
PHYSICAL REVIEW B VOLUME 27, NUMBER 8 15 APRIL 1983

Spin-flip Raman scattering, bound magnetic polaron, and fluctuations in (Cd,Mn)Se
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The spin-flip energy of donor-bound electrons is investigated in the semimagnetic semi-

conductor Cd& „Mn„Se. Temperature and magnetic field dependences are measured with

the use of Raman scattering and calculated theoretically from a statistical-mechanical
model. Results of spin-flip Raman scattering are obtained for x =0.01 and 0.1 at tempera-
tures from 1.5 to 30 K and fields to 10 T. For x =0.1, the spin-flip energy is large (&26
meV), giving g values approaching 200 at low temperatures. This enhancement is interpret-
ed as an effective magnification of the field due to the exchange interaction between the car-
rier electron spin and the Mn + spins. The magnitude and temperature dependence of g are
explained with the use of the mean-field approximation. At zero magnetic field the spin-

flip energy is finite due to thermal fluctuations in the local magnetization and the bound

magnetic polaron. These processes are incorporated in the theory which is used to derive

simple formulas for the spin-flip energy and line shape. Good agreement is found between

theory and experiment. The scattering strength and selection rules are also studied. The ab-

solute cross section exceeds 10 cm /sr and is resonantly enhanced as the absorption edge
is approached from lower energy.

I. INTRODUCTION

Recently, there have been a number of studies of
the properties of semimagnetic semiconductors. '

These materials —whose prototypes are
(Cd, „Mn„)Te and (Hg& „Mn„}Te—combine the
features of conventional and magnetic semiconduct-
ors in novel and flexible ways. Their band struc-
tures are similar to those of the corresponding
binary compounds (CdTe and HgTe). Transport
properties are generally superior to those of magnet-
ic semiconductors. Magnetically, semimagnetics ex-
hibit a wide range of behavior as a function of Mn
concentration. Concentrated alloys (x & 0.2) have
spin-glass and antiferromagnetic phases. Dilute al-
loys are paramagnetic with modifications induced
by the large exchange interactions of conduction- (or
valence-) electron spins with those of the Mn + ions
incorporated in the lattice. The exchange interac-
tion gives rise to several novel effects, such as large
spin splittings of the bands (giant g values). It also
modifies localized states in these materials. An elec-
tron bound to a donor (or a hole to an acceptor) in a
semimagnetic crystal polarizes the Mn + ions
within its orbit, thus creating a ferromagnetic spin

cloud around the impurity. Such complexes are
termed bound magnetic polarons (BMP).

Spin-flip transitions of electrons in semimagnetic
semiconductors were first observed by Raman
scattering in (Hg, Mn)Te (Ref. 3) and (Cd,Mn}Se
(Ref. 4). These transitions have also been seen in the
far-infrared absorption spectra of (Cd,Mn)Se.
When it is detectable, spin-flip Raman scattering is
a useful probe of the electronic structure of semi-
magnetic semiconductors. In particular, the obser-
vation of a temperature-dependent zero-field spin
splitting in (Cd,Mn}Se is a proof of the existence of
BMP in that material. In this paper we describe the
results of extensive spin-flip Raman scattering ex-
periments in n-type (Cd,Mn)Se, and compare the
data with a theory of BMP, which provides a com-
plete description of the spin-flip line shape. Excel-
lent agreement is found. This comparison substan-
tiates the fluctuation-dominated picture of BMP
developed by Dietl and SpaIek. Thermal fluctua-
tions will be included whenever reference is made to
BMP, even when the polaron contribution is small.

The measurements also provide an accurate value
for the exchange interaction, and determine other
parameters of the (Cd,Mn)Se system. A large
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enhancement of the spin-flip cross section is ob-
served as the laser energy approaches the absorption
edge. Cross sections exceeding 10 cm /sr are
measured at resonance.

II. EXPERIMENT

A. Samples and equipment

Samples of Cd~ „Mn„Se were grown by the
Bridgman method with nominal x values of 1% and
10%. Actual values of the concentrations are only
slightly different, as determined by atomic absorp-
tion measurements. At low Mn concentrations the
crystals have the hexagonal wurtzite structure of
pure CdSe. The energy gap for the A valence band
at x =0 is Eg ——1841 meV at T =4 K, and varies
with x. The variation is linear at least up to
x =0.45, with dEg/dx = 1.50 eV at liquid-helium
temperature. Although the samples were not inten-
tionally doped, they exhibited n-type conductivity
with n=10' —10' cm at room temperature. See
Table I for material parameters.

Transport properties at room temperature were
determined from the Hall effect using the four-point
van der Pauw method. The low manganese concen-
tration sample, x =0.012, has a conductivity of
a=16 (0 cm) ' and n =2X10' cm . The high-
concentration sample, x =0.105, has 0 =2.2
(Qcm) ' and n =3)& 10' cm . Both samples
were polished to a thickness of 1.5 mm. All samples
tested have wavelength-independent background ab-
sorption below the band gap. A sizable absorption
was found in the x =0.1 sample, for which ao ——16

cm '. In the x =0.01 sample ao ——2 cm '. This
absorption is attributed to impurities other than
manganese. A third sample, grown by iodine trans-
port, has ao 10 cm ', presumably due to residual
iodine impurities. No spin-flip scattering was found
in this crystal.

