
of G, expressed in a layer-orbital representation of
the ideal 1 1 surface, one can see that

, = —>l ’ ' P —ol
(a,m,u;4+8, | Gy(E) |’ ,m" ;5 +8,) ),

(A10)

where the indices € and u, as well as € and u' are chosen such that }_»:," and )—: , respectively, describe the same

atoms. The factor % arises from N, =2N}.

The determination of the surface states of the ideal surface within the reconstructed surface unit cell repre-
sentation necessitates the evaluation of the determinant D(q,E) defined by Eq. (9). If the layers m=1 and
m=2 are removed, D(q,E) can be expressed in terms of G, blocks obtained with the help of Eq. (A10). Defin-

ing

G;(§,E)=(a,m =iu;3 | Gy(B) | &,m' =j,u';)

(A11)

which are 4 X 4 matrices since p and u’ take only the value 1, 5(5’,E ) may be written as

A, B
B* 4,

Gii(5>+Gii(5+“g’:)) , G,-,-(ﬁ)—Gﬁ(ﬁ+‘g’:)
Gi;(‘a’)—Gi,-(5+§:), Gii(a)+Gii(€+§:)

(A12)

(A13)
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with i=1,2 and

fard ~ Sl jad ~ .1
Gi(q)+G(d+2,), Gp(q)—G(q+8,)
= 3, ol ford =GN |
G2(q)—G2(d+8,), Gi2(q)+G2(d+E,)

—-m_ —m'
(ge—0g)g,

The phase factors e
or — 1 for this case.

Through appropriate permutations and linear
combinations of lines and columns, D(q,E) can be
cast into the form

yield simply + 1

D(3,E)=D(F,E)D(F+8,.E), (A15)

(A14)

where D(E’,E ) is given by

- Gu(d), Gp(@
D(q,E)=det ~ ~
Gy(q), Gp(q)

and similarly for D( a’+‘g’:,E ). This expresses the
factorization of D(q,E), as written in relation (36).
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