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Ground-state energy of a D ion in two-dimensional semiconductors
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The ground-state energy of a D ion (a donor impurity ion with two attached electrons)
in a two-dimensional semiconductor is calculated using a variational approach and is found
to be about —4.48 Ry. The ground-state energy of a hydrogenic system in two dimensions
is known to be —4 Ry. Thus the binding energy of a D ion, defined as the energy required
to remove one of the two electrons from the D ion to infinity, is about 0.48 Ry. This is
about 12% of the ground-state energy of a hydrogenic system in two dimensions. This is to
be compared with the binding energy of a D ion in three dimensions which is 5.55% of the
hydrogenic ground-state energy. The relevance of our results to the problem of a D ion in
thin-quantum-we11 structures is discussed.

I. INTRODUCTION

The study of the electronic structure of a negative
hydrogen ion, namely a hydrogen atom with an ex-
tra electron attached to it, has attracted considerable
attention since the early days of quantum mechan-
ics.' The best variational calculation gives 1.0555
Ry (Ref. 2) for the ground-state energy of this sys-
tem. In addition, it has recently been shown that
the system has one and only one bound state.

It was Lampert who first suggested that it should
be possible for an analogous system, namely, a
donor impurity ion with two attached electrons, re-
ferred to as a D ion, to exist in semiconductors.
The binding energy of the D ion, defined as the en-
ergy required to remove one of the two electrons
from the D ion to infinity, is rather small in most
semiconductors. Thus conclusive evidence concern-
ing the existence of this system in semiconductors
was not available until recently. In the past few
years, however, considerable information concerning
the behavior of D centers in semiconductors, espe-
cially Si and Ge, has become available. The effects
of magnetic and stress fields and of electron-
phonon interaction on the properties of D ions
have also been investigated both theoretically and
experimentally. Recently, we have calculated the
effect of screening due to the presence of other free
carriers on the binding energy of a D ion.

Though considerable effort has been devoted to-
ward understanding the behavior of D centers in
bulk semiconductors in the past several years, very
little information seems to be available concerning
the properties of D ions in two-dimensional sys-
tems. The study of the properties of systems in two
dimensions has a basic interest in its own right, as

reducing the dimensionality often introduces novel
and interesting features. ' Our interest in the study
of the D ion in two dimensions is also motivated
by the following reasons. With the recent advances
in the epitaxial crystal growth techniques such as
molecular beam epitaxy and metal-organic chemical
vapor deposition, it has become possible to grow sys-
tems consisting of alternate layers of two different
semiconductors with controlled thicknesses.
Such systems are generally referred to as superlat-
tices. One of the most thoroughly studied superlat-
tices is the one consisting of alternate layers of
GaAs and GaA1As with layer thicknesses
varying from about 20—400 A. Depending on the
Al concentration in GaA1As, its band gap can be
made considerably larger than that of GaAs. This
leads to discontinuities at the conduction- and
valence-band edges at the interfaces, thus confining
electrons and holes in the GaAs quantum wells.
The study of the properties of physical systems in
these quantum-well structures has become of consid-
erable interest in the past few years. For instance,
Bastard" has recently calculated the binding energy
of a donor in a GaAs quantum well as a function of
the thickness of the well assuming infinite potential
barriers at the interfaces. In order to check the reli-
ability of the wave function used to calculate the en-
ergy levels one needs to know the behavior of a
donor in the limiting cases of zero thickness (two di-
mensions) and infinite thickness (three dimensions).
This provides an additional incentive for the study
of systems in two dimensions. Actually, the poten-
tial barriers at the interfaces are finite. Mailhout
et al. ' and Greene and Bajaj' have calculated the
energy levels of a hydrogenic donor in quantum-well
structures using finite values of the potential offsets
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at the interfaces. It is, however, still of interest to
study systems in two dimensions to provide gui-
dance to calculations done with finite potential bar-
riers. In addition, the study of two-dimensional sys-
tems is of considerable relevance in layered semicon-
ductors.

