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We consider the electron-hole —pair generation and the resulting free-carrier-density

buildup in a semiconductor irradiated with laser beams whose frequencies are below the

band gap. Using a simple model, we show that the free-carrier density may exhibit hys-

teresis and that when placed in a cavity, the semiconductor causes optical multistability at
relatively low input cw intensities. For InSb the model predicts hysteresis at or above -100
W/cm .

I. INTRODUCTION

Sometime ago it was observed that electron-
hole —pair generation plays an important role in the
nonlinear absorption properties of a semiconductor
irradiated with a laser beam which has a frequency
less than the band gap.

' Specifically, it was seen
that even for relatively low-intensity pulsed beams,
pair generation can cause the formation of an
avalanche in the density of free carriers and thus
alter the optical response of the semiconductor. In
the present paper we consider this phenomenon in
the context of optical multistability. In particular,
we show that when the semiconductor is irradiated
by a laser beam whose frequency is less than the
band gap, the density of electrons and holes can ex-
hibit hysteresis as a result of rapid pair generation,
and that if the semiconductor is in a ring cavity, the
optical output of the cavity displays multistability.

There is usually a population of mobile carriers
even in relatively pure crystals at low temperatures.
These carriers, even though small in number, play
an important role in the response of a semiconduct-
or to a laser field whose frequency does not allow
single-photon interband transitions. For the sake of
definiteness, let us consider a slightly n-type materi-
al whose band structure is something like the one
shown in Fig. 1. There is then a small population of
mobile electrons at the bottom of the conduction
band. These electrons can absorb photons via emis-
sion or absorption of phonons, which is free-carrier
absorption and does not depend on the light fre-
quency in a significant way. When the sample is ir-
radiated, free-carrier absorption causes the tempera-
ture of electrons to rise and form a hot electron pop-
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FIG. 1. Bucket model for a two-band semiconductor.

ulation in the conduction band. Energetic electrons
normally relax by phonon emission. However, an
electron which has kinetic energy greater than the
band gap can preferentially decay to the bottom of
the conduction band by producing a pair, that is, by
exciting a valence electron to the conduction band. '

The mechanism responsible for this pair generation
is the binary Coulomb collisions between conduction
and valence electrons. Such a relaxation has a
strong resemblance to Auger processes in that it is
the inverse of the Auger recombination. Thus, via
the heating of the original free carriers, more free
carriers are created by pair generation, and they in

27 4779 1983 The American Physical Society



4780 A. EL/I, M. O. SCULLY, AND M O'HARE 27

turn can absorb more photons via phonon emission
or absorption and thereby create more hot carriers.
Unless balanced by electron-hole recombinations,
this process can lead to an avalanche growth in the
free-carrier density.

In Ref. 3, a simple "bucket" model was developed
to describe the behavior of InSb (at T=4 K) under
intense and pulsed CO2-laser beams. In this prob-
lem the band gap is larger than twice the laser fre-
quency and neither single-photon nor two-photon
interband transitions are allowed due to energy con-
servation. To determine the optical response of InSb
to CO2-laser beams, the bucket model partitions the
conduction and valence bands into various regions
according to photon energy, and uses a simple set of
equations to obtain the particle transfer rates among
these regions, or "buckets. " Despite its gross simpli-
fication of the problem, one may have confidence in
this model on the basis of two facts. First, the
model leads to results which are in reasonable agree-
ment with experiments in which the beam is pulsed.
Second, more precise analysis of the same problem
with appropriate electron and hole distributions,
which are continuous and energy dependent
throughout the bands, has generally confirmed the
results of the model. A further advantage of the
bucket model is that it can easily be adapted to other
semiconductors with different band structures. In
the present paper we extend the use of the bucket
model to the case in which the laser beam is cw and
the semiconductor is placed in a ring cavity. For
the sake of definiteness, we also consider InSb, with
the simplified band structure as shown in Fig. 1.
However, the semiconductor is now irradiated by cw
CO2-laser beams and steady-state conditions prevail.

