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New calculations of the quantum yield of silicon in the near ultraviolet
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The rigorous expression for the quantum yield for electron-hole pair production was sim-

plified using assumptions inspired by Kane s random-k approximation and by recent results

of Alig, Bloom, and Struck. The resulting approximation was intuitively satisfying. It re-

quired integration with respect to kinetic energy of the product of the joint distribution of
the photogenerated electrons and holes and the average number of electron-hole pairs creat-

ed by the cascade of impact ionizations initiated by a carrier with a given kinetic energy.

The first quantity in the integrand was calculated from a self-consistent, first-principles

band structure for silicon; the second was obtained from results of Alig, Bloom, and Struck.
The results agreed reasonably well with recent experimental measurements of the quantum

yield of silicon in the ultraviolet.

I. INTRODUCTION

The quantum yield of silicon is of considerable
practical interest as an absolute radiometric stand-
ard. ' It is also interesting from a more fundamental
point of view, because it is determined by the in-
teraction of fundamental optical and electronic pro-
cesses in silicon. The absorption of photons having
energies in excess of the band-gap energy distributes
electrons and holes over the conduction and valence
bands (i.e., in kinetic energy), and a fraction of the
photog enerated electrons and holes create new
electron-hole pairs by impact ionization. This is the
process whereby a sufficiently energetic carrier loses
energy to a valence-band electron during an Auger
transition, which causes the valence-band electron to
jump into the conduction band.

Antoncik and Gaur2 (AG) have shown qualita-
tively how the distribution over the bands of the
photogenerated electrons and holes produces
features in the quantum-yield spectra of Si and Ge.
However, some of the approximations that they used
combined to produce rather large errors (quantum
yields less than one at some photon energies), so
their results are not useful for comparison with re-
cent high-accuracy experimental results' for silicon.

In connection with a larger study of ionization
scattering that included acceleration of electrons by
electric fields, Alig, Bloom, and Struck (ABS) cal-
culated the quantum yield of Si, Ge, InSb, and PbS,
using approximations very different from those
adopted by AG. As it turns out, the high symmetry

of the band-structure model used by ABS produced

a rather conservative lower bound to the quantum

yield. Upper bounds can also be obtained from this

model, but real features that are apparent in the ex-

perimental spectra of Ref. 3 are beyond the ABS
model.

In this paper, we will describe a more accurate ap-

proach to quantum-yield calculations. From one

point of view, our approach can be considered to be
a combination of the approach of AG (to get the

features of the quantum-yield spectra) with the ap-

proach of ABS (to obtain a manageable approxima-
tion to the average number of electron-hole pairs
created by an energetic electron or hole). However,

we have approached the problem from a somewhat
different point of view than either AG or ABS, and

we have considered the approximations that we

eventually adopted in considerable detail. The
remainder of this paper presents the theory of the
quantum yield, discusses the simplifying assump-

tions that we adopt, describes the details of our com-
putational procedure, and discusses our results and
their relation to the recent experimental results and
the earlier calculations. In particular, we are able to
identify the major sources of error in the earlier cal-

culations, and we discuss how we have avoided
them.

II. THEORY

Let E„;(k) and E,J(k) be the ith valence- and the
jth conduction-band energies, respectively, at the
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point k in the reduced Brillouin zone (BZ), and
measure valence-band energy as a positive quantity
with its zero at the top of the uppermost valence
band, and conduction-band energy as a positive
quantity with its zero at the bottom of the lowest
conduction band. Thus E„;(k) and E,J(k) measure
the hole and electron kinetic energies, respectively.