Spin-flip energies were determined from spontane-
ous Raman scattering using a backscattering config-
uration. The incident light was produced by a tun-
able dye laser pumped by a Q-switched Nd:yttrium
aluminum garnet laser having a 10-nsec pulse length
at 10 pps repetition rate. The dye laser was tunable
over the range ficol ——1720—1850 meV using LD688
dye, and from 1850 to 2000 meV with DCM dye
from the Exciton Chemical Co. The dye-laser out-
put was linearly polarized and focused to a slit im-

age on the sample by a 25-cm —focal-length cylindri-
cal lens. The intensity in the sample was between
10 and 10 W/cm . Data were only taken with in-
tensities that did not produce sample heating. Sam-
ples were mounted in a variable-temperature,
exchange-gas Dewar. The optical Dewar tail was
mounted in a 100-kG Bitter-solenoid magnet per-
mitting radial access to the field. Raman scattered
light was collected in 10 -sr solid angle and

3
focused onto the slit of a 4-m double monochroma-
tor. Slit widths of 100 and 200 pm gave spectral
resolutions of R =0.1 and 0.2 meV, respectively.
The scattered light was detected by a photomulti-
plier with GaAs photocathode and gated integrator.
The laser photon energy RcuL was set 40—70 meV
below the band gap in each sample to take advan-
tage of resonance enhancement of the scattering
cross section.

TABLE I. Parameters for Cd~ „Mn Se.

Quantity

Mn concentration
Conductivity

Hall mobility

Symbol Sample

0.0122+0.0014
16

490

Sample'

0.05
2.78

Sample

0. 105+0.005
2.2

470

Units

(0 cm)
cm

V sec

Carrier concentration 4y 10'6' 3X10" cm

Slop aaE/aa

Antiferromagnetic temperature
from g
from BMP

Effective exchange energy

TAF

(aNO)x

1.01+0.10

0.9 +0.3

2.6 +0.3
1.24

7.64

4.4+0.4

3.0+0.6
2.2+0.2

11.1+0.6

meV K
ko

K
K

meV

'From Nawrocki et al. , Ref. 4.
Room-temperature results.

'Calculated by assuming pH ——500 cm /V sec.
From Dietl and Spafek, Ref. 6.
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B. Results of spin-flip energies
in the mean-field range

The Stokes shift of the spin-flip Raman scattering
peak, hE, is plotted as a function of applied magnet-
ic field in Figs. 1 and 2, for x =0.01 and 0.1, respec-
tively. Results are shown for lattice temperatures
between T=2 and 30 K. These graphs omit the
lowest-field region (8 (2 ko} where the electron's
spin-flip energy is determined by BMP interactions.
The BMP data will be discussed in Sec. VI. For
fields beyond the BMP range, ~ varies linearly
with field, and ultimately saturates at high fields.
The saturation is most evident in the x =0.01 sam-

ple, as shown in Fig. 1. Here, hE clearly reaches a
limit of 7 meV. As required by mean-field theory,
at high temperatures larger fields are required to
reach this limit. This limiting behavior is due to
saturation of the manganese magnetization,
described by the usual Brillouin function for
paramagnetic ions with S = —,. The same behavior

is evident, though less clearly, in the x =0.1 sample
as shown in Fig. 2. Here, the limiting energy is
much larger, nearly 26 meV.

The effective g values (EE=gpnB) are quite
large in both samples. At the lowest temperature,
T = 1.9 K, g =70 for the low-concentration,
x =0.01 sample, and g =170 for the x =0.1 sample.
These values can be compared to that found in n-

type CdSe where g* =0.5. The effective g value de-
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FIG. 2. Spin-flip Stokes energy LE vs applied magnet-

ic field B from Raman scattering in Cd~ „Mn„Se,
x =0.10, for different lattice temperatures. Backscatter-

A A
ing was used with polarization (xy), B11x, and c11z. The
solid curves are drawn through the points for clarity.
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FIG. 1. Spin-flip Stokes energy AE vs applied magnet-
ic field 8 from spontaneous Raman scattering in
Cdi „Mn„Se, x =0.012, for various lattice temperatures.
A backscattering geometry was used with incident and

A A
scattered polarization (xz), B11x, and c11z. The solid
lines are drawn to aid the eye.

rived from mean-field theory is given by

35x(aNo }

l2k(T+ T }

where x is the effective x value, (aNc) the exchange
energy, No the density of cation sites, k the
Boltzm ann's constant, T the temperature, and
gM„——2.0. Both x and TAF are due to antiferromag-
netic (AF) interaction between Mn ions. The second
term in Eq. (1) results from the electron-Mn + ex-
change interaction and dominates except at very low
concentrations and very high temperatures. This
term remains finite as T~O because the Mn + sus-
ceptibility is limited by antiferromagnetic Mn +-
Mn + coupling. Near T=0, g increases with in-
creasing x for small x, but may eventually decrease
at larger x. This effect occurs because both TAF and
x depend on x. For example, in (Cd,Mn)Te, T~F in-
creases in a roughly linear fashion with x, and x/x
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where uo(r) is the periodic, band-edge Bloch func-
tion.

(2) Modifications of this wave function due to in-
teractions with Mn + ions are neglected.