In Sec. II we study the bucket model for I&I,2,
where I is the average light intensity inside the semi-

conductor and I,2 is some critical intensity. I,2 is
on the order of 500 W/cm for InSb. In the prob-
lem there appears another critical intensity I, &, such
that the model gives two possible values for the
free-carrier density if I, &

&I &I,2. This result is il-
lustrated in Fig. 3 and demonstrates that the free-
carrier density can exhibit optically induced hys-
teresis due to the pair generation. I, &

is on the order
of 100 W/cm for InSb. For 0&I &I, i, the model
gives a single value for the free-carrier density and
no hysteresis is observed. The high-intensity regime
corresponding to I&I,2 is not investigated in the
present paper. In Sec. III we consider the situation
in which the sample is placed in a ring-cavity con-
figuration as shown in Fig. 4. We use the Drude
theory to take into account the dispersive and ab-
sorptive effects of the sample on the field inside the
cavity. One can distinguish two types of behavior in
the response of the semiconductor. For large detun-

ings from a cavity frequency, the nonlinearity is
mostly dispersive in nature, and input-output inten-

sities display hysteresis. When the laser frequency is
resonant with a cavity frequency, the nonlinearity is
absorptive, and the input-output intensity curve cor-
responding to the higher density displays bistability

by itself. As one varies the frequency detuning, one
observes both types of behavior in conjunction.

A final remark here concerns possible practial ap-
plications of this hysteresis of the free-carrier densi-
ty. As the discussion above makes clear, none of the
processes which it involves is a resonance
phenomenon. The hysteresis is therefore relatively
insensitive to light frequency. This is especially im-
portant from a practical point of view, since it may
lead to a broad-band bistable system.

II. HYSTERESIS OF FREE-CARRIER
DENSITY

In this section we briefly describe the bucket
model for InSb and solve the relevant rate equations
in the steady state. The bucket model for InSb has
only two bands, as shown in Fig. 1: a heavy hole
band and a conduction band. The model divides the
conduction band into three regions: a, b, and c.
These regions have equal energy spread, each rough-

ly fico, where cu is the laser frequency. Starting from
c, electrons can go to b and a by free-carrier absorp-
tion. Electrons reaching region a can create
electron-hole pairs and go to c. Electrons that are in
c can recombine with holes in the valence band. The
model also divides the valence band into two
separate regions, vi and v2. The size of v& is sup-
posed to be roughly the same as that of region a.
Region v& does not contribute to the pair excitation,
whereas v2 does. On the other hand, vi is involved
in electron-hole recombinations, but v2 is not. In all
regions, whether in the conduction or valence band,
electrons relax by phonon emission and go to lower-

energy states.
The bucket model uses parabolic bands. If the

capital letters N„Nb, N„N„~, and N„2 designate the
number of states per unit volume in the various re-
gions described above, then

EG+a.
dE(26) '(2m" /A' ) (E EG)'—c EG

=(3H) '(2m,'c0/A') ~

where m,' is the effective mass for the conduction
band. Let the sample be at T=4 K. Then
m,'=0.014m0 and N, =3.4X10' cm . Similarly,
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Nb ——(3H) '(2m co/i}1) [(2') —(co) ]

and

8Nc (2)

N, =(3ir ) '(2m,'co/iii)3 [(3')3 2 —(2~) ]
=-2.4N, . (3)

For the valence-band electrons, from Fig. 1 it fol-
lows that

N„i ——(3ir ) '(2mbED/iri ) =—N, , (4)

and

2O=n» ypn, n„——2(N, —n,—)

+y„n„i(N„2 n„2} . — (9)

The various terms here have the following mean-
ings: y,„(N„i

—n„,) represents electron-hole recom-
binations. Recombinations are assumed to affect
only regions c and vi. The terms y, n, (Nb nb) and-
y, nb(N, —n, ) represent thermal relaxation in the
conduction band. y„n„i(N„2—n„z) describes thermal
relaxation in the valence band. y~n, n„2(N, —n, )
describes the pair excitation process which is as-
sumed to involve only the a, c, and v2 regions. The
terms that are proportional to yI, such as

yi[(N, n, )nb (Nb n—b )n, ],— —

represent free-carrier absorption. The model as-
sumes that free-carrier absorption takes place in the

where mI', is the effective hole mass, m~-0. 4mp,
and Ep ——m,*ficolm~. N„2 is taken to be the same as
N, .

