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Recently, Alig, Bloom, and Struck have reported a simple model of ionization scattering

in semiconductors and insulators. Their model is based upon the random-k approximation

to the transition rate for impact ionization, and upon a generic band structure with only two

free parameters to describe all materials. The present paper describes the first step in an at-

tempt to understand in detail why such a simple model works so well. The random-k ap-

proximation to the transition rate for impact ionization is tested on a highly symmetric

band-structure model for which most of the dimensions of the twelve-dimensional

transition-rate integral can be treated analytically. The difference near threshold between

the random-k approximation and the rigorous result can be much larger than indicated by
Kane's Monte Carlo integration for the silicon band structure, but this difference seems to
be unimportant in practical problems where impact ionization competes with phonon emis-

sion.

I. INTRODUCTION

Recently Alig, Bloom, and Struck' (ABS) were
able to describe a large body of impact-ionization
phenomena at high primary-particle energy on the
basis of three simple assumptions. These are as fol-
lows: (l) The band structure of a semiconductor or
insulator is approximated by two parabolas whose
vertices are separated by the band-gap energy EG,
and whose effective masses are equal to the free-
electron mass; (2) the transition rate for impact ioni-
zation is approximated by the random-k approxima-
tion; and (3) there is a threshold energy E,h below
which impact ionization does not occur. Particles
with energies above the plasmon energy Ez were as-
sumed to deposit all of their energy in plasmons
without loss, and E,h served as a cutoff energy to re-
flect the effect of the real band structure near
threshold.

Within this framework, ABS could describe a
variety of experimental results in terms of the
parameters EG, Eg„and a third parameter A which
is proportional to the ratio of the average matrix ele-
ment for impact ionization to that for phonon emis-
sion. Moreover, they found that a single value of A

could be applied to both electrons and holes in a
variety of materials over a wide range of particle en-

ergy E;. ABS pointed out that this result is rather
surprising. There is no obvious reason why the ratio
of the matrix elements for electron-electron scatter-
ing should be proportional to those for electron-
phonon scattering as a function of E;. Nor is it ob-
vious why this ratio should be independent of ma-

terial type. Clearly, it would be interesting to under-
stand in detail why the very simple model of ABS
works so well. This paper reports a first step in this
direction: a reexamination of the random-k approx-
imation.

The random-k approximation for r ( E; ), the tran-
sition rate for impact ionization by a particle of en-

ergy E;, is itself rather puzzling. It effectively ig-
nores momentum conservation, yet according to
Kane, it gives excellent agreement with a rigorous,
momentum-conserving calculation of r(E;) based
on the silicon band structure. The rigorous calcula-
tion is much more complicated than the random-k
approximation. The latter involves a three-
dimensional integral in energy space; the former in-
volves a twelve-dimensional integral in k space,
which Kane evaluated using a Monte Carlo pro-
cedure. As shown in Fig. 1, the only discernable
difference between the results of the random-k ap-
proximation and the rigorous calculation is the sta-
tistical scatter inherent in the Monte Carlo pro-
cedure. The agreement spans almost 5 orders of
magnitude, and is so excellent as to suggest that no
approximation is involved.

In this paper we adopt the parabolic band struc-
ture of ABS and derive the rigorous expression for
r( E; ) consistent with this band structure. We then
compare the low-energy behavior of this expression
with that of the random-k approximation for the
same band structure, and find large discrepancies
very near threshold. While this contrasts strongly-
with the conclusion that Kane drew from his results
on silicon, we find that it makes no difference when
used in the model of ABS.
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FIG. 1. Comparison of the random-k approximation to

the transition rate for impact ionization in silicon with a
Monte Carlo evaluation of the rigorous expression for the
transition rate (after Kane). I is the transition rate when
the primary electron has energy E with respect to the
valence-band edge.

II. TRANSITION RATE FOR IMPACT
IONIZATION

In Ref. 2 Kane considered the transition rate
for an electron in the Bloch state ~E, (k~)) to
scatter inelastically to the state

~
E,(kz)) by creat-

ing an electron and hole in the states
~
E,( k3) } and

~E„(k4)), respectively. Here the subscript c indi-
I

cates a conduction band, and the subscript v, a
valence band. Kane averaged this transition
rate over all k~ for which E,(k~)=E~. We write
this average rate as

4 4r=cgf g d k 5 g a„k„—K 5(E,(k, ) —E,)
g m=1 n=l

4

X5 ga E(k ) ~M~2,
n=1

where x=x (n) is c or U as appropriate, the sum over
K spans the space of reciprocal-lattice vectors, and
M is the matrix element for the transition (including
exchange). With a~ ——a4 ———a2 ———a3 ——1, and