In this paper we report a first calculation of the
ground-state energy of a D ion in a two-
dimensional semiconducting system using a varia-
tional approach. We find that the value of the
ground-state energy is —4.48 Ry where Ry is the
hydrogenic Rydberg in three dimensions. The value
of the binding energy of a hydrogenic system in two
dimensions is known to be 4 Ry. ' Thus the binding
energy of a D ion in two dimensions is about 0.48
Ry, which is 12% of the binding energy of a hydro-
genic system in two dimensions. This is to be com-
pared with the binding energy of a D ion in three
dimensions, which is 5.55% of the hydrogenic bind-
ing energy.

II. THEORY

The Hamiltonian of our system consisting of two
conduction electrons, each with an effective mass m,
bound to the positive ion of an impurity atom in a
two-dimensional semiconductor can be written as

Pl P2 e 8 e
2 2

H=
2m 2m @Ore &Or2 ~Ori2

where p~ and p2 are the momentum operators of
electrons 1 and 2, respectively, r& and r2 designate
the positions of electrons 1 and 2 from the positive
ion assumed to be localized at the origin, and eo is
the dielectric constant of the material. We have as-
sumed that the conduction band is simple and iso-
tropic and that the effective-mass approximation is
valid. The distances r&, r2, and r&2 in two dimen-
sions are defined as

H =—(Vi+V2) ————+2 2 2 2 2

ri r2 r12
(4)

0&L+M+N &4 (6)

leads to 35 terms in the expansion of this wave func-
tion. With this particular choice of the wave func-
tion, the ground-state energy of a D ion in three
dimensions is found to be —1.0553 Ry, which is
very close to the very accurate value of —1.0555
Ry. We shall therefore use this form of the trial
wave function to calculate the ground-state energy
of a D ion in two dimensions.

We minimize the following expressions for ener-

f f'Hp
E= dv, (7)

Here, of course, we have assumed that the values of
the effective mass and the dielectric constant are the
same in two- and three-dimensional semiconducting
systems.

Exact analytic solutions of the Schrodinger equa-
tion for this Hamiltonian are not known. We shall
therefore follow a variational approach to calculate
its ground-state energy. The properties of a D ion
in three dimensions have been studied in great detail
in recent years. Several different trial wave func-
tions have been used to calculate its ground-state en-

ergy. Recently, we have found that the following
form of the trial wave function,

/=exp[ —A(r ~ +rz)] g CLMNr &zr & r»L M N

L,M, N

leads to a very good value of the ground-state energy
of a D ion in three dimensions. Here A, is a non-
linear variational parameter, L, M, and N are posi-
tive integers including zero, and CLMN are coeffi-
cients to be determined by minimizing the ground-
state energy: for instance, summing over all the pos-
itive integers L, M, and N such that

and (2)
where d~=dr&dr2. The resultant integrals are of
the form

Now, expressing a11 distances in terms of Bohr ra-
dius a and all energies in terms of an impurity Ryd-
berg R for a three-dimensional system, namely

EpfP 2
a= and R= (3)

me 26'oa

the Hamiltonian of a D center can be written as

I(Pi P2 P3)= r~2 r~ r2

Xexp[ —2A(r~ +r2)]dr,

(8a)

where p&, p2, and p3 are positive integers including
zero, the volume element

47Tr
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(Sb)
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and the limits of integration are r~ )0, r2&0, and
~r~ rz—

~
&r&z& ~r&+rz ~. The evaluation of the

integrals of the form I(p&,pz,p&) is briefly outlined
in the Appendix.