Let the lower case letters n„n~, n„n„l, and n„2
designate the actual electron densities in their
respective regions. There are five rate equations for
these quantities, which in the steady state become

O=ri, =yi[(N, n, )—nb (Nb —nb)n,—]
y, n, (Nb—nb)—

2
yi n, n„—2(N, —n, )

0=ri = yi[(N, n—, )nb (N—b nb )n—,—]
+yl[(Nb &b )&, —(N, —ii, )iib]

+y, n, (Nb nb) y,—nb(N,—n, ),— (6)

O=ri, = yi[(Nb n—b)n, —(N, n, )nb——]

+ 2' n, n„2(N, n, )—
+y, nb(N, —n, ) —y,„(N„i—n„,), (7)

O=ri„, =y,„(N„,—a„,}—y„n„,(N» —n»),

conduction band but not in the valence band. y„y„,
yz, and y,„designate the rate coefficients for relaxa-
tion of conduction electrons, relaxation of valence
electrons, pair excitation, and recombination, respec-
tively. yI is a compound rate for free-carrier absorp-
tion and is proportional to the laser intensity. Equa-
tions (5)—(9) are five equations for five unknowns.
One can substitute the expression for particle con-
servation, which is much easier to deal with, for one
of these equations. Summing all five rate equations
for ri„rib, etc., one finds that

n, +n~ +n, +n»+ n„2 ——N»+ Nv 2+ np (10)

at any time t, and in particular for the steady state
at t~+oo. The right-hand side of (10) follows
from the fact that before the light beam is turned on
(which corresponds to t~ co }, n—,=nb ——0,
n» ——N», n„2——N„2, and n, =np. We assume that
n p is on the order of 10' cm . We can also obtain
two other equations from (5)—(7) that are more con-
venient to work with than (5) and (7). Summing
(5)—(7),

+y,„(N„i—n„i) . (12)

Keeping (6) and (8) as they are, we now have a new

set of five equations, (10)—(12), (6}, and (8}, for five
unknowns.

At this juncture we will make an approximation
that follows from the extreme rapidity of the pair
excitation process. It turns out that as hot electrons
move into region a, they are quickly scattered back
to region c via pair excitation. It turns out that the
rate for pair generation for InSb is nearly 5 to 6 or-
ders of magnitude larger than the rate for recom-
bination. Thus generally, n, ((n~, n, even for rela-

tively large laser intensities. We therefore neglect n,
in the various sums that involve n~, n„n, I, and n„2,
and the working equations become

ng +n, +n»+ n„2——N»+N„2+ np,

y~(NI, n, —N, na) =p, na(N, —n, )

+r,.(N» —n»&

yr(NI, n, —N, nt, ) =&IN, n~

+y nb(N, —n, ),
ygy(N I

—n» ) =y n I(Np2 —ny2)

(13)

(14)

(15)

(16)

ypn, n„2(N, n, }—=y (N„i —n„i} .

This equation states that, in the steady state, the
number of electron-hole pairs lost due to recombina-
tion must equal the number of pairs created by hot
electrons. Now using (11) in (7), we find

y&(Nba, —N ii)b= ,yii(bN—n, )
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and

ypn, n„q(N, n—, ) =y~(N„i —n„i )
2 (17)

This equation has one positive root and one negative
root. The positive root gives n„i.

Equation (17), which determines n„will not be
needed as long as n, ((nb, n„since the total
conduction-band electron density is essentially given
by nb+n

To solve the system of equations (13)—(16), we
start from (16), which gives

1

(its+ n no —N„ i—+y ly„)

1 2+, [(& +nb no —N„i—+y,„ly„)

+4'.N. i iy. 1
'" (20}

N„g n„p —(y~——ly„)(N„i—n„i)n„i' . (18)
From (14) and (15) we find

Substituting (18) and (13), we obtain a second-order
equation for n„& in terms of nb and n, :

2n„i+n„i(ns+n, np N—»+—y,„ly„)

(y,—.iy. }N» =o
I

N ] ~y] =yINN~b/ygy ~ (21)

Equations (20) and (21), when combined, yield an
equation for nb in terms of n, alone:

[y N» yiy, „N—,(Nvi+y~ly no+n—)]
Sb —lib

yP'(y- yiN. }—
y~N„i(n, —np) =0.

yiN, (y yiN, )—
(22)

Let the roots of (22) be n +(whic-h may be complex):

n += [y N„i -yiy~N, (N—„i+y,„y„'+n,—np)] [2yiN, (y ylN, }]—
1+[ 4 [y;„N~i yiy~. N, (N—„i+y~y„+n, no)] —yi No (you yiNo—)

+y N„,(n, no)yi —'N, '(y yiN, )— (23)

Only real and positive roots are acceptable for nb. We distinguish two regimes for which n —are real: First,

Y,„)yIN~ .