(3) The exchange Hamiltonian of the system has a
Heisenberg form. For electrons, the interaction is

A,„,h ———a+ [(s S ) ~F(R, )
~ ] . (3)

J

IO

T (K)
20 30

FIG. 3. (BEE/BB) ' vs lattice temperature in
Cdi „Mn„Se for x =0.012 and x =0.10. BEE/BB is the
slope of the linear part of the hE-vs-B curves of Figs. 1

and 2. See Table I for parameters. The straight lines are
fits to the experimental data.

decreases with x.
In order to determine T„q and (aNO)x in each

sample, the inverse slope of the LE-vs-8 curves are
plotted in Fig. 3 as a function of temperature. Both
samples show linear dependence of the form
d~/BB=rn/(T+. T„„) Fitting .this function to
the experimental points yields I=1.01 meV K/kG
and TAp ——0.9 K for x =0.01, and m =4.4
meVK/kG and T~q 3.0 K for x——=0.1. The ex-
change constants determined from these are
(aNO)x=2. 6 ineV for x =0.01 and 11.2 meV for
x =0.1. With the use of the value aNO ——260 meV
from magnetization measurements, ' x/x =0.82 for
x =0.01 and x/x =0.41 for x =0.1. The increase
in TAz and decrease in x/x for increasing x is due
to an increased number of antiferromagnetic cancel-
lations of near-neighbor Mn + ions.

III. THEORY

A. The BMP model

The Hamiltonian we will use to describe the BMP
is a generalization of the Hamiltonian discussed by
Golnik, Gaj, Nawrocki, Planel, and Benoit a la Guil-
laume" (GGNPB). The GGNPB model was
developed to explain experiments in (Cd,Mn)Te, but
should be equally applicable to other wide-gap semi-
magnetic semiconductors, such as (Cd,Mn)Se. The
assumptions made in the GGNPB paper are the fol-
lowing:

(1) The localized electron (or hole) wave function
has the form

2

2m~

2 —a+[(s SJ)5(r —RJ)) .
(4)

Here s is the electron spin, a the exchange integral,
and RJ and SJ are the positions and spins of the
Mn + ions.

(4) The Mni+-ion system, considered separately,
is perfectly paramagnetic. Magnetic susceptibility
data suggest that this approximation is valid for
temperatures exceeding 1—2 K.

(5) The electron is assumed to be totally spin po-
larized (s, = —,}.

The assumptions of GGNPB are valid in some of
the experiments referenced above, but quite ques-
tionable in others. For example, in the more con-
centrated (Cd i „Mn„)Te samples studied by
GGNPB, the exchange-induced portion of the exci-
ton binding energy exceeds the Coulombic part.
This result suggests considerable modification of the
acceptor wave function. Similarly, in the
(Cdi „Mn„)Se spin-flip experiments, the approxi-
mation of complete spin polarization (s, = —,) breaks
down in the high-temperature, low-field range.
These difficulties can be circumvented with an ex-
tension of the GGNPB model, and a more accurate
evaluation of the partition function or correlation
function. In particular, we will demonstrate below
that the exchange Hamiltonian remains valid, even
with considerable distortion of the BMP wave func-
tion, provided that F(r) is determined in a self-
consistent way from a suitably spin-averaged ex-
change interaction.

Consider the case of donor BMP such as those ob-
served in (Cd,Mn}Se. These complexes are simpler
than the acceptor polarons studied by GGNPB be-
cause the conduction-band edge of II-VI compounds
is nondegenerate, whereas in cubic II-VI crystals the
valence-band edge has the degeneracy implied by I 8

symmetry. Nevertheless, many of the ideas
developed below should also apply to the
degenerate-band situation. The effective-mass Ham-
iltonian for a donor BMP is
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Here, the small (=5 fo) mass and dielectric constant
anisotropies of n-type, hexagonal II-VI crystals are
neglected. Equation (4} describes the motion of an
electron in a Coulomb potential plus random ex-

change potential due to the Mn + ions. The latter
can scatter the electron from one orbital state to
another. In practice, however, scattering occurs in-

frequently. A Born-approximation calculation
yields a mean free path for (Cd,Mn)Se:

'2
mo

10 (5)
x m~

in units of cm. This estimate assumes (aNO)=0. 2
eV. In a (Cd,Mn}Se sample containing 10% Mn, the
mean free path is about 10 times the Bohr radius.
The electron circles the charged impurity many
times before scattering. This result implies that
donors in semimagnetics have reasonably well-

defined orbital levels, despite the presence of scatter-
ers.

The relative weakness of the Mn + scattering sug-

gests a Hartree-type approximation for the BMP
wave function:

V(r, s;SJ) F(r)X(s;S~) . (6)

Here F( r ) is the orbital donor state and X( s;SJ ) is a
spinor describing the interaction of the electron spin
with those of Mn + ions within its orbit. The spin

Hamiltonian that determines X is obtained by multi-

plying the Schrodinger equation by F~{r) and in-

tegrating over coordinates. The result is

P,p;„X=—E„—a+[(s S~) ~F(RJ)
~ ] X=EX,

(7)

where

2 2

E„= F*r — F rdr
2m* e@

is the usual donor energy.
In the standard Hartree theory the wave function

is determined by minimizing the energy with respect
to wave functions of a certain form. The BMP has
an enormous number of accessible spin states, even
at temperatures well below 1 K. Thus it is more ap-
propriate to minimize the free energy

G = —kTln(Z}, (9)

Z =Tr(e "'"}, (10)

[where P=(kT) '] with respect to F~(r), subject to
the normalization condition

N= f ~F(r)~ d r=l .

