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We consider a two-dimensional Wigner lattice in the presence of a static external magnet-

ic field perpendicular to the lattice and a random array of pinning centers. The phonons of
the electron lattice are treated in the harmonic approximation, and the random distribution

of pinning centers is dealt with in the single-site coherent-potential approximation. We ob-

tain the average phonon Green's function and from it the spectral density for the phonons

of the electron lattice. The presence of the random array of pinning centers gives rise to a
low-frequency gap in the phonon spectral density. Thus the (two-dimensional) mean-square

displacement of an electron about its equilibrium lattice site is finite at finite temperatures.
The magnitude of the low-frequency gap decreases as the strength of the magnetic field is

increased. For sufficiently high fields the gap disappears, but the phonon spectral density

vanishes sufficiently fast as co—+0 that the mean-square displacement remains finite at finite

temperatures. We present detailed numerical results for the phonon spectral density and

electron mean-square displacement, both at T=0 K and at finite temperatures. Our results

are analyzed from the point of view of the stability of the lattice to thermal fluctuations.

We find that at low temperatures (T-1 K) both the pinning centers and the magnetic field

considerably enhance the localization of the electrons about their lattice sites, thus enhanc-

ing the stability of the lattice. At higher temperatures, the electron mean-square displace-

ment depends very weakly on the strength of the magnetic field, and its value is then deter-

mined by the concentration and strength of the pinning centers.

I. INTRODUCTION

At sufficiently low densities and temperatures, an
electron gas is expected to crystallize into a Wigner
lattice. ' This is because under such conditions the
Coulomb interaction energy dominates the kinetic
energy and a correlated state becomes energetically
favorable.

At the present time the Wigner crystallization has
been observed in the case of electrons at the surface
of liquid helium. Such a two-dimensional (2D) sys-
tem is a nearly ideal Coulomb system for the study
of the crystallization transition because the areal
density of the electrons can be varied over several
orders of magnitude, and the helium surface is
essentially free of traps and scattering centers.

Another 2D system for which the electron areal
density can be easily varied is that of electrons in an
inversion layer at a semiconductor surface. In this
case, however, the presence of impurities and crystal
defects is a feature of the physical system. This has
the consequence that the transition to the crystalline
state becomes more difficult to study and, in fact,

has not yet been observed. There are, however, re-
sults suggesting the formation of a magnetic-
field —induced Wigner glass in the 2D electron sys-
tem in a silicon inversion layer at T & 1.2 K.

Inherent to any such 2D electron system is the
fact that for a perfect infinite 2D crystal at any
nonzero temperature, the mean-square displacement
(MSD) of an electron about its equilibrium lattice
site diverges logarithmically with the linear dimen-
sions of the sample. Thus, in principle, an ideal 2D
electron crystal would melt at any nonzero tempera-
ture.

It has been proposed many times ' that the in-
troduction of a dc magnetic field normal to the
plane of the lattice should aid in the formation of
the crystalline state. This is because a strong mag-
netic field will quench the vibrational motion of the
electrons except for their rapid cyclotron motion.
However, the problem persists that for a perfect 2D
lattice in the presence of a magnetic field, the elec-
tron MSD diverges at any nonzero temperature. Of
course, one can render MSD finite by appealing to
the fact that in reality the electron system is finite,
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and introducing a small wave-vector cutoff in the
integral for the MSD, or by assuming the formation
of a polycrystalline 2D lattice. However, it is of
theoretical interest to examine the sample-
independent localization properties of a 2D electron
lattice. This is the purpose of this work.

We assume that the impurities present at a semi-
conductor surface in which an inversion layer, and
thus a 2D electron crystal, can form, can be modeled

by a random distribution of pinning centers that are,
however, located at (or directly below) the sites of
the 2D Wigner crystal. These pinning centers pro-
vide a frame of reference whose existence directly
implies the breaking of infinitesimal translational
invariance in the plane of the 2D electron crystal,
and this yields an electron MSD independent of
sample size. Of course, it is expected that in reality
the positions of the pinning centers would not exact-
ly coincide with the sites of the Wigner crystal.
This, in turn, would give rise to a random static dis-
tortion of the lattice. The electrons would then exe-
cute vibrations about equilibrium positions defined

by the sites of this statically distorted Wigner crys-
tal. Nevertheless, the essential physical features of
the model of the pinning centers used in this paper,
in which the electrons couple harmonically to points
fixed in space as well as to each other, would remain
in the more realistic model of a statically deformed
crystal.

It must be emphasized that in this work we do not
address the question of whether for any given sys-
tem the correlated state that forms as a consequence
of the Coulomb interaction is one of short-range or-
der (Wigner crystal) or of long-range order (charge-
density wave). We simply assume the existence of
the Wigner crystal and consider the question of how
the combined effects of a dc magnetic field and a
random array of pinning centers affect the localiza-
tion of the electrons about their equilibrium lattice
sites, and hence how they affect the likelihood of
Wigner crystallization. The opposite case in which
the ground state of the system is described by a
charge-density wave whose phase is the only dynam-
ical variable in the problem has been studied by
Fukuyama and Lee.