In this "low-intensity" regime, n &0(n+, and therefore n+ is the only acceptable root. Second,

y,„(yIN,

[y-N. i yP'. (N.—i+y y. '+n, no)]'&4—y,.yP'. N. i(n. no)(y y—iN')—
In this regime both n —& 0, and either one of the roots, are possible values for nb, provided that it is less than

Nb (and also if the resulting equation for n, gives an acceptable root).
The parameters for InSb are such that the internal light intensity which corresponds to y =yiN, is on the

order of 10 MW/cm, which is much larger than I,q-500 W/cm . As we stated earlier, the discussion of the
present paper is restricted to intensities less than I,z, and therefore

nb ——n+ .

Note that
—1

y~ & yiN, ~y,„N„i& yiN, y~(N„i+y, „y„+n,—np),

(24)

(25)

since n, is supposed to be such that n, )no.
Going back to our system of equations, we note that from Eq. (15) one can obtain another expression for ns

in terms of n, :

nb yiNbn, y, '[N, —n——,+yi(N, +N, )ly, ]
Finally, using Eqs. (26) and (23), one finds a cubic equation for n, alone. Let x=n, In p Then, .

(26)
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x +r)x +r2x +r3 =0,3 2

where

ri=d '[ y—,.y.N. l y'iNaNb(yvv YINa)(yvy no)

ylNsN„Inp +yiN Nsnp (N„i+y „y„—np)

—(d+y, y,„N„I)[N,np '+yl(N, +N, )y, np ']),
rz=d [N no +yi(N, +N, )y, 'np ]

X (2y yvN„I+yvvylNsNvino

+y,„y,N„, [Nv no +yi(N, +N, )y, 'no ']—yiNaNbnp '(N„i+y, „yv
'

np) I—,
r3 — d'y—,y,„N„I[N,no +yl(N, +N, )n p y )

(27)

(28a)

(28b)

(28c)

and

d=y, y N„i+ylNaNb . (28d}

x I ——2( —p/3)'~ cos(Pp/3+2m /3) —r, /3

(30b}

An acceptable root of (27) must be real and equal or
less than N, /np, since by definition n, cannot be
larger than N, . It must also reduce to 1.0 at exactly
I=O, since n, =np before the field is applied [see
Eq. (10)]. In Ref. 3 it is found that for InSb at T=4
K and for np ——10' cm, the parametric values
y„=10 ' cm sec ', y, =2.2)&10 cm sec
y =3.0X10 sec ', and yi=(1.1X10 'I}
cm sec ', where I is the average field intensity in-
side the sample and is given in units of %/cm, give
the best agreement with pulsed beam experiments.
For these values of parameters one finds that there
exists a critical intensity I, &

such that for I &I,~, the
cubic equation may either be reducible or irreduci-
ble, but there is only one acceptable root. For
I, & &I &I,2, the cubic equation is irreducible
throughout the range of I and there are two accept-
able roots. Let

and

xi ——2( —p/3) '~ cos(Po/3+4m/3) —r I /3 .

(30c)

On the other hand, I,z is determined from the equal-
ity of x~ and x2, which means

sin(Pp/3) =0 . (32)

Figure 2 shows the allowed solutions for n, /np as

The critical intensity I, &
is determined from the

transcendental equation

2( p/3)'i—cos(go+4m /3) r, /3=—N, /no .