The result is

5G 5N

5F~(r) 5F~(r}

5P S;„P~ .
=Z ' T '"" eF(r)—

(spins) 5F+ {r )

p
2 e 2

2m~ ey'
—a g [(s.SJ )5(r —RJ)] eF(r—}=0, (12)

where tion function':

(s S))=Z ' Tr [(s SJ}e '""].
(spins)

(13} S(to) = f S(t)e'"' (14)

Equation (12) is a Schrodinger equation, in coordi-
nate space, that determines F(r). To solve it one
must evaluate the spin average ( s SJ) which, in
turn, involves F(r) through the spin Hamiltonian.
Thus Eqs. (7), (12), and (13) are a coupled set that
must be solved self-consistently to determine F(r)
and ( s SJ). In practice, this calculation may be
done variationally.

~s(t) el' ~s(P)e —lP t

and

(16)

with

S(t)=([s(t) c7][s(0).c7~])

=Z 'Tr[[s(t) a][s(0) a~]e ~] . (15)

Here,

B. The spin-spin correlation function
Z =Tr(e ~) . (17)

The spin-flip spectrum S(co) is the Fourier
transform of the time-dependent, spin-spin correla- As discussed in Ref. 11, the unit vector a is deter-
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mined by the geometry of the scattering experiment
and the laser frequency. For our purposes, a can be
viewed as a constant —involving neither the electron
nor Mn + spin variables.

To calculate S(tp) for the BMP we generalize the
GGNPB spin Hamiltonian [Eq. (3)] to include the
effects of a dc magnetic field. In this approximation

4 =—g[E (s.S )]—p,g~(s Bp)
J

—PgM„Q [(S, Bp)l

where

enced by the electron. I is a vector operator whose
components do not commute with one another.
This fact precludes an exact evaluation of the traces
in Eqs. (15) and (17). However, the individual Mn +

spins are fairly large (S= —,), and in the BMP they

are combined to give a net moment of many Bohr
magnetons. Thus I is nearly a classical variable.
The accuracy of the classical approximation is dis-
cussed in the Appendix for a simplified model of the
BMP. It is there shown that the error is of order
1V ', where 1V is the number of Mn + ions within
the BMP orbit.

In the classical approximation

E~ =a
~
Fp(Ri )

~
(19)

This expression for P can be abbreviated via the
definition

e ~ =exp Ppgst„g(SJ Bp) e@''r'
J

and

(21)

r—= g(I(.iSi)+i g B, . (20) e' '=e ' ' 'r "exp ipgNt„g (SJ—Bp)t
J

(22)

Physically, I /pg~ is the "effective field" experi- The expression for S(t) simplifies to the form

S(t)=Z 'Tr f 5(y —l')d y exp Ppg~„g(Si Bp) e@'~'[s(t) a][s(0) a*]
J

(23)

The time-dependent spin operator in Eq. (23) can be evaluated by rewriting ( s a ) in terms of stepping-up and

stepping-down operators with respect to the direction r. The calculation is outlined in the Appendix. With
that result, the trace over spin variables in Eq. (23) is performed with the aid of the identity

e@ '~'—= cosh + sinh (24)

Straightforward algebra yields the relation

Tr [e+''~'[s(t) a][s(0) a~])
Is)

(y a)(y a )
h py 1,

)
(y a)(y a ) 'y (aXa );& pr/2

(y a)(y a ) iy.(aXa ) iyf py/2 Z( yp)+4 r
(25)

The trace over electron spin variables has here been separated (via the classical approximation) from that over
Mn + spins.

Finally, the trace over [S/j is evaluated after substituting Eq. (25) into Eq. (23). The expression for S(t)
then takes the form

I'

S(t)=Z Tr f f 3 exp[i'. (y —I )]exp Ppgst„g(SJ'Bp) T(t'A'P)
( s,.} (2n. )

d3 d3A,
'

=Z (6) ' f f p['A, (y —pg B )] g [~,/, ( ( 13pg „B ~Q
(
)]7 (t;&;P)

(2~)3
(26)
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N& is the number of Mn + spins in the sample, and

(x)
i

(e 5x/2+e3x/2+ex/2+e —x/2+e -3x/2+e-Sx/2) (27)

For small x

P g/g(x)~(1+ &&x ) . {28)

Equation (26) is a complicated result, but simplifies when P,/2{x) is replaced by Eq. (28). This approximation

is valid [in the (Cd,Mn)Se case] for temperatures above 1 K and fields below saturation values. We find

d yd A, .- ~'/2W'
S(t)=C J J r [exP[i ii(y , Pg—Bp)]e 'T(t;y;P)]

(2ir)

exp[ {r"—i g—fop)'/2W p]=C dy i ~n
(29}

(2it Wp }'/

where

35 i(aNp)
+ iigMnI +KJ'=g + i2™k(T T }

'
J + AF

(30}

x(aNp)
Wp ———„K~=

96 ir(ap) Np
3

(31)