(2n/fi)[V/(2m) ]

f d'k, 5(E,( k, ) —E ) )

Eq. (1} is the same equation studied by Kane, with
minor differences in notation and form. For in-
stance, we have adopted the extended-zone scheme,
and have summed over all reciprocal-lattice vectors
K, whereas Kane used the reduced zone and
summed over various band indexes. Also, we
have multiplied the transition rate by d k4
X5(k ~+ k4 —k3 —kq —K), and integrated over d k4
to include momentum conservation within Eq. (1),
rather than to carry it along as a subsidiary con-
straint as Kane did.

In the Appendix to this paper, we show that most
of the integrations indicated in Eqs. (1) and (2) can
be carried out analytically for the parabolic band
structure of ABS. After this is done and dimension-
less variables are introduced, the transition rate can
be written as

r(E;)=M(E;) g F„(E;),
n=0

M(E;}= 2n ~M
~

V2 (2m/A' ) (E; EG)—
I

16(2m) E
1 1 —x

Fo(E;)=2f dx f dyR Ice(c,x,y)j,

WII
F„(E;)=

P(c,w) =[c+y u w —2(cy—)' ~~]—/2uw,

w =(fi /2m)'
~

K
~
/( E; Ea}'—

with E; =E~ Ea, c=E;/(E; Ea}—, and R IS j =S for real —S & 0, but is zero otherwise.

co(c,x,y)=min[c' +y' x' +(1—x —y)' j —max[c' +y' ~x' —(1—x —y)'
~ j,

Q(c, u, wy)=[u +w +2uw min[1, a(c,w)j]'r —[u +w +2uwmaxI —1,p(c, w)j]'~

a(c,w)=[c+y —u —w +2(cy)'r ]/2uw,

(4)

(10)
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It is possible to replace the sum over the reciprocal-lattice vectors by a sum over the integers n because the K
vectors contribute to the sum in Eq. (1) only through their length. Thus they can be ordered according to their
length. The quantities w„and N„are the values of w and the number of K vectors associated with a given
value of the ordering index n.

III. HYPOTHETICAL DIRECT-GAP BAND STRUCTURE

To make this concrete, consider the case where the primitive reciprocal-lattice vectors are given by
h =(2ir/a)(1, 1,—1) and its permutations, with a =0.543 nm (the length of the cubic unit cell for silicon). Thus

K =(2m/a)(n&+n3 —n1, n3+ n] —n2, n1+n2 —n3),

~

K
~
=(2n/a)g(n nii, tnt)=(2'/a)[ni+n2+n3+(ni ni) —+(nt n3)—+(ni ni)—]'

(12)

(13)

and according to the definition of w in Eq. (11)

(g2/2m )1/2(2m. /a )

Xg(n i,n, ,n, )( E; EG)— (14)

where n1, n2, and n 3 are integers, and where
n =n(ni, nq, n3), g(n~i, tn2, ns), and N„are tabulated
in Table I for n (7.

Notice that there is no contribution to the sum
over n for a given value of n until E; &E;(n), the
root of a(e,w(E;(n) ) ) = —1. Otherwise, a(e, w)

& —1, and the R I S] function is zero, because

min[ 1,a(e, w )] & max[ —1,P(e, w)]

in Eq. (8}. To find E;(n), set tz(e, w) = —1 in Eq. (9)
and solve for the greater root w. The result is

I

Bw/Ba=0 to see that w has its maximum value for
y= —,. E;(n) is also listed in Table I.

We have used Eqs. (3)—(15) to evaluate r(E; ) over
the range between the thresholds for impact ioniza-
tion and plasmon excitation in silicon. The numeri-
cal integrations were performed by dividing each in-
tegration interval into 25 subintervals, and approxi-
mating the average value of the integrand over each
subinterval by its midinterval value. The results are
shown in Fig. 2 for a primary electron with energy
E measured from the top of the valence band. This
choice was made in order to facilitate comparison
with Kane's results shown in Fig. 1. The contribu-
tion from K=O, and from the other values of K,

w =u+[e+y+2(ey)'"]'" . (15}
10

It is clear that for any given value of y, w has its
maximum value when u has its maximum value,
namely u =x'~2+ (1—x —y)'~2. Set Bu/t)x=0 to
see that u has its maximum value as a function of y
when x=(1—y)/2, that is, u=2(1 —y)'~. Substi-
tute this result into Eq. (15), let y=a e, and set