Let N„;(k) and N„(k) be the average number of
electron-hole pairs created by the cascade of impact
ionizations initiated by a hole with momentum k in

I

the ith valence band and by an electron with
momentum k in the jth conduction band, respec-
tively. In terms of the above quantities, the quan-
tum yield for electron-hole pair production (which is
defined as the average number of electron-hole pairs
created per absorbed photon of energy hv} is given
by

&)(hv) =1+6&)(hv),

where

h&)(hv}a(hv}=g f d k ~M
~

5(hv —EG —E„;(k)—E~(k))[N(»k)+N~(k)], (2)

and

a(hv)= g f d k ~M
~

5(hv EG —E—„;(k)

l

contribution from the explicit functions of k are
negligible. Let

—EJ(k)} . (3)
N„;(k)=N„(E„;(k))+bN„;(k),

where

(4)

In Eqs. (2} and (3), M is the matrix element for
the direct, interband transition, and the product of

~

M
~

and the 5 function describes the relative den-
sity of electron-hole pairs created by the photogen-
eration process at the point k. Thus a(hv) is pro-
portional to the absorption coefficient of the materi-
al in question.

The interpretation of Eqs. (1)—(3) is straightfor-
ward. The quantum yield is equal to 1 (electron-
hole pair created directly by the absorption process)
plus the number of electron-hole pairs created by the
cascade of impact ionizations initiated by the distri-
bution of electrons and holes in the BZ that results
from the absorption process.

It turns out that N„;(k) and N J(k) derive most of
their k dependence implicitly from the kinetic ener-

gy of the carriers at the point k in the ith valence
and jth conduction band, respectively. Therefore, it
is convenient to decompose them into the sums of
implicit functions of k and explicit functions of k
as shown below, where we will later assume that the

I

N„(E)= [p„(E)]

X g f d'k N„;(k)5(E„;(k)—E) (5)

is the average over the BZ of the number of
electron-hole pairs created by the cascade of impact
ionizations initiated by a hole with kinetic energy E,
and where

(7)

p„{E)=f d'k 5(E„;(k)—E) (6)

is proportional to the valence-band density of states.
Replacement of U by c and i by j at all occurrences
in Eqs. {4}—(6) produces the equivalent decomposi-
tion of N,J(k).

Substitution of Eq. {4) and its equivalent for elec-
trons into Eq. (2), and use of the 5-function theorem

N„{E„;(k))=f dEN„(E)5(E„;(k) E)—
and its equivalent for N, (E,J(k)), allow Eq. (2) to be
rewritten as

h&)(hv}= f dE[N„(E)P„(hv,E)+N, (E}P,(hv, E)]

+[a(hv)] 'g f d k ~M
~

5(hv EG E»(k) E,J—(k))[—EN»(k)+AN&(k—)],
where

P„(hv E)=[a(hv)] 'g f d k ~M
~

5(hv EG —E„;(k)—E&(—k))5{E»(k)—E)

(8)

and the equivalent expression for P, (hv, E) describe
the distributions of holes and electrons, respectively,
over kinetic energy E resulting directly from the ab-
sorption of photons of energy h v.

III. SIMPLIFYING ASSUMPTIONS

So far, the development has been rigorous within
the framework of a band structure. Of course, to
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simplify the computation of rl(hv), we must make a
number of simplifying assumptions. Foremost
among these is the assumption that the second in-
tegral on the right-hand side of Eq. (8) is negligible
compared to the first. We also assume that
N„(E}=N,(E)=N(E), where N(E) is derived from
an approximate treatment of impact ionization that
uses both a highly simplified band-structure model
and the random-k approximation to the transition
rate for impact ionization. However, it turns out
that the errors introduced by all of these assump-
tions are small compared to those associated with
poor approximations for P„(hv,E) and P, (hv, E), so
we employ a rather sophisticated band-structure
model to evaluate the first term in Eq. (8). We turn
now to a detailed discussion of the major assump-
tions that we make.

The functions N„;(k} and N,J(k) are determined
in a rather complicated way by the ratio of the tran-
sition rate for phonon emission by a carrier at the
point E„;(k) or E,&(k) in the BZ to that for impact
ionization by a carrier at the same point in the BZ.
As might be guessed, it is useful to decompose the
transition rate for impact ionization into implicit
and explicit functions of k, for example,

r,j(k)=r&(E,J(k))+Sr,j(k), (10)

where

r, (E)= [p, (E)]

)& g f d k r J(k)5(E J(k) —E) (11)
J

is the average over the BZ of the transition rate for
impact ionization by electrons with kinetic energy E.
Replacement of c and j by v and i at all occurrences
gives the similar expressions for holes.

