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Generalization of the Green's-functions formalism to nonorthogonal orbitals:
Application to amorphous Si02
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It is shown that the Green's-function formalism can be extended to nonorthogonal wave

functions. This new technique is illustrated on the example of amorphous Si02 where the
calculated partial densities of states are compared to experimental data.

I. INTRODUCTION

In a previous paper we have pointed out that a
good parametrized band structure of Si02 can be ob-
tained in a first-nearest-neighbor approximation,
provided that the corresponding overlap integrals
are included. ' A complete discussion of the band
structure requires that the partial densities of states
be available. For crystalline systems the matrix
(H ES} (H—, Hamiltonian; S, overlap; E, energy)
can be factorized with respect to the wave vector k,
and the partial densities of states can be calculated
in various ways. For amorphous networks, on the
other hand, the factorization breaks down and new
techniques are required to perform the calculations.
In this paper we intend to present a method which
allows the use of nonorthogonal orbitals and which
works for both crystals and glasses. Applying the
Green's-function formalism to overlapping orbitals
we show in the first part of the paper that the usual
results can be generalized in an easy-to-work way.
In the second part, we calculate, as an example, the
partial and total densities of states for a Bethe-
lattice amorphous Si02 system and discuss the re-
sults.

II. GREEN'S-FUNCTION FORMALISM
FOR NONORTHOGONAL WAVE FUNCTIONS

In this section we present the general frame of the
method. It is based on the use of the Green's opera-
tor G:

6 = lim [(E+iri)I H]—
g —+0

where I and H are, respectively, the identity and
Hamiltonian operators. The matrix elements of G
provide all the required information when working
with orthonormal orbitals. With nonorthogonal
wave functions, the trouble arises from the fact that
three different kinds of matrix elements can be de-
fined (this is true for any operator). These matrix
elements are given by

Gm ——GkI~~ Gk =GmIk y

where I, is the covariant representation of the iden-
tity operator. The matrix elements of I„i.e., the I;1,
are nothing more than the overlap (i

~
j). Ik, the

contravariant representation of the identity operator,
is the inverse of the I, matrix. Finally, I is the
unit matrix.

An essential piece of information is given by the
density of states n(E) of the whole system. To
derive it we write expression (l) in terms of the
mixed form of G and 0, i.e.,

G [(E+iri)I H)=I— (4)

where I, the mixed representation of unity, is sim-

ply the unit matrix. This relation has exactly the
same constitutive form as in tight-binding theory,
when working with orthogonal orbitals. Then G
has exactly the same properties as the resolvent ma-
trix of ordinary tight-binding theory. In particular,
we can define a quantity

Im
n (E}=— g 6 (E),

lT
g

(5)

which turns out to be the total density of states.
This follows from trace invariance, which allows us
to come back to an orthogonalized basis set for
which (5) defines the total density of states. The sit-
uation is somewhat more difficult for the partial

Gt ——(i ~6~j).
Hereafter, we call Gk the matrix of contravariant
components G', G the matrix of mixed com-
ponents G~, and G, the covariant matrix G;J. These
matrices are not independent but can be related
through the representations of unity. The following
result will be used:
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densities of states. A consequence of (4) is that the
quantities.

have the usual mathematical properties of partial
densities of states. In particular, they are normal-
ized to unity. However, the way they are related to
experimentally observable quantities is not trivial.
For instance, it is known that x-ray emission spectra
reflect the local atomic character of the valence
states. In Appendix A we show that their intensity
is not proportional to n;(E) but rather to the unnor-
malized quantity

In practice, the directly available terms are the co-
variant forms of both the identity (I) and Hamil-
tonian (H) operators, corresponding to the usual
matrix elements (i

~
j) and (i ~H

~
j). From the

knowledge of these two matrices, G can be evaluat-
ed in two steps:

(i} From the definition of G and with the use of
(2} one can show that

Gk[(E+ir))I H], =I~ . — (g)

Thus Gk is the inverse of the covariant representa-
tion of (E +i' H) and can—be calculated as direct-
ly as with orthogonal local orbitals.

(ii) Once Gk is known, G can be evaluated with
the use of (3},i.e., by a simple matrix product.

This shows that only one matrix has to be invert-
ed, as in the conventional tight-binding method. As
far as G~ is concerned the calculation is exactly the
same as in tight binding, provided the Hamiltonian
matrix elements are replaced by the corresponding

Hj'EIj'term. This means that the usual algebra
holds, with that modification. For instance, the
Dyson equation for a system submitted to a pertur-
bation is written as

the unperturbed problem.
The significant contribution to B'AV (E) arises from

the first term in (10). The second term, independent
of energy, appears only to cancel the first term at
large energies E.