TABLE I. Values of g„, N„, and E;(n), the latter in
eV, corresponding to the index n which orders the
reciprocal-lattice vectors according to increasing length
for a parabolic band, direct-gap semiconductor with the
same lattice structure as silicon.
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N

X
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81/2
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E;(n)
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FIG. 2. Transition rate for impact ionization for a
direct-gap, parabolic band structure in a hypothetical
crystal structure with the same crystal structure and lat-
tice constant as silicon. The contribution from the vari-
ous reciprocal-lattice vectors grouped and indexed accord-
ing to their lengths is also shown.
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grouped and indexed according to their length, are
also shown.

IV. INDIRECT GAP

1.4

1.2—

1.0—

RECT GAP

The rigorous curve for r(E; ) in Fig. 2 applies to a
direct-gap, parabolic band structure in a hypotheti-
cal material with the same crystal structure and lat-
tice constant as silicon. It is also interesting to con-
sider an indirect-gap, parabolic band structure with
all parameters identical to the direct-gap case except
for the location of the conduction-band minimum.
This change in band structure will change the re-
quirements of momentum conservation, and so r(E; )

will also change. On the other hand, this change in
band structure leaves the density of states un-

changed, so that the random-k approximation to
r(E; ) remains unchanged.

It is shown in the Appendix that the form of all
of the Eqs. (3}—(11) can be retained under the
transformation to an indirect gap. All that changes
is the grouping, ordering, and indexing of the K vec-
tors according to their lengths. For instance, there
is no reciprocal-lattice vector such that K=O. Table
II lists the values of g„and N„ that apply to the
indirect-gap structure with conduction-band
minimum at ko ——(1,0,0}ala

In reporting his momentum-conserving, Monte
Carlo calculation of r(E; ) for the silicon band struc-
ture, Kane stated, "The delta functions are
represented by rectangles of unit area and width 0.1

eV for the primary energy and 0.4 eV for energy
conservation, so that energy conservation is satisfied
to within +0.2 eV." To simulate the effect of not
conserving energy in this way, let y
=(0.2 eV)l(E; EG), and re—place (1—x —y)' by
(1—x —y)'i +y in Eqs. (6) and (7), where the sign
is chosen to maximize the values of the integrals in
Eqs. (5} and (6). Specifically, replace x 'i
+ (] z y)1/2 by z 1/2+(1 z p)1/2 + Z and
ix' —(1—x —y)'

i by the minimum of
ix' —(1 —x —y)' —yi and ix'i —(1—x
—y}'"+r I

Figure 3 compares the ratios of r(E;) to the

31/2/2

11' /2
19' /2
27'"/2
35' /2

2
6
6
8

12

TABLE II. Values of g„and N„as in Table I, except
that the model semiconductor has an indirect gap as dis-
cussed in the text.

0.8—

~ 0.6—

0.4—

I

0.2—
I

0.0
2

E =El ~ EG

FIG. 3. Ratios of the rigorous transition rate to the
random-k approximation for the hypothetical direct-gap
and indirect-gap semiconductors considered in the text are
shown with solid lines. The random-k approximation is

identical for both cases because the density of states is the
same for the direct- and indirect-gap band structures that
were considered. The effect of relaxing energy conserva-
tion by +0.2 eV in the rigorous calculation is shown with
dashed lines.

random-k approximation to r(E; ) for the direct-gap
and indirect-gap band structures described above,
both with energy conservation +0.2 eV and with
true energy conservation. Recall that the random-k
approximation is the same for direct- and indirect-

gap band structures having identical densities of
states.

A number of interesting ideas are illustrated in

Fig. 3. First, changing the band structure subject to
the constraint that the density of states remains
fixed can change the transition rate for impact ioni-
zation. Second, while Kane's Monte Carlo calcula-
tion for silicon suggests that the random-k approxi-
mation is about as accurate near threshold as at high
energy, our results show that this is not necessarily
the case. In this connection, our simulation of the
way Kane violated conservation of energy by +0.2
eV in his Monte Carlo integration suggests that this
is not the cause of the good agreement that he ob-
tained down to below 2.5 eV, and that some other
explanation is necessary. Perhaps it is a special
property of the silicon band structure, or an artifact
of some other approximations that Kane adopted in
order to carry out what is an extremely difficult in-
tegration in a real band structure.