The outline of this paper is as follows. In Sec. II
we write down the Hamiltonian for a 2D electron
crystal in the presence of both a dc magnetic field
normal to the plane of the crystal and a random ar-
ray of pinning centers. In Sec. III we introduce the
phonon Green's function describing the lattice vibra-
tions of the 2D electron crystal. The random
scattering potential due to the pinning centers gives
rise to a phonon self-energy. The average Green's
function and its self-energy are obtained in the
single-site coherent-potential approximation

(CPA). ' ' " (For an extensive review of the CPA, see
Ref. 12.) This leads us to a 2X2 matrix equation
for the elements of the effective-medium Green's
function and self-energy matrices which must be
solved self-consistently. The effective-medium
Green's function is obtained formally in Sec. IV. In
Sec. V we first obtain the phonon spectral density
and electron MSD in the case of the perfect lattice
in the presence of a magnetic field. This case pro-
vides a useful introduction to the more complicated
case of the lattice in the presence of the pinning
centers. In the latter case the phonon spectral densi-

ty is obtained from the numerical solution of the
self-consistent CPA equations derived in Sec. III.

II. THE HAMILTONIAN

In this paper we consider a 2D electron lattice in
the presence of a static magnetic field, directed nor-
mally to the plane of the lattice, and an array of pin-
ning centers placed at random at the sites of an oth-
erwise perfect ideal lattice. Let us denote by x~~(l)
the equilibrium position of the 1th electron in the
lattice. We have that

x(((l) =I(a)+l2a2, (2.1)

H =H)„,+Hi,
where

(2.3)

H„„=,+II (1)
2m I a

+ —,g g4 p(ll')u (l)up(1'}
l,a I',P

(2.4)

is the Hamiltonian for the perfect lattice (in the har-
monic approximation) in the presence of the mag-
netic field, and

H) ——+pc(1)u'(I),
21,

with

(2.5)

1 if I is a pinning site

0 otherwise
(2.6)

where a
&

and a2 are the primitive translation vectors
of the 2D electron lattice and I& and 12 (referred to
collectively as i} are any two integers (positive, nega-
tive, or zero). The instantaneous electron positions
are given by the vectors

R[~(l}=x~~(l)+u(l), (2.2)

where we have denoted by u(l) the 2D displacement
from equilibrium of the 1th electron.

The Hamiltonian of our system is given by
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is the Hamiltonian for the pinning centers.
In Eq. (2.4) we have denoted by @~p(ll') the

force-constant tensor for a 2D crystal of electrons
interacting via the full Coulomb interaction. ' We
have also denoted by II (I) the a Cartesian com-
ponent {in this paper greek indices denote Cartesian
components x,y) of the momentum of an electron
(whose effective mass and charge are m' and —e,
respectively),

II (l)=p (I)+—A (I),
C

(2.7)

[u~(1),u p(l')] =0,
[II (l),up(I')]= iAS 5ttp, —

(2.9}

(2.1O)

[II (l), IIp(l')]= imam co 5—tpE p,
where

eB
COc =

Nl C

(2.11)

where p (1) is the electron momentum in the ab-
sence of the magnetic field. The vector potential
A(1)—=A(R~~(l) ) is taken in the Landau gauge, i.e.,

A(l ) =B{O,R„(l),0), (2.g)

where B is the magnitude of the external magnetic
field (directed along the z axis).

As indicated in the Introduction, the impurities
that are present at the semiconductor-oxide interface
at which we have assumed the existence of a 2D
electron crystal are here modeled by a random array
of "springs" of spring constant y [see Eq. (2.5)].
One end of each of these springs is attached to a lat-
tice site (pinning site) and the other end is attached
to a point fixed in space (a heavy impurity). The
latter feature of our model implies the existence of a
"frame of reference, " which has as a consequence
the breaking of the infinitesimal translational invari-
ance that characterizes the perfect lattice (described
by Hh }. The study of the implications of this
breaking of translational symmetry for the localiza-
tion of an electron about its lattice site is one of the
main objectives of this work.

We note that the more realistic model (alluded to
in the Introduction) in which the lattice is statically
distorted by the presence of the pinning centers
shares with our simpler model the physical feature
of the breaking of infinitesimal translational invari-
ance. Thus our results for the electron MSD given
below should give an order-of-magnitude estimate
for the results that would be obtained for a statically
distorted lattice.

The model Hamiltonian introduced above is sup-
plemented by the following commutation relations:

is the cyclotron frequency of the electrons and the
2X2 matrix e ~ is defined by

1 if a=x, P=y
e~p= —1 if a=y, P=x

0 if a=P.
(2.12)

III. PHONON GREEN'S FUNCTION
AND ITS AVERAGE IN THE

COHERENT-POTENTIAL APPROXIMATION

where the upper (lower) sign defines the retarded
(advanced) Green's function. In Eq. (3.1), 8(x) is
the unit step function and the angular brackets
denote the thermodynamic average over a canonical
ensemble defined by the full Hamiltonian given in
Eq. (2.3).

The equation of motion satisfied by the Fourier
transform of G' p'(ll'

~

t) in the complex frequency
plane, G~p(ll'

~
z), can be readily shown to be

g[L &(Il"
~

z} fiV r(ll"—}]G&p(l"l'
~
z}=A'5tt5~p,

I",y

(3.2)

where the operator L p(ll'
~
z) is given by the equa-

tion,

L p(ll' ~z)=m'z 5tt5 p 4p(ll')—

+&m cz5II'&ap ~ (3.3}

and the (random) scattering potential V p(ll') is de-
fined by

V p(ll')= c(l)5@5 p. (3.4)

In the remainder of this section we simplify the pre-
sentation by using matrix notation, defined such
that G~p(ll'

~

z):—G(z), V p(ll')= V, etc. [The ma-
trix indices are, however displayed occasionally for
clarity, for example, in Eqs. (3.15) and (3.16).]