Calculation of r,j(k} is quite difficult because an
integration is needed over the final states of the elec-
tron and hole created by the impact ionization, as
well as over the final states of the excited carrier.
This involves a nine-dimensional integral in k space.
The calculation defined in Eq. (11) is even more dif-
ficult, involving integration over twelve dimensions.
However, Kane and Geist and Gladden have
shown that the random-k approximation to r, (E},
which requires integration over only three dimen-
sions in energy space, is surprisingly accurate.

Furthermore, Kane's results imply that 4rj(k)
carries very little information not already available
from r, (E,J(k)). To be specific, Kane used a Monte
Carlo procedure to evaluate the twelve-dimensional
integral in Eq. (11) for energetic electrons in silicon,
and he found that r, (E) increased by about 5 orders
of magnitude from about 1.3 to 6.9 eV. Over the
same range of E, he found that the variation in

Arj(k)lr, (E&(k)) that is caused by the variation in
the matrix elements for impact ionization at con-
stant energy but at different locations in the BZ was
less than 307o.

In light of the above, it seems quite reasonable to
assume that b,r,~ ( k )=0, and to use the random-k
approximation to r, (E}. The saving in time is enor-
mous, while the error incurred is modest. Alig,
Bloom, and Struck have generalized these ideas
considerably, and applied them to a study of ioniza-
tion scattering in semiconductors and insulators.
They used an exceedingly simple band-structure
model for all materials, as well as the random-k ap-
proximation to the transition rate for impact ioniza-
tion. Their band-structure model consisted of a par-
abolic conduction band with the free-electron effec-
tive mass, a parabolic valence band with the nega-
tive free-electron effective mass, a direct gap of en-

ergy EG, and a threshold energy for impact ioniza-
tion E,~.

ABS used the same ratio of the average matrix
element for phonon emission to that for impact ioni-
zation for both electrons and holes, and they used
an elaborate iterative procedure to calculate
N, (E)=N„(E)=N(E) from the random-k approxi-
mation to r, (E)=r„(E)=r (E), and a similar ap-
proximation to the transition rate for phonon emis-
sion. They chose the ratio of the matrix elements
such that the large energy limit of E/N(E) was
equal to the pair-creation energy for silicon, and ob-
tained good agreement with a variety of experimen-
tal results on a number of materials. Apparently,
N, (E) and N„(E) are quite insensitive to the details
of the band structure, so that the three parameters,
EG, E,i„and the average pair-creation energy are
sufficient to determine the shape and the absolute
value of N, (E) and N„(E).6 To the extent that this
is true, materials that have nearly identical thresh-
olds for impact ionization by energetic electrons and
by energetic holes will have N, (E)=N„(E), and the
procedure of ABS will work well.

We then substitute the approximation that
N, (E)=N„(E)=N(E) into Eq. (8), ignore the in-
tegral over the BZ for the reasons stated earlier, and
combine the result with Eq. (1) to obtain

rI(h v ) =1+ J dE P (h v,E)N (E),
where

(12)

P (h v, E)=P„(hv, E)+P,(h v, E) . (13)

Equations (12) and (13) constitute the approximate
expression for the quantum yield that we actually
evaluated.

The function P(hv, E), which is just the joint dis-
tribution of photogenerated electrons and holes over
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the kinetic energy E as a function of photon energy,
hv, has a number of interesting properties. Conser-
vation of energy of the absorbed photons requires
that P(hv, E) be zero for the kinetic-energy interval
E&hv —EG, and that it be symmetric about the
midpoint energy (h v EG—)I2. It is normalized such
that its integral over kinetic energy is 2 (one electron
plus one hole per pair), and the broader it is in E
space at a given hv, the greater the value of the
quantum yield. This last property results from the
preceding constraints on P(hv, E) in coinbination
with the fact that d N(E)/dE »0 near to (but
above) the threshold for impact ionization. The net
effect is that the quantum yield is very sensitive to
the details of P(hv, E) but rather insensitive to those
of N(E).