The possibility that the good agreement that Kane
observed even below 2.5 eV is a special property of
the silicon band structure should not be dismissed
lightly. Figure 3 shows how much the agreement
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between the random-k approximation and the
rigorous result improves in going from the case of a
direct-gap to a particular indirect-gap band struc-
ture. Since this particular indirect-gap structure was
chosen from all possible indirect structures merely
for convenience, it is probable that indirect-gap
structures exist for which the agreement is even
better. Perhaps silicon is one of these. If Kane had
tested the random-k approximation on the direct-
gap semiconductors GaAs, rather than silicon, he
probably would have found considerably worse
agreement near threshold.

V. EFFECT ON MEASURABLE PROPERTIES

The preceding section emphasized the differences
between the random-k approximation and a rigorous
(momentum-conserving} calculation of the transition
rate for impact ionization. This section will show
that these differences, while real, are rather insigni-
ficant in their effect on observable impact-ionization
phenomena.

First notice that E;+EG ——2.24 eV is the thresh-
old for impact ionization in silicon that is deter-
mined by conservation of energy. The thresholds
determined by momentum conservation occur at 2.5
and 2.8 eV, respectively, for the indirect- and
direct-gap band structures that we considered. ABS
used both the random-k approximation and an ap-
proximation that was equal to zero for E; +EG & 2.8
eV, but equal to the random-k approximation for
E;+EG &2.8 eV. These two approximations pro-
duced different results when phonon emission was
ignored, but produced identical results when the ra-
tio of the average matrix element for phonon ernis-
sion to that for impact ionization was chosen to give
the experimentally determined average pair creation
energy in silicon.

In other words, impact ionization is completely
negligible compared to phonon emission below 2.8
eV, so it does not make any difference what the
transition rate for impact ionization is in this region
as long as it does not increase with decreasing parti-
cle energy. Thus pair production by energetic parti-
cles is not even affected by the transition rate near
threshold where the differences between the
random-k approximation and the rigorous results
are the greatest. Furthermore, as shown in Fig. 3,
the differences among the random-k approximation
and the various rigorous results are rather insignifi-
cant above 6 eV.

Now consider the changes if ABS had used the
rigorous, direct-gap transition rate rather than the
random-k approximation in their calculations. They
used both r(E;) and the transition rate for phonon
emission r '(E;) in a recursion relation to calculate

1.0

0.8-

w 0

a
CL

0.4-

0.2-

0.0
3

E = Ei+Eq (eV)

FIG. 4. Probability that a carrier with kinetic energy
E; will cause no impact ionizations before relaxing to the
band edge.

po(E;}, the probability that a particle with kinetic

energy E; loses its energy to phonons without caus-

ing an impact ionization. Then po(E;), r(E;), and

r '(E; ) were used in another recursion relation to cal-
culate p„(E;), the probability of creating exactly n

electron-hole pairs. All of the experimentally acces-
sible parameters were then calculated from the

p„(E;).
Figure 4 shows the po(E;) curve that ABS ob-

tained using the random-k approximation to r(E; ).
The important point is that below 3 eV and above 6
eV, po(E;) is given by the asymptotic values l and 0,
respectively. Thus po(E; } is unaffected by changes
in r(E; ) that occur outside the (3—6)-eV region.
This point was already made with respect to the
near threshold values of r(E; ).

If ABS had used the rigorous curve, they would
have chosen the value of the A parameter so that
their calculation gave the correct average pair pro-
duction energy e for silicon. This is equivalent to
holding A fixed but translating the rigorous result
for r(E;) vertically until it gives the correct value of
E To .produce a new po(E;) curve that oscillates
about the one shown in Fig. 4, a translation of about
25%%uo would be needed. However, this would sys-
tematically increase all of the p„(E; ), for
n=1,2,3, . . . , relative to their values as determined
by the random-k approximation, thereby increasing
e too much. This analysis indicates that A need be
increased no more than 10%+10% in order to pro-
duce the correct value of e. The changes that this
change in A would produce in po(E} can now be
considered.

Figure 5 compares the actual values of the
rigorous, direct-gap transition rate with the
random-k approximation in the (3—6}-eV region.
Notice that a shift of the random-k curve to higher
energy by about 1.5 eV will cause the two curves to
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16.6 eV. Thus the changes in po(E;) caused by dif-
ferent transition rates are directly reflected in
(n(E; })in the (3—6)-eV region.