It is a straightforward exercise to establish the
Dyson equation relating G(z) and P(z), the Green's
function appropriate to the perfect lattice [i.e., the
solution to Eq. (3.2) in the absence of the pinning
potential], namely,

G(z) =P(z)+P(z) VG(z) . (3.5)

A. Self-consistent problem

We introduce the retarded (advanced) phonon
Green's functions by the usual definitions

G' p'(ll'
~

t)=+i8( t)([u (It),up(l'0)] ),
(3.1}
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While P(z) describes the propagation of the phonons
of the perfect lattice (in the presence of the magnetic
field), G(z) describes the propagation of the phonons
in the "imperfect" lattice. Their scattering by the
random pinning potential V introduces both self-
energy corrections to their dispersion relations and
finite lifetimes (or damping) of the phonon modes.

The average of Eq. (3.5) over all possible configu-
rations of pinning centers can be formally taken by
defining the self-energy X(z) [:—X p(ll'~z)] such
that

(G(z)) =P(z)+P(z)X(z)(G(z) } . (3.6)

In this work we obtain (G(z}) [or the self-energy
X(z)] within the CPA. '0 '2 We introduce the so-
called effective-medium Green's function G' '(z)
[=GGp(11'~z)] and its associated self-energy X(z)
[—:X p(ll'

~
z}]by the equation,

G' '(z) =P(z)+P(z)X(z)G' '(z) . (3.7)

From Eqs. (3.6) and (3.7) we have that

G(z)=G' '(z)+6' '(z)[V—X(z}]G(z) . (3.8)

G(z) =G"'(z)+G"'(z)T(z)G"'(z) . (3.9)

From Eqs. (3.8} and (3.9) we obtain the Dyson equa-
tion for the scattering matrix, namely,

We next introduce the scattering matrix T(z)
[=T p{ll' ~z)], defined such that Eq. (3.8) has the
formal solution

(G(z) & =G"'(z), (3.12)

from which it follows that X(z)=X(z). According
to Eq. {3.9), we must then have that

( T(z) ) =0 . (3.13)

T(z) = W(z)+ W(z)G'0'(z) W(z)+ . (3.14)

We now make the simplifying (and rather usual) ap-
proximation of neglecting multiple scattering from
two or more sites, while summing to all orders the
scattering from one and the same site. This is the
single-site CPA.

Inspection of Eq. (3.14) reveals that in this ap-
proximation the self-energy matrix X(z) must be di-
agonal in the indices I and l'. Thus we introduce the
2 X 2 self-energy matrix X p{z) by the equation

The physical content of the above procedure is
clear. The actual disordered medium (described by
the Green's function G) is replaced by an effective
medium [described by the Green's function G' ']

with an effective scattering center at every site ex-
cept for those sites that are occupied by the real
scattering (pinning) centers. The effective medium
is determined by the condition that the scattering off
the real scatterers vanishes on the average.

The prescription just outlined is implemented by
solving Eq. (3.10) (or rather its average) by iteration.
We have that

T(z) = W(z)+ W(z)G'"(z) T(z),

where we have made the definition

(3.10) XGp(ll'
i
z) = XIIp(z)5p .a (3.15)

W(z) = V—X(z) . (3.11)
Taking the average of Eq. (3.14) term by term,

after some algebra we are led to the result that

At this point we can define the effective-medium
Green's function more fully. We do so by requiring
that

(T,p(ll'
~
z})=~ p(z)5ii,

where

(3.16)

In Eq. (3.17) we have introduced the following defi-
nitions:

8' p(z) =G' p(ll
i
z ), (3.18)

~.p{z)=cgW.".' (z)[7—9'"'(z)W'"(z)].—,p+(1 —c)g W.".' (z)[l—9""(z)W'"(z)].—,'. (3.17)
a& al

I

Thus, in the single-site approximation, the CPA
condition given by Eq. (3.13) reduces to the 2X2
matrix equation given by

and

W"p(z)= [5 p
—X p(z}]

W."J(z)= —&X.p(z) .

(3.19)

(3.20)

where the notation emphasizes the fact that
G'~p(11

~
z) is independent of the lattice site 1 (by defi-

nition of the effective medium),

W p(z)=0. (3.21)

Now, according to the result given by Eq. (3.17), the
elements of the scattering matrix W p{z) are func-
tions of the elements of the effective-medium
Green's function 8' p(z} and of the self-energy
X p{z). Since the elements of 9"p(z} are functionals
of the elements of X p(z), Eqs. (3.17} and (3.21) de-
fine a self-consistent problem. This problem is
solved in Sec. VI.
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B. Electron MSD

The effective-medium Green's function defined
above is the basic ingredient for the study of various
thermodynamic and correlation functions for the
imperfect 2D electron lattice. For example, from a
knowledge of 9' ~(z} we can obtain the MSD of an
electron about its equilibrium lattice site, averaged
over all possible distributions of pinning centers.
From standard results of thermodynamic Green's
function theory we have that

( ( u ( l) ) ) =—f d co coth Pleo
2

X Im9'o '(z =co i rl—),
(3.22)

where the notation emphasizes the fact that we have
taken the average of the MSD (in the CPA) over all

possible configurations of pinning centers. In Eq.
(3.22) and elsewhere in this paper, the frequency co is
real.