The weak antiferromagnetic Mn-Mn interactions

have been incorporated phenomenologically by in-

troducing x and TAF. The constant C is given by
the equation

C =Zi '{6} 'exp[. —„NiP'(i gMAp)'] . (32)

The second factor in Eq. (30) describes the internal

field exerted by the Mn + spins {via the exchange
interaction) on the electron spin. The temperature

dependence of g reflects the degree of Mn + spin

alignment. Equation (30) implies that electrons in

semimagnetics have enhanced g values —this is the
conventional way of describing the electron-Mn +

interaction. Physically, however, the effect is better
viewed as a magnetic field amplification Ampli. fica-
tion factors exceed 300 at low temperatures. Thus a
10-kG field applied to (Cd,Mn)Se can give rise to ef-

fects that would require a 10-kG field in pure
CdSe.

In the following, the replacement Wo —+W is

made, where W is the characteristic energy of the
BMP and is later related to Wo. W/AM„ is the
root-mean-square fluctuation of the internal field
about its equilibrium value. For (Cdi „Mn„)Se
with x =0.1, Wo is 0.66 meV, corresponding to a
rms internal field fluctuation of 200 kG. These
fluctuations are responsible for the observed BMP
spin-flip linewidths.

The Fourier transform of Eq. (29) determines the
spin-flip spectrum

exp[ —(y—pgBp) /2W ]S(to)=C d y
(2W ) /

x (y'),.h pr 5(„}+ (.-..-.)
'+ IF(axa ),~/I25(y )

r

I(F&) I' iy (axes )+—(a ae) — ly a a eI l25(y+N)
4 y

(33)

We are primarily interested in the second and third
terms of Eq. {24},which describe Stokes and anti-

Stokes spin-flip scattering. The first zero-frequency
term causes Faraday rotation. ' We will not discuss
it here.

The integrals appearing in Eq. (33) are generally

S (~) 2e w2/2w2eghu/2- (34)

Here, co ranges from —co to ao. Positive frequen-

I

tedious to evaluate. They simplify, however, in the
limiting cases Bo——0 and pg30&~$'. For the zero-
field case, the spectrum has the form
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F(co)= kTln 2—cosh
k Tco CO

2W 2kT

4(pgM„) (n.ao')co

CK g

—kTln 2cosh (36)

where X is the susceptibility of the Mn + spin sys-
tem. This function is precisely that used by DS
[their Eqs. (2) and (3)] to describe the magnetic por-
tion of the BMP free energy. Thus our theory is
equivalent to theirs —though derived in a quite dif-
ferent way. In particular, 8' =4kTEp where cp is
the characteristic energy of DS. The correspon-
dence enabled us to correct Eq. (34) for the effects of
direct Mn +-Mn + interactions. As DS emphasize,
the first term in Eq. (36) describes the fluctuations
of the Mn + magnetization about its equi-
librium value. It is well known' that the magnitude
of these fluctuations is determined by the suscepti-
bility.

Equation (29) was derived on the assumption that
the Mn + spins are noninteracting, i.e., that they
have a Curie-type susceptibility. To correct for the
observed weak antiferromagnetic interactions be-
tween them, one makes use of

cies correspond to Stokes scattering, negative ones to
anti-Stokes scattering. As discussed in Sec. VI, Eq.
(34) gives an excellent fit to the measured, zero-field
spin-flip line shape.

It is interesting to compare this spectrum with
that proposed by Dietl and Spal'ek (DS). The key
suggestion of their paper is that the total
probability —Stokes plus anti-Stokes —for observing
a spin-flip transition whose frequency shift has mag-
nitude e is determined by a Ginzburg-Landau free-
energy functional (F}via the relation

[So(co)+So(—ro)]

= f e I'"-"S(~ ~) d'~

Equations (34}and (35) imply that

~h sh(oi) = 8'
pg3o

PgBpco
sinh

&
Sp(ct) ) .

This result smoothly extrapolates to Sp{co) as
Bo~O. In fact, Eq. (38) provides a good approxi-
mation to the spectrum over the whole field range
below saturation, 0 ~pgM„Bp & kT.

IV. RESULTS

Cd
4

X

4J
4

A. Bound magnetic polaron and fluctuation regime

Effects due to the BMP are seen at low fields in
the hE-vs-8 data of Fig. 4 for x =0.1. As the field
decreases, the linear behavior eventually gives way
to a constant ~. This effect is more pronounced at
higher temperatures; at T =1.9 K, 4E is linear in 8
above 200 G, while at T =18 K linearity is not
reached until B =4 kG. As 8 approaches zero, hE
becomes constant at approximately 1 meV.

At 8 =0, the shift ~ and linewidth (full width
at half maximum} are plotted as a function of tem-
perature in Fig. 5. Both hE and y show little
change from T=5 to 30 K. Below T=5 K, AEin-
creases slightly while y decreases. The shift and
linewidth are described theoretically by Eq. (34).
The theory is given by the solid curves using
8'p ——0.66 meV and TAF ——2.3 K. The experimental
points are fit quite well considering the large

2 TII"=~o&~&c,= ~o'
T+ TAF

(37)

(~xx e+~ +

0
0

0 3 4
6.9

I 2.8
(8.0

o 28.3

IO

in Eq. (34). This procedure was used in comparing
the experimental data with theory (Sec. VI).