IV. CALCULATION DETAILS

We approximated N(E) in Eq. (12) by

N(E) = 1 —po(E) (14)

where po(E) is the probability that a carrier of kinet-
ic energy E will cause no impact ionizations. The
right-hand side of Eq. (14) constitutes the first two
terms of the rigorous expression

N(E)=1 —po(E)+ g (n —1)p„(E),
5=2

(15)

N(E)= g np„(E),
n=1

(16)

and the requirement that the probability of all possi-
ble events be unity, that is,

where p„(E) is the probability that exactly n

electron-hole pairs will be created by the cascade of
impact ionizations initiated by a carrier of kinetic
energy E. Equation (15) is a straightforward result
of the definition of N(E) in terms ofp„(E), namely,

where Vy indicates the component of the gradient
along the surface f =0, and where dl is integrated

along the line of intersection of the two surfaces de-

fined by f=g =0. The assumption that the matrix
elements are independent of k could have been

avoided, but it produces less error than many of the
other assumptions already adopted.

To evaluate the line integral in Eq. (18) numeri-

cally, f(x) was treated as in the linear-analytic-
tetrahedron method for evaluating the density of
states in three-dimensional Brillouin zones. That
is, the irreducible wedge of the BZ was divided into
tetrahedra, and f(x) was approximated by f(x),
which is a linear function of x over each tetrahed-
ron such that f(x)=f(x) at the corners of the
tetrahedra. As a result, Vf(x) is a constant over
each tetrahedron, and f(x}=0 is a continuous sur-
face consisting of three or less triangles per tetrahed-
ron. Next, g(x) was treated as in the analytic-
triangular-linear-energy method' for evaluating the
density of states in a two-dimensional Brillouin
zone. The end result is that the line integral in Eq.
(18} is evaluated as a sum of analytic expressions,
which are stated in Ref. 10, that depend only upon
the values of f(x) and g(x) at a small number of
points in the BZ.

The band structure that we used in Eq. (9) and its
equivalent for P, (hv, E) is that described by Wang
and Klein. " It is a state-of-the-art application of
local-density theory employing a fully self-
consistent, first-principles calculation. It suffers
from the well-known problem of describing the exci-
tation spectrum using single-particle energies from
local-density theory. For instance, the silicon band

gap is calculated to be 0.67 eV rather than the exper-
imentally determined value of 1.12 eV. We correct-
ed for this error by a rigid displacement of all of the
conduction bands to higher energy by 0.45 eV. With
this change, the direct gap occurs near 3.1 eV rather
than 3.4 eV.

g p„(E)=1.
n=0

(17) V. RESULTS

Equation (14) is an excellent approximation to
Eq. (15) for E &4 eV or hv&5. 1 eV, and is only
10% low at hv=6 eV. For po(E) in Eq. (14), we
used the same values that ABS derived to give the
correct pair-creation energy for silicon.

We calculated P„(hv,E) and P, (hv, E) in Eq. (13)
by assuming that

l
M

l
is independent of k in Eq.

(9), and using the theorem that P(h v,E)=25(h v —EG —2E) (19)

The result of our calculation is shown in Fig. 1,
where it is compared with recent experimental re-
sults for the quantum yield of p+-type silicon. Fig-
ure 1 also shows upper and lower bounds for the
quantum yield, and an improved approximation still
within the framework of the ABS model.

With N(E) fixed in Eq. (12),

f d x 5(f(x))5(g(x))= f
I
~f(» I I

v'fg(x}
I

and

P (h v, E)=5(E}+5(h v —EG E), —(20)

f(x)=g (x)=0 (18) provide respective lower and upper bounds to the
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1.20
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all of the excess photon energy is given to one of the
photogenerated carriers, the kinetic energy of the
other carrier remaining zero. A flat valence band
would produce this result.