In Sec. V we give explicit results for ((u (l)) )
(which is, of course, independent of l). We note
that the properties of the system enter Eq. (3.22} en-

tirely via |m9" '(z=co ill), th—e phonon spectral
density for the imperfect 2D electron crystal. This
spectral density is obtained in Sec. V by solving the
self-consistent CPA problem posed by Eq. (3.21).

We note that for T=0, Eq. (3.22) reduces to

( ( u (l) ) ) r 0———f d co 1m 9' ~(z =co i rl) . —

(3.23)

Thus for T=0 K the electron MSD is proportional
to the area under the curve for the phonon spectral
density (and this is always finite}.

For any nonzero temperature we have that
coth(Pficol2)~2k' Tlfico as co~0. Thus if the pho-
non spectral density is finite (nonzero} at co=0, the
integrand of Eq. (3.22) behaves like co

' for co~0
and the MSD diverges. As we shall see in Sec. V,
that is the case for the perfect lattice (i.e., in the ab-

sence of the pinning centers).
We close this section by noting that the CPA pro-

vides the framework for the evaluation of the so-
called conditional Green's functions. ' In our case it
is useful to introduce Green's functions 6'~&(ll' lz)
and G~j(ll'

l
z) defined such that they equal the full

Green's function G ~(ll' lz) if l is, respectively, a
pinning or a nonpinning site, and they vanish other-
wise. The average of these new Green's functions
over all possible configurations of pinning centers is

directly obtainable from the solution of the CPA
problem [i.e., from the knowledge of 8'~(z) and

X p(z)]. Equation (3.22) can then be used (replacing
ImG' ' by ImG'& and ImG "', respectively) to com-
pute the separate MSD for both the pinning and
nonpinning sites (see Sec. V).

IV. EFFECTIVE-MEDIUM GREEN'S
FUNCTION

In this section we obtain a formal result for the
effective-medium Green's function defined in Sec.
III. We begin by obtaining the Green's function for
the perfect lattice in the presence of a dc magnetic
field, P &(ll'lz) [the solution to Eq. (3.2) with

V=O]. We make use of the translational invariance

of the perfect lattice and introduce the 2D Fourier
transform Pop( q l

z } by the equation

BZ

P p(ll'
I

z }= Xexp[i q'[xll(l) —x ll(l')] J

q

xP p(q lz), (4.1)

where N is the number of electrons in the lattice,
and the suin runs over the first Brillouin zone (BZ)
of the reciprocal lattice. In Eq. (4.1) and elsewhere
in this paper, all wave vectors are 2D wave vectors
in the plane of the lattice.

We next expand P &(q l
z) in the basis spanned by

the eigenvectors e(q
l j) (j=1,2) of the dynamical

matrix' of the perfect 2D electron lattice in the ab-
sence of the magnetic field, that is, we set

2 2

P ci(q l
z) = g g PJJ'( q l

z)e ( q l j)equi( q l

j') .

PJJ'(q l
z)=, [[z' coJ(q)]™I+—i co,zE j,&',m*

(4.3)

where the 2)& 2 matrix E is defined by the equation

—1 if j=1, j'=2
E&&

—— 1 if j=2, j'=1
0 if j=j'.

(4.4)

Now in the single-site CPA problem of Sec. III we
require the effective-medium Green's function (and

(4.2)

We recall that the eigenvalue of the dynamical ma-
trix associated with the eigenvector e(q

l j) is the
square of the frequency coj(q) of the jth phonon
branch. '

Substituting Eqs. (4.1) and (4.2) in Eq. (3.2) (with
V=O) and carrying out standard manipulations, '

we obtain the result that
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thus the perfect lattice Green's function) for 1'=I
only. In that case we have

BZ 2

P p(H Iz)= g g Pjj'(q Iz}e (q I j}ep(q I
j')

N -, J,J'=1

where QJ(q), j= 1,2, are the phonon frequencies in
the presence of the magnetic field [the poles of
9' p(z)]. They are related to d]J( q ) (the phonon fre-
quencies in the absence of the field) by the equation

—=HGP(Z) .

(4.5a)

(4.5b)

Q] i(q)= —,[CO, +CO](q)+Cd/(q)]

+ [
—[d], +d]](q)+Cd'(q)]

(z)= P~(z) (4.6a)

R~(z) = —Py„(z) . (4.6b)

Substituting Eqs. (4.3) and (4.6) in Eq. (4.5) and
making use of the orthogonality of the eigenvectors
eG( q I j) (in addition to the result quoted in Ref. 14),
we obtain the following results for the two indepen-
dent elements of the perfect lattice Green's function
for 1'=I:

At this point we restrict the discussion to the case
of a hexagonal electron lattice. (This is the lattice
structure observed in the experiments of Grimes and
Adams in the case of electrons at the surface of
liquid helium. )

On the basis of the transformation properties of
the perfect lattice Green's function under the opera-
tions of the point group of the hexagonal lattice (the
group Cs„), we can show the results that'5

—]d](q)d]z(q)]' ' . (4.8}

9']'](z)= N]'](z) (4.9a)

The effective-medium Green's function
6' p](ll'

I
z) is obtained by solving the Dyson equa-

tion (3.7), and this is done by tranforming Eq. (3.7}
into a matrix equation for the coefficients
G&z''(q

I
z), defined according to Eqs. (4.1) and (4.2).

The solution to that matrix equation gives
Gzz''( q I

z) in terms of
Pjy (q I

z) [given by Eq. (4.3)].
For brevity here we do not display that result. [The
same is implicit in the main result of this section,
Eq. (4.10).]