Finally, we consider the high-field spectrum
(pg3p ))8 ). In this limit, y can be approximated
by @gap in the angular factors in Eq. (24). The
remaining integral gives the spectrum

8 (kG)

FIG. 4. Spin-flip Stokes energy hE-vs-B field from
Raman scattering in Cdl „Mn„Se, x =0.10, for different
lattice temperatures. The solid curves were generated
from the theory as described in the text with 8'0 ——0.66
meV, TAF ——2.3 K, and (aNO)x =11.1 meV.
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FIG. 5. Spin-flip energy hE and linewidth y (full

width at half maximum) at B =0 from Raman scattering
in Cd~, Mn„Se, x =0.10, vs lattice temperature. (Same
geometry as in Fig. 2.) The curves were generated from
the theory described in the text using Wo ——0.66 meV and

TAF ——2.3 K. In the hE plot, the solid curve is the line

center at half-maximum intensity and the dashed curve is

the position of the peak of the line shape.
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FIG. 6. Spectral line shape from spin-flip Raman
scattering in Cd& Mn Se, x =0.10. The solid points are
experimental determinations at B =0 and lattice tempera-
ture T=2.0 K. The instrumental resolution is R =0.1

meV. The geometry used is the same as Fig. 2. The solid
curve is from the theory discussed in the text with
8'0 ——0.66 meV and TAF ——2.3 K.

linewidth. It is difficult to determine ~ accurately
because of the large linewidth; hE can only be mea-
sured to within about one-tenth of the linewidth, or
+0.1 meV. The linewidth is more uncertain. Al-
though most of the experimental spectra show the
peak to be clearly resolved, Fig. 6, the half-
maximum position is usually obscured by the laser
line at small frequency shifts. The linewidth is thus

determined from only one-half the line shape. The
uncertainty in y is estimated at +0.2 meV.

The field dependence of ~, Fig. 4, is also fit
quite well by the same Wo and TAF values deter-
mined from the 8 =0 fit. The solid curves were de-
rived using 8'o ——0.66 meV and TAF ——2.3 K. The
spectral line shape of Eq. (34) is shown in Fig. 6
along with the experimental points. The theoretical
line shape fits the near-Gaussian experimental pro-
file. The linewidth of the x =0.01 sample is ap-
proximately 0.6 meV.

The value 8'0 ——0.66+0.07 meV obtained by fit-
ting ~ at low fields can be compared to that calcu-
lated from Eq. (31). With the use of x(aNO) =11.1
meV, (aNO }=260 me V, a 0 ——38 A, and No
=1.83X10 cm, we find that 8'0 ——0.56+0.06
meV, in reasonable agreement with the experimental
value.

B. Scattering intensity

The Raman selection rules were determined in a
backscattering geometry. Both samples showed
identical selection rules appropriate to donor-bound
electrons as determined by Thomas and Hopfield. '

The observed nonzero tensor elements for c along z
are the following: (xz) for BIIc~ (xx} and (xz) for

Bj.c. The elements (xx) for BIIc, and (zz} for both
BIIc and Blc were absent. These selection rules
should be compared to those for free electrons given
by' (ij ), where i &j and either i orj is parallel to B.

The spin temperatures T, were determined from
the ratio of Stokes to anti-Stokes scattering. Spin
temperatures were very different between the low-

and high-n samples. The low carrier-concentration
sample n =3X10' cm (x =10%} showed good
spin thermalization with the lattice temperature,
even for incident light intensities as large as 10
MW/cm . The high carrier-concentration sample
n =2X10' cm (x =1%}showed spin tempera-
tures much larger than the lattice temperature. The
spin temperature varied from 20 to 120 K depending
on the laser intensity. At large intensities the Stokes
line becomes stimulated' and the spin temperature
is not determined.

Resonance enhancement of the spin-flip Raman
scattering from impurity-bound carriers has been
described by Thomas and Hopfield. ' The result for
many intermediate states near resonance is

2 '2
der e ficoL. /2f
d 0 mc~,. E; —fauL

(39)

where the first factor is the Thomson cross section
for free electrons, and f; is the oscillator strength
for an intermediate state at energy E;. CdSe has
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FIG. 7. Stokes-scattered intensity S vs laser photon en-
ergy AcoL, in Cdl „Mn„Se, x =0.10, from spin-flip Ra-
man scattering. A backscattering geometry was used with
polarization (xy) and c ~~z. The lattice temperature is
T =1.9 K and 8 =0. S is corrected for sample absorp-
tion. The solid straight line is representative of
S a: (EI—Aevi. ),where EI——1942 meV.

many intermediate states near the absorption edge.
For an n-type sample, there are two free-exciton
states, one each for the A and B valence bands, and
two donar-bound exciton (I2) states. The spin-orbit
split valence band C is neglected since it lies 430
meV below the A band. The bound exciton con-
tributes much more than the free excitons since the
oscillator strength for bound excitons is much
larger. (For example, in CdS, f=9 for the I2 bound
exciton, while f =2)& 10 for free excitons. '

)

Thus only the two bound excitons I2 and I2, which
are separated bg 25 meV, are important. The contri-
bution from I2 is neglected for the energy range of
the present experiment, since it amounts to, at most,
one-third for small ficoL. Finally, the one-level ap-
proximation near resonance gives

dcr e 2 (E /2)
dQ mc (Er ~L) +1'

where I is a phenomenological broadening parame-
ter. This result can be compared to that for scatter-
ing from free electrons, where f is replaced by ga/2
and EI by Eg.