III. APPLICATION TO Si02

We can now apply this formalism to Si02. In
such a system the overlaps may be of crucial impor-
tance. ' We extend the scheme used in Ref. 4 to
nonorthogonal orbitals. As shown in Fig. 1 we con-
sider a central Si04 tetrahedron coupled to a Si02
lattice approximated by a Bethe tree, in which the
Si-0-Si angle takes its crystalline value 144'. As far
as we consider the contravariant components of the
Green's operator the calculations remain primarily
unchanged. We have only to replace the tight-
binding matrix H;j by the appropriate H;J —EI,J
term (I,

&
is the overlap matrix). This remark applies

to the Bethe-lattice calculations, which thus will not
be further examined. The situation is different for
the study of the Green's function on the central
tetrahedron since we want to calculate local densities
of states and thus the mixed components of G.

For this we start from a situation where the Si04
tetrahedron is decoupled from the average Bethe lat-
tice, in which case the Green's operator is g and the
overlap matrix I,. We then include the coupling be-
tween the two subsystems, which corresponds to a
perturbation matrix V, and a change in overlap ma-
trix dd, . The final Green's-function matrix Gk can
then be determined with the use of Dyson's equation

Gs =g&+gk(V, EM, )Gk, —

where g and G are the unperturbed and perturbed
Green's operators, V is the perturbative potential,
and LU, is the change in overlap matrix related to
the perturbation. With this relation the change
hN(E) in total number of states of energy less than
E due to the perturbation can be calculated. It is
found to be (Appendix B)

hN (E)= —Im [ln det[I~ —gk( V, Edd, }]J—1

1——Im[lndet[Ik(I, +Ed, }]J, (10)

where Ik is the inverse of the overlap matrix I, for

Si

FIG. 1. Central Si04 tetrahedron coupled to a Bethe
lattice.
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G/= g Gj"Iki + g Gj lU; .
k

(12)

Here Ik; is the overlap matrix for the decoupled
tetrahedron. Equation (12) shows that one needs
only the GJ" and GJ terms.

Eliminating G j and G p in (11) one finds

+ yg {Ukl EDkl}G i
k, 1

G"= g g"(Vkp E~kp)g-
k, p

+ Qg (Ukj EDki}G—
k, l

where

(13a)

(13b)

[Eq. (9)] under the form

G"=g"+gg' (Vk E—Mk )G ',
k,a

G' = gg' (Vkp Er—kIkp)G
k, P

(Vpk EM—pk)G ',
P, k

=g + gg (V EM.—.)GjP
rj

In these equations the latin indices refer to the Si04
tetrahedron orbitals and the greek indices to the
medium orbitals.

With the use of (3) the mixed component G/ can
be written as

Dyson equation for an effective perturbation (U,D)
including both potential and overlap terms, and
dealing only with tetrahedron orbitals. These two
remarks show that the effective interaction
method' can be extended to problems with
nonorthogonal orbitals. To determine the density of
states we have then first computed the contravariant
components of G that cause no problems. These
contravariant components are used to determine the
mixed component G through Eq. (17). Finally, the
density of states is calculated with the use of (5).
Figure 2 illustrates the results obtained with the
parameters given in Ref. 1. For numerical conveni-
ence we have used a Lorentzian to broaden the oxy-

gen levels by 0.1 eV. The only effect of this opera-
tion is to spread out somewhat the densities of states
giving rise to tails within the band gap.

We find a total density of states that is in good
agreement with the results of previous calculations
in Refs. 7—12. As shown in Fig. 2 it also repro-
duces the ultraviolet photoelectron spectroscopy
(UPS) spectrum. ' ' As concerns the x-ray emission
spectra, we show in Appendix A that these are likely
to reflect the local densities of states n (E}defined

by Eq. (7). Figure 3 illustrates the results we have
obtained as well as the experimental information de-

duced from the x-ray emission spectra. It first ap-
pears that the Si3p density is very similar to the

and

Uki = Q {Vk EMa )g ( Vp& )—
a,p

(14a)

Dkj ——g{V~ EjxIk )g dd—pi .
a,p

(14b}

Injecting Eqs. (13) in (12) leads to

Gj=gj+ gg' Dkj+ gg' (Ukj EDki)Gj-
k k, I

(15)
This equation is similar to {13}when G'j has been
replaced by G' and g'J by

(gj)eff=gj+ gg Dkj
k

(16)

It follows that GJ can be expressed in terms of G'
by

GJ = g (G' )(Ikj +Dkj ) .
k

(17)