At this point it is convenient again to restrict our
discussion to the case of the hexagonal lattice. We
require that the transformation properties of the
effective-medium Green's function under the sym-
metry operations of the point group of the hexago-
nal lattice be the same as those of the perfect lattice
Green's function. In this case we have that [cf. Eqs.
(3.18}and (4.6a}]

» 2z —Q](q}—Qi(q)+cd,e (z)=
2m*N

q [z —Q](q}][z —Qz(q)]

(4.7a)

and

(4.9b)

with similar equations relating the elements of the
self-energy inatrix X p(z).

The above comments provide the outline for the
derivation of the following results for the two in-
dependent elements of the effective-medium Green's

9"p(z):

» i~,z
9'~(z) =-

m'N - [zi—Q](q)][zi—Qg(q)]

(4.10a)

(4.7b) function
I

» 2zi —Q](q) —Q&(q)+co, —(2 y/m') X~(z)"](z)=
2m'N- h(q Iz)

and

(0] g» ice,z (y/m')X~(z)—
Ri,'(z) =-

m N ]I](q Iz}
(4.10b)

where the function 6( q I
z) is defined by

/L(q Iz)= id],z X(—z) + z —d]](q) — X (z) z —d]z(q) — X (z)m' m m' (4.11)
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Note that the only dependence on the wave vector q
of the argument of the above sums is through the
phonon frequencies Qi(q}. [In other words, the
eigenvectors e{q ~

j) have been eliminated from our
results for the elements of 8' &(z).] This is very use-
ful since then, in the computation of 9"ii(z}, we

only need to diagonalize the dynamical matrix in the
irreducible element of the BZ for the hexagonal lat-
tice. The result given by Eq. (4.10}together with the
CPA equation (3.21) constitutes the self-consistent
problem solved in Sec. V.

tice in the presence of both the magnetic field and
the pinning centers.

A. Perfect lattice in the presence of a dc magnetic field
normal to the plane of the lattice

The present physical system has been studied be-
fore. However, the published work refers only to
some results for the phonon dispersion rela-
tions ' or to qualitative results for the electron
MSD. Our results for the phonon spectral density
given below illustrate the physics of the system rath-
er clearly and serve as a useful reference for the re-
sults obtained later in the presence of disorder.

reen's function is
on P~ii(ll'

~

z} ob-
e the explicit re-

). Here we shall
1 density. From

V. RESULTS AND DISCUSSIONS

(5.1)

In this section we present detailed numerical re- In the present case the phonon 6
suits for the phonon spectral density and the elec- the perfect-medium Green's functi
tron MSD obtained on the basis of the theory for- tained in Sec. IV. For l'=l we hav

mulated in the previous sections. It is useful to con- suits given by Eqs. (4.6) and (4.7
sider separately the following three cases: (a) the mainly discuss the phonon spectra
perfect lattice in a magnetic field; (b) the lattice with Eq. (4.7) it follows that
pinning centers without a magnetic field; (c) the lat-

I

sz 2co Qi(q) Qz(q)+~~ 5(co Q (q)) 5{~ Q2(q))
ImP (z =co i ri) =-

2m N - Qi(q) —Q2(q} co+Qi(q} co+Qi(q)

We can readily verify the result that'

f tN

dcoroIm&' (z=co iri)=—
0 2 m*

(5.2)

We have computed the frequencies QJ(q) by first
diagonalizing the dynamical matrix appropriate to a
hexagonal electron lattice, for which a rapidly con-
vergent result has been given by Bonsall and Mara-
dudin. ' The eigenvalues of the dynamical matrix
give us the frequencies co&(q) of the phonons in the
absence of the magnetic field. The corresponding
frequencies in the presence of the field QJ(q} are
then obtained from Eq. (4.8).

Now since the frequencies co&(q) have the full

symmetry of the point group of the hexagonal lat-
tice, we only need to carry out the above computa-

I.S
I I I I I I I

) Sl I I I

l. 2
F.

3 I.O

0.8

0.6

0.75

tion within the irreducible element of the BZ of the
reciprocal lattice (shown in Fig. 1). The sum over
the whole BZ required in Eq. (5.1) is then carried
out by assigning each point inside its irreducible ele-

ment an appropriate weight (determined by symme-

try}. Typically, we have coinputed the frequencies

coj(q) at the points of a fine mesh of 456 points in
the irreducible element of the BZ (the corresponding

0.2

FIG. 1. First BZ for the 2D hexagonal lattice. The
shaded area is the irreducible element of this zone.

r J X r
WAVE VECTOR (qao/w )

FIG. 2. Phonon dispersion curves for a 2D hexagonal

electron lattice in a dc magnetic field perpendicular to the
plane of the lattice for wave vectors along the boundary of
the irreducible element of the first BZ. The curves shown

correspond to three values of the reduced cyclotron fre-

quency v, =co,/co (co,„being the maximum frequency
of the crystal in the absence of the magnetic field). The
dashes indicate the dispersion curves for v, =0, which

differ from the dispersion curves for v, =0.1 only near
the I and J points, as shown.
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FIG. 3. Phonon spectral density for a perfect 2D hex-
agonal electron lattice in the presence of a dc magnetic
field perpendicular to the plane of the lattice, for three
values of the reduced cyclotron frequency v, =co,/co, „.

number of points in the entire BZ is 5041).
In Fig. 2 we show the phonon dispersion curves

for wave vectors along the boundary of the irreduci-
ble element of the BZ for three values of the reduced
cyclotron frequency v, defined by the equation

VC=
max

(5.3}

where co,„is the maximum frequency of the crystal
in the absence of the magnetic field (which occurs at
the X point in the first BZ), and is given by

comgx 1 256cop (5.4)
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FIG. 4. Same as Fig. 3, but for larger values of the re-
duced cyclotron frequency v, . Note that the (nonzero)
value of the phonon spectral density at zero frequency is
rather insensitive to the value of v, [see comment below
Eq. (3.23)].