ASS have shown that the pair creation energy
E;/(n(E;)) is very close to ej, (E~), the pair creation
energy with plasmon intervention when E;=E&,
even when E; is as small as 10 eV. This imposes the
constraint concerning the correct value of e directly
on the p„(E;) that contributes to (n(E; ) ) for E; less
than the plasmon threshold. As a result, there is
very little freedom for variations in (n(E;}). The
threshold can be shifted to higher energy by. no more
than about 0.5 eV, and little more than oscillations
about the random-k approximation to (n(E;)) can
be tolerated at higher energies. In summary, while
our results indicate small modifications to the de-
tailed conclusions reported by Kane concerning the
random-k approximation, Kane's major conclusion
that it is an extremely powerful and accurate tech-
nique for studying impact-ionization phenomena is
fully supported.

FIG. 5. Comparison of the random-k approximation
and the rigorous transition rate near threshold for the
direct-gap band structure considered in the text.

g p„(E;)=1,
n=0

it is easy to show that

(16)

oscillate around each other. The steeper slope near
threshold more than compensates for the better
agreement at higher energy, and so the fit resulting
from translation along the energy axis is better than
might be expected from Fig. 3. Thus we can expect
the rigorous transition rate to produce a new po(E;)
whose shape has minor oscillations about that
shown in Fig. 5, and whose position is displaced by
about 0.7+0.7 eV toward higher energy. The
changes in p„(E;) for n & 0 are not so easily
analyzed. However, they can be expected to be of
comparable or smaller magnitude. It depends upon
the relative importance of the various p„(E;) deter-
mining e.

Changes in p„(E;) of the nature just described
cannot have large effects on measurable quantities
such as (n(E;)), the average number of electron-
hole pairs created by an energetic primary particle
with kinetic energy E;. From Eq. (1) of ABS and
the requirement that

APPENDIX

In this appendix we show that many of the in-
tegrations indicated in Eq. (1) can be carried out
analytically for the parabolic band structure of ABS,
and we transform the partially integrated expression
for the transition rate into a form that is convenient
for numerical integration of the remaining integrals.
Motivated by the random-k approximation, we
rewrite Eq. (1) in terms of an integral over particle
energies by multiplying Eq. (1) by

dE25(E, ( k2) —E2)dE35(E, ( k3) —E, )

XdE45(E„(k4) E4)—
and integrating over dE2dE3dE4. Next, we assume
that

~
M

~

has no explicit dependence upon the k„,
but only implicit dependence through the E„(k„),
and repeatedly apply the 5-function theorem.

f 5(f(x)—u)g(f(x))dx= f 5(f(x)—u)g(u)dx

(A1)

to systematically replace E„(k„) by E„ in both
~
M

~

and the 5 function coupling the E„(k„).The
result can be written as

4
r =cf dE2dE3dE45 g a„E„ I

M
~
F,

n=i
(n(E;)) =1 po(E;)+ g (n——1)p„(E;)

8=2
(17)

(A2)

for E; less than the plasmon excitation threshold where
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4

F=g f g d'k. 5(E„(k.}-E )

K m=1
4

X5 g a„k„—K
n=i

(A3)

F= g f d k L, s(k)L;/( k+K),
K

L,s(k)= f d k45(E„(k4}+Es)

X5(E, ( k4+ k ) Eg E—, ), —
Lff(k+K)= J d'k25(E, (k2) —Eg E/)—

X5(E,(k2+. k+K ) Eg E(—) . —

(A4)

(A5)

(A6)

In order to treat the parabolic bands that ABS
considered, it will prove useful to integrate Eq. (A3)
over d ki to remove the 5 function in the particle
quasimomenta, then to let k = k 3

—k4, and to
rewrite the result in the form

In writing Eqs. (A4) —(A6) we have adopted the no-

tation of ABS, wherein the particle energies are re-

ported as kinetic energies. That is, E;=E&—EG,
E&——E2 —EG, E, =E3—EG, and EI, ———E4. The
subscripts i and f refer to the initial and final states
of the primary scattering particle while e and h refer
to the electron and hole created by the scattering
event. This treats the particles more symmetrically
in that all particle energies are positive, starting
from zero at the band edge.