Real distributions of the photogenerated carriers
over kinetic energy vary between these extremes sub-

ject to the earlier mentioned constraints that we re-
peat here. P(hv, E) is nonzero only for E in the in-
terval from 0 to hv —EG, it is symmetric about the
midpoint of that interval, and its integral over E is
2.

g 1.10

1.05

1 ~ 00

4.0 4.5

PHOTON ENERGY (eV)

FIG. 1. Comparison of various expressions for the
quantum yield of silicon with experimental values from
Ref. 3. The lower bound (which was used as a quantum-
yield approximation in Ref. 4) is obtained from the as-
sumption that the photon energy in excess of the band-

gap energy is divided equally between the photogenerated
hole and electron; the upper bound from the assumption
that all of the excess energy is given to one or the other of
the two photogenerated carriers. A more realistic generic
distribution of the photogenerated carriers over kinetic en-

ergy gives curve 1, and the distribution of photogenerated
carriers obtained from the self-consistent, first-principles
band structure of Ref. 11 gives curve 2.

3.0 3.5 5.0

quantum yield subject to the constraints imposed on
P(hv, E) by conservation of energy Equat. ion (19)
describes a band structure in which the photon ener-

gy in excess of the band-gap energy is divided equal-
ly between the photogenerated electrons and holes at
all photon energies. This does not happen in real
band structures, of course, but it does occur with
direct transitions in the highly symmetric ABS
model band structure. This is the reason that ABS
reported such a low quantum yield for silicon near
threshold. To improve the approximation obtained
from the ABS approach, Alig has suggested that a
random-k approximation to the photogeneration
process similar to that used for the impact ioniza-
tion process (i.e., indirect transitions involving pho-
nons of negligible energy) might produce a more
realistic estimate of the quantum yield within the
framework of the ABS model. Indeed, this seems to
be the case.

Equation (20) describes a band structure in which

Figure 2 shows P(3.13 eVg), which is approach-
ing the extreme of Eq. (20), while Fig. 3 shows a
more intermediate distribution over kinetic energy,
namely P(4.55 eVg). For the band structure that
we used, most of the direct transitions at 3.13 eV
occur from very near the top of the valence band to
deep within the conduction band. Thus, at this pho-
ton energy, the photogenerated electrons are receiv-
ing almost all of the excess photon energy and the
photogenerated holes almost none, and the calculat-
ed quantum yield approaches its upper bound.

The same feature would not be expected to occur
in the experimental curve until about 3.4 eV, and if
it is there, it is not obvious. There are two explana-
tions for this, but the relative role of each is some-
what uncertain at this time. First, the experimental
curve was derived from measurements on p+-type
silicon, and the strength of the direct transition
from regions very near the top of the uppermost
valence band is reduced by the decreased electron
population there. Second, by what might be called
coincidence, three different regions of the BZ have
the same approximate direct gap of about 3.4 eV.

70

hg =3.13eV

Ci

0

E/(hv-Ee )

FIG. 2. Distribution P(hv, E) of photogenerated elec-
trons and holes over the kinetic energy E in the band
structure of Ref. 11 for a photon energy h v of 3.13 eV.
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2.0

1.5—

hv = 1.55 eV

used than in the real silicon band structure. The
really significant difference is the width and depth
of the minimum that follows the maximum near 4.4
eV. We do not know the details of the explanation,
but assume that it has to do with either the differ-
ences between the calculated and true band struc-

ture, or the assumption of constant matrix elements

for the absorption process.

1.0—

h

O

0.5—

0.0 '

0

l

0 ~ 5

E/(hv-Ec j

1.0

FIG. 3. Distribution P(hv, E) of electrons and holes
over the kinetic energy E in the band structure of Ref. 11
for a photon energy hv of 4.55 eV.