Here cop is the "plasma" frequency of the 2D elec-
tron crystal, defined according to the equation

2778 n
Np= (5.5}

7tl GOO

where ao is the interelectron distance, n, is the areal
electron density [n, =2/(v 3ao)], and e is the effec-

IP IO 1012

tive dielectric constant of the interface for the elec-
trons in the 2D crystal. [e=(et+@2)/2, where ei
and e2 are the dielectric constants of the semicon-
ductor and the oxide layer, respectively, in the case
of a Wigner crystal at a semiconductor-oxide inter-
face.]

Note that v, is a function of both the external
magnetic field and the electron density. In the case
of the silicon —silicon-oxide interface we have that

vc —0' 718 3/4
b

(5.6)~ /

where b is the magnitude of the magnetic field in
teslas (1 T= 104 G) and N, is the electron density in
units of 10' cm. Thus in the small density region
(N, =1},with moderate values of b we can achieve
fairly large values of v, .

The main features of the dispersion curves shown
in Fig. 2 are easily visualized. While in the absence
of the magnetic field the frequency coI(q) of the
longitudinal phonon mode behaves like q

' as
q —+0, in the presence of the field we have that
OI( q ) =co, for q =0. Fox the transverse phonon we
have that' Q, (q)-q for q~0. We also find
that the magnetic field removes the degeneracy that
exists at the J point in the field-free case, as shown
in Fig. 2. The magnitude of the gap created at the
zone boundary increases with increasing values of
v„until an absolute gap develops between both pho-
non branches.

In Figs. 3 and 4 we give results for the phonon

I pl I

n, (Cm-2)

FIG. 5. MSD of an electron in a perfect 2D hexagonal
lattice at T=O K in the presence of a dc magnetic field
perpendicular to the plane of the lattice, in units of a 0 (ao
being the interelectron distance), as a function of the areal
electron density. The curves are labeled by the corre-
sponding value of the reduced cyclotron frequency v, .
The curve for v, =0.1 almost coincides with the curve
that obtains for v, =0 (i.e., in the absence of the magnetic
field). The dashed curve corresponds to the field-free lat-
tice in the presence of a random array of pinning centers
of concentration c=0.1 and pinning strength A, =l [see
Eq. (5.10)].
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spectral density for several values of v, .'s For
v, =0.1 the phonon spectral density is almost identi-
cal to that for v, =0, i.e., to the field-free limit. The
lower-frequency peak corresponds to the transverse
phonon branch and the higher-frequency peak corre-
sponds to the longitudinal phonon branch. For
v, &0.5 a gap develops between both peaks. Its
magnitude increases with increasing values of v, .
The existence of this gap is explained by the corre-
sponding feature of the phonon dispersion curves
discussed above.

From the point of view of this paper the main
qualitative feature of Figs. 3 and 4 is that the pho-
non spectral density is finite at co=0. According to
the comment that follows Eq. (3.23), this result im-

mediately implies that the MSD of an electron
diverges at any nonzero temperature.

In Fig. 5 we give results for the MSD at T=O
[computed using Eqs. (3.23) and (5.1)] for various
values of v, as a function of the electron density.
(Note that for the hexagonal lattice
((u ))=2((u, )).) The stabilizing effect of the
magnetic field at T=0 K (particularly at small areal
densities) is apparent.

B. Lattice in the presence of a random array
of pinning centers (B=0)

The theory presented in Secs. II—IV simplifies
considerably in the limit B=O. From Eq. (4.7b) we
have that P~(z)=0 for r0, =0. Since we require
that 9' &(z) have the same symmetry propertiesto as
P it(z), it must then be the case that Ã~'(z)=0.
According to Eq. (4.10b) we must also have that
X~(z)=0. Thus when no magnetic field is present
we have that

(5.7)

and

X ti(z) =X(z)5' . (5.8}

—[c—X(z)]=S' '(z)X(z)[X(z)—1] .
r

(5.9)

The self-consistent problem was solved as fol-
lows. ' There are two dimensionless parameters in
the problem, namely, the concentration c and the ra-
tio

The definition of the (scalar) effective-medium
Green's function 8' '(z} [as a functional of the sca-
lar self-energy X(z}] is given by Eqs. (4.10a) and
(4.11) upon setting c0, =0, X~ ——0.

Thus in the present case the CPA equation (3.21)
reduces to a simpler scalar equation, which after a
little algebra can be written as

+o
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FIG. 6. Phonon spectral density ImÃ' '(z =co—ig) for
a 2D hexagonal electron lattice in the presence of a ran-

dom array of pinning centers for two values of the con-
centration c. Here the relative pinning strength k [see Eq.
(5.10)] equals unity. Note that the magnitude of the low-

frequency gap and the width of the impurity band in-

crease with the concentration.