The Raman scattering strength was found to vary
dramatically near the absorption edge in both sam-
ples. The x =10% sample at low temperature and
at B=0 showed a factor-of-220 increase in scatter-
ing cross section, going from ficol ——1860 to 1945
meV. The scattering was corrected for sample ab-
sorption in this region. Figure 7 shows the correct-
ed scattering strength S as a function of laser photon
energy. The quantity S ' is plotted to demon-
strate the resonance denominator form

S cc(EI f—icoi ) . This dependence is shown by the
straight line extrapolating to EI ——1942+5 meV,
which coincides with the absorption edge (a=30
cm '). The scattering strength is somewhat less
very near EI, where S ~ [(Ei Rc—oL, ) +1 ] '. The
experimental points can be fit by taking a I between
5 and 10 meV. The n =2X10' cm sample also
showed large resonance enhancement. The quantita-
tive enhancement was less clear because of
intensity-dependent effects, due to stimulated
scattering. However, the shift of the stimulated
threshold gives I =25+8 meV. ' Thus, an increase
in n by a factor of 7 increases I by a factor of 3.

The spin-flip scattering cross section per donor
electron was determined by measuring the Raman
scattered light relative to the 992-cm ' mode of
benzene. The scattering efficiency for benzene has
been measured by Kato and Takuma' at A, =6328 A
as N(dc»/dQ)=0 54X10. (cmsr) '. A simple
(RcoL) correction is made for the present laser
wavelengths. The spin-flip scattering was found to
be much stronger than the scattering from benzene.
Corrections were made for sample absorption, re-
flectivity losses, and solid angle of collection for the
backscattering geometry. Assuming the number of
donors 1VD equal to n, the low n sample
ND ——3 X 10' cm yields a cross section of
(dc»/dQ)„» =1.2X10 ' cm /sr for crossed polari-
zation (xy) at Rcoc ——1890 meV. The uncertainty in
the cross section is estimated to be at least a factor
of 2 because of the corrections and extrapolations.
The oscillator strength from this cross section is
f-5. The largest cross section measured was
6X10 cm /sr at fgcoL ——1945 meV. This value is
less certain because nf the large absorption correc-
tion.

Scattering from paramagnetic Mn ions' was also
observed. These g =2 transitions occur within the
S = —, multiplet of Mn +. In the x =0.1 sample at
AcoL ——1900 meV, the integrated scattering from the
Mn ions was found to be about 4X that for the
donor spin flip, implying (dcrldQ)„»=1)&10
cm /srMn-ion. Changes in the applied field and
lattice temperature had little effect (&2)&) on this
cross section. The scattering varies with AcoL but
was less dramatic compared to the donor scattering.

V. DISCUSSION

The Zeeman splitting observed in the spin-flip ex-
periments is primarily caused by the local Mn +
magnetization M(r) within the donor orbit. There
are two distinct contributions to that magnetization.
An external magnetic field induces a finite time
average moment Mo in the Mn + spin system. In
addition, even in zero field there are fluctuations
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SM(r ) of the local magnetization about its equilibri-
um value. 5M( r }averages to zero over periods long
compared to the spin-lattice relaxation time of the
ions. However, at a given instant there is usually a
finite value of 5M(r) due to the random statistical
nature of the finite spin cloud that interacts with the
electron spin. Equation (29) implies that the spin-
flip frequency is determined by the instantaneous
magnetization MD+5M experienced by the electron.
The Mn + spin system is in effect "frozen" during
the spin-flip process. This approximation, which re-
sults from our classical treatment of the Mn +

spins, gives excellent results for the spin-flip spec-
trum. However, it cannot be used to describe Mn +

spin relaxation.
The zero-field spin-flip frequency and spectrum

are given by Eq. (34}. At high temperatures
(Pro&&1) the spectrum is determined by fluctua-
tions; the frequency is then temperature indepen-
dent. At lower temperatures (pro »1) the system is
in the BMP regime, where the electron and Mn +

spins are correlated through their mutual exchange
interaction. DS have shown that there is a continu-
ous transition from the fluctuation-dominated
high-temperature regime to mean-field behavior at
low temperatures. The observed increase in hE
below T =5 K in the x =0.1 sample is a result of
the BMP interaction. However, in (Cd,Mn)Se these
effects are not large. Even at T =1.5 K the BMP
energy is less than 10% of the total M. Above
T =5 K the contribution from the BMP is negligi-
ble corn ared to that due to fluctuations. There,

2%from Eq. (34).
The scattering selection rules at 8 =0 have more

allowed configurations than for large 8. At B=0
the major contribution to the effective magnetic
field is due to thermal fluctuations in the magnetiza-
tion M. The direction of M during the spontaneous
donor spin flip is random. Thus scattering occurs as
if all field directions were present. In certain config-
urations scattering occurs only at very small fields
and decreases with increasing field. For example,