As a result, the feature in the silicon absorption
spectrum near 3.4 eV is a composite associated with
transitions from these different regions of the BZ.
The total contribution from the region very near the

top of the valence band is quite small. ' On the oth-
er hand, the contributions from all of these regions
are resolved into three separate features stretching
from 3.1 to 3.4 eV by the band structure that we
used. ' Apparently the feature near 3.1 eV has very
little contribution other than that arising very near
the top of the valence band. It is to be noted that
features in the absorption coefficient spectra need
not appear in the quantum-yield spectra, and vice
versa. Only those involving transitions from the
band edges will be prominent in the quantum yield
spectra. Thus reducing the theoretical absorption
spectrum at 3.1 eV by moving contributions from
parts of the BZ other than the vicinity of point I to
higher photon energies, actually increases the
quantum-yield spectrum at 3.1 eV, as can be seen in
Fig. 1.

In a similar way, the feature near 4.4 eV that
occurs in both curves includes some transitions
occurring from deep within the valence band near
X4 to near the bottom of the conduction band near
Xi. The significantly greater value of the peak in
the calculated curve is explained primarily by the
fact that these transitions occur at about 0.1 eV
greater photon energies in the band structure that we

VI. DISCUSSION

ABS did not calculate the quantum yield in the
same way that we did, but their procedure is
equivalent to using Eq. (19) for P(hv, E). It was

pointed out earlier that when N(E) is specified, use
of Eq. (19}produces the lowest possible value for the
quantum yield that is consistent with the physical
constraints on P(hv, E). This is the reason that the

quantum yields reported by ABS were so low.
Use of a more realistic, generic P (hv, E) distribu-

tion will produce a more realistic quantum yield in
the ABS procedure. For instance, the random-k ap-
proximation to the absorption process with the ABS
band structure produces a fairly good result for sil-

icon as shown in Fig. 1. This does not mean that in-

direct transitions are actually being invoked. It is
just an artifact to compensate for the very high sym-

metry of the ABS band structure.
Turning attention to the calculation by AG, we

first observe that their procedure was much more
similar to ours. However, the actual computation
was done in the form

rl(hv) = f dE P(h v, E)g (E)

= —, f dEP(hv, E)

+ f dEP(hv, E)N(E), (21)

where g (E)= —,+N(E}. While this is formally

equivalent to our Eq. (12},it is not computationally
equivalent to it. The first term in both Eqs. (12}and
(21) should be identically equal to one (electron-hole
pair created directly as the result of the annihilation
of one photon). This, of course, is the case with Eq.
(12). However, any errors in the normalization of
P (h v, E) show up in Eq. (21) in the value of the first
term, which should be 1 as well as in heal(h v) [com-
pare Eqs. (1), (12), and (21)]. Thus the propagation
of error is worse with Eq. (21) than with Eq. (12).
This would not be a serious problem if P(hv, E)
were accurately normalized. Unfortunately, this
was not the case with the calculation by AG.

AG considered only two valence and two conduc-
tion bands, and these were not sufficient to account
for all of the absorption by silicon in the (3—6)-eV
spectral region. This is clear from Fig. 1 of their
paper, where they plotted the relative probability of
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a photon being absorbed by a transition from the ith
valence band to the jth conduction band. The sum
over the four transitions that they considered does
not equal one.

However, AG normalized P(hv, E) to the true ab-
sorption coefficient rather than the absorption coef-
ficient that describes the four transitions that they
actually considered. The net effect was to impose
structure on the quantum yield that is related to the
ratio of the absorption coefficient for the four tran-
sitions to that for all transitions. Therefore, this
structure, which is quite evident in the AG curves, is
an artifact. The only structure that the quantum
yield actually shows is associated with the shape of
P(hv, E), and this structure is pronounced only
when the absorption coefficient contains a large con-
tribution from transitions involving the top of the
uppermost valence band or the bottom of the lowest
conduction band.

Finally, we observe that AG did not know what

value to use for the ratio of the average matrix ele-

ment for impact ionization to that for phonon emis-
sion. Therefore, they calculated a family of curves
in which this ratio was systematically varied for
both holes and electrons, and the resulting curves
were compared with Christensen's' experimental re-
sults, which were the best in existence at that time.
However, the later investigation by ASS suggests
that it is possible to derive a quite satisfactory value
for this ratio from the average pair-creation energy
at high energy.
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