2m max
(5.10)

y

that characterizes the strength of the pinning poten-
tial. For small pinning strengths ()i, large} we expect
the virtual-crystal result Re X=c, ImX=O to be a
good approximation. These limiting values of the
self-energy were used (we actually used a small
nonzero value for ImX) to start the iteration pro-
cedure that results from first computing 9' '(z) and
then solving Eq. (5.9) (Newton's method was used)
to obtain a new value of the self-energy, and so on
until convergence was achieved. This procedure was

carried out for successively smaller values of A,.
In Fig. 6 we show the phonon spectral density

Im9"i '(z =&0 ir)) obta—ined by the above procedure
for c=0.1 and A, =l. {For illustrative purposes in

Fig. 6 we also show the results obtained for c=0.25.)
We note that the choice 1=1 corresponds to a pin-

ning strength such that the pinning parameter y
equals the effective spring constant for the max-

imum frequency in the crystal. This value of A, is

relevant experimentally.
The main new feature of the phonon spectral den-

sity shown in Fig. 6 is the presence of a low-

frequency gap (cf. Figs. 3 and 4}. This gap is a
direct consequence of the breaking of the infini-
tesimal translational invariance that exists in the
perfect lattice by the presence of the pinning centers.
Thus the electron MSD is now finite at finite tem-

peratures.
A second feature of Fig. 6 is the presence of an

impurity band for frequencies greater than co,„.
This result can be understood by considering the
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problem of one pinning center in a perfect lattice.
One can show that in that case, in addition to the
continuous spectrum, there exists one isolated state
bound to the pinning site. For A, = 1 this bound state
occurs at v=co/co =1,26. When a finite concen-
tration of pinning centers is present, this state turns
into an impurity band, as shown in Fig. 6.

A check of the accuracy of our numerical solution
is given by the sum rule (5.2). That 9' '(z) satisfies
this sum rule can be proved as follows. From Eq.
(5.7) and the first paragraph below Eq. (5.8) we have
that 9" '(z) is analytic in the upper half-plane2 and
that for ~z

~
~a), and

W~(z) =Xyy(z) (5.13a)

C. Lattice in the presence of both
a random array of pinning centers and

an external magnetic field

The self-consistent problem to be solved is now
given by Eqs. (3.17), (3.21), (4.10a), and (4.10b). In
the case of the hexagonal lattice, using the symme-
try relations given by Eqs. (4.9)/recall that similar
equations relate the elements of XGp(z)] in Eq. (3.17)
we can show that

g (0)(z) (5.1 1)
W~(z) = —Wy„(z) . (5.13b)

Then noting that the spectral density is an odd func-
tion of the frequency co, and using Cauchy's
theorem, we have that

W~(z) =0 (5.14a)

Thus in the present case we must solve a system
of two CPA equations given by

dcoco ImS' '(z=co irt)—
0

= ——,
'

Im f„dz.y"'(z),

(5.12)

where the integral on the right-hand side is taken
over a large semicircle on the upper half-plane. Sub-
stituting Eq. (5.11) into (5.12) we readily prove that
the right-hand side of Eq. (5.12) equals M/2m'.
The spectral density shown in Fig. 6 satisfies the
sum rule to better than 1/o and we take this as a
measure of the overall accuracy of our numerical
procedure.

In Fig. 5 we give the MSD (note that
((u2))=2((u )) for the hexagonal lattice) ob-
tained by evaluating the integral in Eq. (3.23) with
the use of the spectral density shown in Fig. 6 for
c=0.1. (As indicated above, in the present case we
can also compute the MSD at finite temperatures.
For brevity we give the MSD at T&0 in Sec. VC
only. ) Now the concentration of pinning centers in
practice is restricted to small values. On the other
hand, the reduced cyclotron frequency v, can be
varied rather easily. Thus the results of Fig. 5 show
that at T=O the magnetic field by itself is a much
more efficient mechanism for the localization of an
electron about its lattice site than are the pinning
centers by themselves.

Finally, we have evaluated the separate electron
MSD for both pinning and nonpinning sites (in the
manner outlined ~at the end of Sec. III). The con-
clusion is that the former is about 2 orders of mag-
nitude smaller than the latter. We then expect that
an external magnetic field will, through its effect on
the nonpinning sites, bring about a further reduction
in ( (a ) ). This question is considered next.

S y(z) =0 . (5.14b)

Equations (5.14) were solved by Newton's method. '

The problem is self-consistent since 9' p(z) and
X gz) are related by Eqs. (4.10). We began with a
small value of the reduced cyclotron frequency v„
in which case the field-free results for the self-
energy were used as input to the iteration procedure.
We then increased v, by steps and at each step we
used as input the results for the self-energy elements
obtained for the previous value of v, . However, in
the frequency regions near the gaps of the spectrum
it became necessary to solve the CPA equations by
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FIG. 7. Phonon spectral density Im9" '(z =co—ig) for
a 2D hexagonal electron lattice in the presence of a mag-
netic field perpendicular to the plane of the lattice and a
random array of pinning centers with concentration
e=0. 1 and relative pinning strength A, =1. The curves
shown correspond to three values of the relative cyclotron
frequency v, .
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FIG. 8. Same as Fig. 7 but for higher values of v, .

Note that for v, =1.5 the low-frequency gap disappears.
Note also that since we have set A, =1 [cf. Eq. (5.10)], the
scales of Figs. 3, 4, and 6—8 are the same.

converging toward the gaps by varying the frequen-

cy co by very small amounts (for a fixed v, ).
It was verified that our numerical results for the

phonon spectral density satisfy the sum rule (5.2) to
1% accuracy. [The proof that the result for S~'(z)
given by Eq. (4.10a) is consistent with Eq. (5.2)
proceeds along similar lines to the one given earlier
in the case that B=0.]