This expression is completely similar to (3) with ef-
fective overlaps which involve only the tetrahedron
orbitals. On the other hand, (13a) is similar to the

E(ev j

FIG. 2. Total density of states of Si02 with the param-
eters of Ref. 1. At the bottom we have plotted the UPS
results of Hollinger (Ref. 14) for a thin film a and an oxy-
dized surface b. The arrows refer to the analytic limits of
the band calculated in Ref. 1. One sees that these limits
are correctly reproduced with a Bethe-lattice model.
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0

'0 i0 E(ey),

proximation has the more important effect on the
density of states, the neglect of nonorthogonality or
the use of a Bethe lattice to simulate the medium.
In view of the molecular character of the bands the
Bethe lattice gives practically exact position and
widths for all bands, as was demonstrated by de-
tailed calculation' (see also Fig. 2). Thus the in-

clusion of nonorthogonality of the atomic basic
represents an important improvement in the descrip-
tion of the bands, as is also the case in covalent ma-
terials.

IV. CONCLUSION
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We have extended the Green's-function formalism
to the case of nonorthogonal orbitals. We have ap-
plied it to amorphous Si02 and have shown the ap-
plicability of this formalism to glasses as well as
crystals. We have compared the calculated densities
with experimental spectra. The results show that a
nearest-neighbor model including overlaps can
describe accurately the valence bands of Si02.
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shape of the Si Kp spectrum. ' The position and the

shape of the 02s partial density of states are also in

agreement with the x-ray photoelectron spectros-

copy (XPS) results, ' ' contrary to those of other
calculations. ' For the Si 3s and 02p character,
the agreement is not so good. Let us first consider
the Si 3s density. As in the Si L23 spectra' ' three

peaks are present. But while in the experiments the
two upper peaks are of comparable height and width

a strong dissyrnmetry can be seen on the calculated
curves. Such a discrepancy appears in all the calcu-
lations we know. It has been suggested that it could
be removed by silicon 3d electron effects; ' ' we
do not believe such an interpretation because d elec-
trons are included in pseudopotential treatments. It
is more plausible that correlation effects could be
important as found for optical absorption and
Auger spectra. ' Coming to the 02p density, it is
clear that the width of the upper band is too small.
This difficulty was already found in the preliminary
study', the inclusion of ~ interactions and overlap
could improve this small defect so that a first-
nearest-neighbor tight-binding model can provide a
description of the valence band of Si02.

A final point of importance is to know which ap-

APPENDIX A: PARTIAL DENSITIES
OF STATES OBTAINED IN X-RAY

EMISSION SPECTRA

The intensity of the emission at energy E =hv is
proportional to the quantity

I= X I &01p Ik) I'@ —«k Ep))
k

(A 1)

which, with the use of the closure relation (since
(0

I p I 0) vanishes), can be further simplified to

ImI= — (0I pG(E+Ep)p I
0) . (A3)

When a basis of nonorthogonal atomic orbitals is
used G can be expressed by the first relation (2),
which gives

where
I
0) is the core state of interest on atom 0 and

Ep its energy, while
I
k) is an eigenstate of energy

Ek, p being a component of the dipole operator. It
is always possible to rewrite (A1) as

I = — g (0
I pG(E+Ep) I

k)(k Ip I
0),

k

(A2)
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Im
X«lp l»&G"&J lplo&.

/J

(A4)

ImI = —
l (Olp lOrn) l'G' ' (A5)

Then I does not reflect the partial density of states
no~(E) defined by (6), but instead the quantity

(I /—n )G, which is not normalized to unity.

For the valence states of interest
l
i ) has to be speci-

fied by two indices lim ), i standing for the atom,
m for the orbital. As the core state

l
0) is strongly

localized on the atom the matrix elements
(0

l p l
im ) will take important values only for i =0

Usually, from symmetry, one component p connects

l
0) with only one of the

l
Om ), so that one finally

gets

APPENDIX B: CALCULATION OF hN(E)
FOR NONORTHOGONAL ORBITALS

We start from Eq. (9), which we write

[I gk(—~. &~—.)]Gk =gk (B1)

detG
4N(E) = ——Im In

detg
(B3)

which, from (B2) and the fact that (I+rU)k ' is
equal to (I +dd')„can be expressed as in Eq. (10).

and we use Eq. (3) to express Gk and gk in terms of
G and g, which gives

[I —gk(V, EitI—, )]G =g Ik(I+M)k ' .

(B2)

Integration of Eq. (5) leads to the well-known ex-
pression for the change it»N(E) in the total number
of states of energy smaller than E,
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