III. RESULTS AND DISCUSSION

Eg ———E—E2o, (9)

where E2& is the donor binding energy in two di-
mensions. The value of E2~ is known to be 4.'
Thus the value of E~ in two dimensions is about
0.48, which is 12% of E2&. This is to be compared
with the value of E~ in three dimensions, which is

We have calculated the ground-state energy (E) of
a D ion in two dimensions using several different
sets of terms in the expansion of the wave function
g. For instance, for

L+M+N&k

the calculation for k=1 leads to four terms in the
expansion and yields —4.3438 for the ground-state
energy. For k=2 (10 terms) the calculation gives
—4.4751, for k=3 (17 terms} gives —4.4776, and
for k=4 (35 terms} it leads to —4.4801. The differ-
ence in E for k=3 and 4 is quite small and thus the
use of k=5 is not expected to improve the results

significantly. It is interesting to compare these
values with those of a D ion in three dimensions

using the same form of the trial wave function. In
this case we find that the ground-state energy is
—1.019 for k=1, —1.05318 for k=2, —1.05376
for k=3, and —1.05534 for k=4. The relative
difference between values of E for k= 3 and 4 in two
dimensions is much smaller than that in three di-

mensions, though the absolute differences are com-
parable. Thus the relative rate of convergence is
considerably better in two dimensions. As men-

tioned earlier, a very accurate value of E in three di-

mensions is found to be —1.0555, which is very
close to our value for k=4. We therefore believe
that the value of E in two dimensions (2D) that we
calculate for k=4 should be very close to the "ex-
act" value. The binding energy (Es) of a D ion,
defined as the energy required to remove one of the
two electrons from the D ion to infinity, is defined
as

about 5.55% of R. Thus in two dimensions the
second electron in a D ion is proportionately more
bound than in three dimensions: almost by a factor
of 2. This is to be expected, as reducing the dimen-
sionality often leads to more binding. What is new
and interesting about this result is the magnitude of
the binding energy (Ett) in two dimensions.

As pointed out earlier, the study of the D ion in
two dimensions is of considerable relevance to the
GaAs-Ga~ „Al„As quantum-well structures. For
GaAs quantum-well sizes less than 100 A, the bind-
ing energy of a D ion is expected to be significant-
ly larger than its value in bulk GaAs, thus making
its experimental observation somewhat easier. A
study of the variation of the binding energy of a D
ion as a function of the GaAs quantum-well size is
planned for future publication.

It is well known that the D ion has one and only
one bound state in three-dimensional systems. A
zero-orbital angular momentum triplet state of a D
ion in two dimensions can be easily constructed
within the framework of our trial wave function by
antisymmetrizing it relative to the interchange of
electron spatial coordinates. Using this wave func-
tion we have calculated the energy of this state and
find that it is not bound. It should be interesting to
determine whether higher angular momentum triplet
states are bound. Such a study is planned for future
publication.

s =r)+r2 —r)2,

t =r& —r2+r&2,

Q r1+r2+r)2

Thus

(A2)

(A3}

r~rzr~zds dtdu
dT= tr 2

[stu (s + t +u)]
(A4)

where the limits of integration for s, t, and u are
from 0 to ao. Integral I(p~,pz,p3) then takes the
following form:

APPENDIX' EVALUATION OF I(p i pg p3 )

The calculation of the integrals of the type
I(p, ,pz, p3) is greatly facilitated by using the follow-
ing coordinate transformation. Define

du [ —,(t+u)] '[ —,(s+t)] '[ —,(u+s)] '
I(p~,pz,p3) =~~2f ds f dt f exp[ —A(t+u +2s)], (A5)[stu(s+t+u)]' z

which is easily expressed as a linear combination of integrals of the form
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J(a,b,c)= ds dt du
&&z

s'-'"t'-'"u' '/2exp[ —(t+u+2s)]
0 0 0 {s+t+u)'" (A6)

1
'O dp=I'(a+ —,)I'(b+ —, )I (c+—, )

&p (2+p)'+ (1+p) + (1+p)'
where 1(x) is a I function, after scaling s, t, and u by A, , and using results of Ref. 14. Integral J can be fur-
ther reduced to integrals of the form

by letting

t' (1—y) dy
J P (2 )tt/ t/2~ (A8)

y = and a=a +b +cP
1+p

in Eq. (A7). These integrals are easily evaluated recursively, using

g0,0=~~2 y

1

gott'] =(
2 +pgp p)l(2p+ I ) for p) 0

go-liter =[2+(2l pl —I)«.-itt(+i//'I pl «r p«
and

gaP ga —1P—1 ga —1P y

where a and P are integers.
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