In Figs. 7 and 8 we show our results for the pho-
non spectral density Im9' '(z=ni ir)) f—or several
values of v, . For v, =0.1, the spectral density
resembles closely the corresponding result for v, =0
(given in Fig. 6), except that the impurity band that
was present in the latter case has now split into two
bands by the presence of the magnetic field. For
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FIG. 9. MSD of an electron in a 2D electron lattice at
T=0 K in the presence of a dc magnetic field normal to
the plane of the lattice and a random array of pinning

centers, as a function of the areal electron density, for
various values of the reduced cyclotron frequency v, .
Here c =0.1 and A, =1. The dashed curve corresponds to
the perfect lattice (no pinning centers) for v, =0.1.
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FIG. 10. MSD of an electron in a 2D electron lattice in

the presence of a dc magnetic field normal to the plane of
the lattice and a random array of pinning centers, as a
function of temperature, for four values of the reduced

cyclotron frequency v, . Here n, =10' cm, c=0.1, and

A. =1.

larger values of v„ the splitting between the impuri-

ty bands increases, and for v, &0.75, the lower-lying
impurity band occurs in the gap between the two
phonon bands.

A striking feature of our results is that as v, is in-
creased, the magnitude of the low-frequency gap in-
creases, until for v, &1.5 this gap disappears (see
Fig. 8). We interpret this result as follows. The
low-frequency gap, is as noted before, a direct conse-
quence of the breaking of translational invariance by
the presence of the pinning centers. As v, is in-

creased, the vibrational motion of the electrons is
more and more quenched (the cyclotron radius de-

creases) and thus the electrons probe the presence of
the pinning centers less effectively. However, we
note that there remains residual information as to
the presence of the pinning centers in that, although
the low-frequency gap disappears, the phonon spec-
tal density vanishes at zero frequency. (This result
holds true for values of v, & 1.5.) In fact, the spec-
tral density vanishes sufficiently fast as co~0 that
the MSD remains finite at finite temperatures.

In Fig. 9 we present results for the electron MSD
at T=O K for various values of v, as a function of
the electron areal density. For comparison we also
give the plot for the MSD that obtains at T=O K in
the case of the perfect lattice. From Fig. 9 we have
that, first, the introduction of the pinning centers
decreases the MSD as shown. Next, by increasing
the magnetic field (keeping the concentration c
fixed), the MSD is further decreased. We note that
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for n, =10'o cm z and v, =2.0, Eq. (5.6) gives
b=2.79 (or B=2 79. T). Since values of B up to
about 8 T are used in the experimental work in the
field, we conclude that, at T=O K, the combined
effects of the pinning centers and the magnetic field
considerably enhance the localization of the elec-
trons about their equilibrium lattice sites.

It is instructive to view the results of Fig. 9 in the
light of the Lindemann criterion of melting, ac-
cording to which the crystal would melt for
((u )/ao)r o K —(0. 16) =0.0256. At small densi-
ties (n, -10' cm ) this criterion is satisfied ex-

tremely well with moderate values of the magnetic
field.

In Fig. 10 we present results for the electron MSD
as a function of temperature for a given electron
areal density (n, =10' cm; we also set c =0.1 and
A, =1.0). The main feature of Fig. 10 is worth a
comment. In effect, while at T=O K we can de-

crease the MSD substantially by increasing the mag-
netic field (for a fixed concentration of pinning
centers), the same does not hold true for tempera-
tures above a few degrees kelvin. This result is ex-
plained as follows. From Eq. (3.23) we have that, in
the high-temperature limit,

4k&T ~ Im9' '(z =co iv))—
dco

0 N

(5.15}

spectral densities shown in Figs. 7 and 8.
Finally, we have evaluated the separate electron

MSD for both the pinning and nonpinning sites (cf.
last paragraph of Sec. III). With the values of mag-
netic field for which we have obtained the phonon
spectral densities, the MSD for the pinning sites is
still much smaller than the MSD corresponding to
the nonpinning sites.

VI. SUMMARY

We have obtained the phonon spectral density for
a 2D electron lattice in the presence of a dc magnet-
ic field and a random array of pinning centers.
From a knowledge of the phonon spectral density
we have computed the electron MSD. Although at
sufficiently high values of the magnetic field the
low-frequency gap in the phonon spectral density
disappears (such a gap results from the presence of
the pinning centers), the MSD remains finite at fin-
ite temperatures. At low temperatures (T&1 K},
the MSD is reduced considerably below the value
for which the Lindemann criterion would predict
the melting of the lattice with rather moderate
values of the magnetic field. At higher tempera-
tures the value of the MSD is essentially determined

by the value of the concentration of the pinning
centers. From our results we conclude that for
T&1 K both the magnetic field and the pinning
centers (without which (u )= DU for T+0) consid-
erably aid the stability of the 2D electron crystal.

From the well-known Kramers-Kronig relations
satisfied by the Green's function defined in Sec. III
(and thus by the effective-medium Green's func-
tion}, we have that the coefficient of ksT in Eq.
(5.15) is proportional to Re/~'(oi =0). Our numer-
ical solution for Re/~'(co=0} is independent of the
value of the magnetic field. Thus according to Eq.
(5.15) so is the MSD.

We note that the limit given by Eq. (5.15} be-
comes valid at (slightly) higher teinperatures as we
increase the magnetic field. This was to be expected
from the dependence on the magnetic field of the
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