Next we will show that the integrations indicated
in Eqs. (A5) and (A6) and some of those indicated in

Eq. (A4) can be carried out analytically for the para-
bolic band structure of ABS. Specifically, let

E, ( k) =( ii'i/2m )
~

k
~

'+Eg, (A7)

E„(k ) = —(A' /2m )
~

k
~

(A8}

To integrate Eq. (A5) using Eqs. (A7) and (A8), con-
vert the volume integral to the equivalent line in-

tegral

L,s(k)= J dl[
~

V4E„(k4)
~ ~

V4E, (k4+k) ~' [V4E„(—k4) V4E, (k4+k}]j' ', (A9)

[4(A' /2m)
~

k&
~ ~

k
~
sine4]

Figure 6 also shows that 1=2'
~

k4
~

sin84. Thus

L,s(k)=(2m/4)(2m/fP)
~

k
~

(A10)

[k, l =zmE„/

where I is the circle of intersection of the surfaces
E„(k4) + Es ——0 and E, ( k4+ k) Eg E,=—0. —

Reference to Fig. 6 shows that the integrand is
symmetric with respect to rotation about the k axis.
Thus all that is necessary to evaluate the integral is
to multiply the circumference I of the circle of inter-
section by the integrand evaluated at some point on
l. Evaluation of the integrand using Eqs. (A7) and
(A8) is straightforward. The result can be put in the
form

I

for

~E,
'/2 —E„'"

~

&(rP/2m)'/2[ k
[

(E 1/2+ E 1/2
e (A 1 1)

When
~

k
~

is outside the bounds set by Eq. (All),
the two spherical surfaces shown in Fig. 6 do not in-

tersect at all and L, (ks) =0. Similarly,

L/(k+K)=(2 /i4r)(2m/ i)ri~ k+K
~

' (A12)

for

E; E) &(A /2m—)'/
~

k+K
~

(A13)

and L,I( k+ K)=0 otherwise.
Now substitute Eqs. (A10} and (A12) into Eq.

(A4) and convert the integral to spherical k coordi-
nates whose polar axis is parallel to K, and let
k=

~

k
~

and K=
~

K
~

. Therefore,
42' 2m'=

4

1k+ k, l =2rnEq/+'

FIG. 6. Intersection of the spherical surfaces described

by ( k4~ =2mEi, /R and
) k+k4~ =2mE, /fi.

(k +K +2kKcosO)'/~

(A14)

where the limits of integration for k are determined
by Eq. (A11), and the limits of integration for 0 are
determined by
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E' E—' &(A /2m)' (k +K +2kKcos8)'

(g 1/2+ g 1/2
i f (A15)

and the requirement that cos8 lie between —1 and 1.
The term with K=O must be integrated separate-

ly from the other terms because Eq. (A15) does not
limit 0 in this particular case. Instead, the limits of
integration for k are the minimum of the upper lim-
its and the maximum of the lower limits in Eqs.
(Al 1) and (A15). For K=0, the integrations over 8,
P, and k can all be carried out analytically. Howev-
er, for K&0, one of the integrations, over either 0 or
k, must be carried out numerically; let it be k.
When these results are substituted into Eq. (A2}, one
of the indicated integrations, let it be that with
respect to E~, can be carried out analytically, but the
remaining two must be treated numerically. At this
point the formulas become considerably more com-

pact in terms of the dimensionless notation
where s=E;/(E; EG), x=—E, /(E; EG), y=—E//

E,(k)=(fi /2m)
~

k —ko~'+EG . (A16)

This replaces k by k'=k —ko in Eqs. (A10) and
(All), so the form of these equations remains un-
changed under this change of variable. The form of
Eqs. (A14} and (A15) can also be retained by
transforming to the new variables k '=k —ko and
K'=K+ ko in Eqs. (A12) and (A13). Thus every-
thing remains the same, except the grouping, order-
ing, and indexing of the E' vectors according to
their lengths.

(E; E—G), u =(fP/2m)' k/(E; E—G)', and w

=(FP/2m)'~ K/(E; E—G)'~. The final result can
then be put in the form indicated by Eqs. (3}—(11}of
the main text.

Now consider the case of an indirect-gap material
with parabolic bands. For convenience, assume that
the band minimum occurs at ko ——(100)m/a, and re-

place Eq. (A7) by

R. C. Alig, S. Bloom, and C. W. Struck, Phys. Rev. B 22,
5565 (1980).

E. O. Kane, Phys. Rev. 159, 624 (1967).
We do not explicitly indicate any remaining summation

over v and c needed due to degeneracy.
40f course, the matrix elements actually are responsible

for conserving momentum, but since we will follow

Kane and introduce an average over the nonzero matrix
elements, it is necessary to explicitly conserve momen-

tum. It turns out to be more convenient to introduce
the conservation of momentum constraints by integra-
tion over the 5 function rather than by direct substitu-

tion (to which, of course, it is equivalent).