A
with a backscattering wave vector qlc

~
~B, scatter-

ing is allowed for. -weak fields in (xx), where xj.c,
due to fluctuations in. M. As the field is increased
from zero, M lines up along B and the scattering be-

comes forbidden. A similar effect using circular po-
larization has been observed by Planel. '

Values for (aNO)x and TP,F, measured on samples
from the same x =0.1 boule, depend only slightly
on the measuring technique. Fitting (ME/BB)
or equivalently g, gives (aNO)x =11.2+1.2 meV and

T~F ——3.0+0.6 K, while low-field fits of hE vs B
give (aNO)x = 11.1+1.0 meV and TzF 2.2+——0.2 K.
Magnetization experiments of Shapira, Heiman, and
Foner'0 yield (aNO)x = 10.1+1.0 meV and
T~F ——2.1+0.4 K from the low-field susceptibility.
The differences in (aNO)x are within experimental
uncertainties.

The scattering cross section for x =0.10 is
resonantly enhanced as %coL approaches
EI——1942+5 meV. The largest photoluminescence
peak, in the same sample, is also at this energy, at
1944+5 meV. We associate this with the I2 peak
since it is usually the dominant feature in large n

materials. On the other hand, the extrapolated I2
energy is at 1979 meV, using dEg /dx =1.50 eV and
the I2 energy in pure CdSe of 1821 meV. These
values differ by 37+15 meV. If the assumption that
the I2 energy is at EI is correct, then the difference
may be associated with a BMP effect on the bound
exciton. The larger effective mass of the hole pro-
duces a higher degree of localization and, hence, po-
laron effect. For example, the photoluminescence
peak of the acceptor-bound exciton (I~ ) in
(Cd,Mn)Te shows a large shift with x and T."
There, the peak shift for x =0.1 is estimated at 20
meV for T=2 K.
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APPENDIX

To calculate the spin-spin correlation function [Eq. (2)], it is necessary to evaluate the time-dependent spin
operator

[ s (t).ci]=e' '[ s (0) a]e
This task is straightforward when I is treated classically.

(A1)

Equation (9) then implies that the operator [ s (t).a ]
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appearing in Eq. (10) has the form

;(-, .y),, , ;(-, .g), ;(-, .y), (y a)(s y) s yx(yXa)
~
s.are —=e ei( s.g)t

y e
—i( s ~ y )t(&+ +&

—
)

i( s ~ p)tSa Sa 7 (A2)

where

+ 1 s yx(yxa) + is (yxa)"2 (A3)

s+-(s y)=[(s y)+y]s~ .

This relation implies that

(A4)

[ ( ) ]= —(e'"s++e '"s )

(A5)

Equation (A5) can also be derived by expanding the
exponentials via the standard identity

e+-" ' ' y"=cos ~ + sin ~, (A6)
2 r 2

and evaluating the spin products that appear in Eq.
(A2).

A complete quantum-mechanical calculation of
the correlation function is much more difficult. To
assess the error involved in the classical approxima-
tion, we consider the zero-field limit, where
quantum-mechanical effects should be most pro-
nounced. The formula for S(t) then takes the form

are stepping-up and stepping-down operators for the
electron spin relative to the axis of quantization

y/~ y ~. That is,

where here the operator 1 is defined by Eq. (6),
without the 80 term. Evaluation of Eq. (A7) is
complicated by the fact that Eq. (A6) fails when the
c number y is replaced by the operator I . Equation
(A7) is derived by power-series expansion of the ex-
ponential and repeated applications of the identity

(s.y) =
4

(AS)

r' s——g(K S)
4 2 J

(A9)

and the simple identity no longer holds.
The problem is enormously simplified via the

drastic approximation

E~ =It =const,
N

I =Kg(S, ).
(A10)

I' then commutes with I', and Eq. (A9) can be
rewritten in the form

K I' K(s r)+—
4 4 16

(Al 1)

When y~ I', Eq. (AS) is replaced by the more com-
plicated form

I(s r) = +—s (rxr)
4 2

S(t)=Z Tr[e''' "[s(t) a][s(0) a*]j, (A7) It then follows that

I

e' ' ' =exp exp +i ( s I j+—t —=e-' cosii-, . r-), +iKt . , -, K ~;ir, y4 PQ 2i [( s I')+K/4] . PQ
2 0+ sin

2

with

(A12)

E
Q =— I

4
(A13)

Note that the power-series expansions of the two functions appearing in Eq. (A12) involve only even powers of
0; thus it is never necessary to take the square root of Eq. (A13). It is now a straightforward (though tedious)
task with the aid of Eq. (A12) and the corresponding expression for et" ' " ' to perform the trace over s in Eq.
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(A7). The positive frequency portion of the resulting expression has the form

(a a') — ' (a.l )(a 'I )+(a 'I )(a I ) —' "' ' e'"'e-i

+ (a as)+ [(a I )(as I')+(a* I )(a I')] e'n'sinh
8I 21 2

(A14)

The first term in this formula is equivalent to the
first term of Eq. (16) with the replacement y~l'.
The correction is of order (K/81 ). As indicated by
Eq. (25), the rms value of I' is

(1 )' =O'=N' K, (A15)

a result suggesting that the classical approximation
(for this simple model of the BMP) is accurate to or-
der N
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