(31)

p=r2 —r&/3,2

g —r3 —r ] r2 /3 +2r
&
/27

(29a)

(29b)

5= —(4p3+27q~}/27, (29c)

Pp ——tan '( —q
'6'~ )+(ir/2)(1+sgnq), (29d)

u = —q/2+( —27k/108)'/ .
For I ~I, i, the acceptable root is given by

(29e)

2( —P /3) ir3cos(go/3+2m /3) —r, /3

Xp if 5 &0 (30a)
u' —pu /3 —r~/3 if &~0.
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functions of I. One solution starts off from 1.0 and
monotonically increases as I increases. It corre-
sponds to xo for I &I, i and goes over smoothly to
xi for I&I, i. For I&I,i, it is the only allowed
solution for n, /n0. The second solution, which cor-
responds to x2, is defined only for I &I,&. It starts
off from N, /n0 and decreases monotonically as I
approaches I,2. The two solutions meet at I=I,~.
Figure 3 shows the corresponding total electron den-

sity n, =nb+n, solutions.
An immediate question concerns the stability of

these solutions. One can perform a stability analysis
using the rate equations (5)—(9) and assuming small
fluctuations ns~nb+5nb(t), n, ~n, +5n, (t), etc.,
where 5nb « n~, 5n, &&n„etc. One then finds that
all fluctuations are damped, and that the solutions
discussed above are all stable.

The solutions depict the following physical pic-
ture. For I &I, i, the pair generation, although ra-
pid, is sufficiently compensated by the recombina-
tion so that the free-carrier density does not increase
significantly. Such a compensation also persists for
I&I, i, and the slow rise of the lower branch of the
density curve in Fig. 3 illustrates this situation.
However, as one approaches I,2, the pair generation
becomes more efficient and can lead to a density
buildup. Furthermore, if I is then decreased, start-
ing from I,2, the pair generation protects the density
buildup, and the system moves along the upper
curve in Fig. 3. Finally, when I returns to I, i,
recombinations take over and there is a sharp de-
crease (which may be considered as an "avalanche
recombination") in the density of free carriers. The
system returns to the original lower-density branch.
Note that hole relaxation plays an important role in
the hysteresis. The rate for hole relaxation is con-
siderably less than the rate for recombination, and

therefore hole relaxation acts as a bottleneck in the
transfer of electrons from vi to v2. This reduces the
efficiency of the entire recombination process and
allows a buildup in the density of free carriers. Con-
sistent with this picture, the value of I, i is sensitive
to changes in y„, and also to changes in the size of
N„i relative to the other densities of states. Dou-
bling y„ increases I, ~ by about 70% and halving y„
decreases I, i by about 50%, if all the other parame-
ters are kept unchanged. On the other hand, dou-
bling y~ increases I, i by less than 6%, and halving
it decreases I, i by less than 5%. When N„i/N, is
varied instead of y„, the changes induced in I, i are
similar to those when y„ is varied. Finally, we note
that free-carrier absorption can retard the relaxation
of holes to the band edge more effectively at higher
intensities. This somewhat abates the efficiency of
the pair generation and causes the density of elec-
trons to decrease along the high-density branch in
Fig. 3 as I increases from I, i to I,2.

A brief remark here concerns I&I,2. When
I&I,2, one generally does not get an acceptable
solution for n, from the cubic equation, in that all
three roots are real but are larger than N, . We be-
lieve that this is due to the breakdown of the ap-
proximation n, «nb, n, . As we mentioned above,
free-carrier absorption becomes more efficient in re-
tarding relaxation of free carriers at high intensities.
This leads to a population buildup even in region a.
It follows from (10) that the fractional density alot-
ted to region c is decreased if n, is not neglected
(both n, and n„~ increase at high intensities). Thus
one should actually work with a biquadratic equa-
tion near and above I,2.

III. RING-CAVITY CONFIGURATION

In this section we assume that the semiconductor
is placed in a ring cavity as shown in Fig. 4, and use

50—

111/i
Eout

o30-
C

z=0 z=L

10—

) tc)
I

0 i I ~ . i I I I a I I I I &, rl

0 100 300 500
t (W/cm~)

tC2

FIG. 3. Total electron density in the conduction band
vs I.

FIG. 4. Ring-cavity configuration. The mirrors at 3
and 4 have 100% reflectivity.
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the Drude theory and the mean-field approximation
to take into account the dispersive and absorptive ef-
fects of the sample on the cavity fields. According
to the Drude theory, the dielectric function of the
semiconductor can be written as

e(co) =ei+l ei

cop r cop r=e„ 1 — +i, , (33)
co r +1 co(co v +1)

where e„ is the high-frequency dielectric constant
(e„=16.0 for InSb), r is an effective scattering time,
co is the light frequency, and co& is the plasma fre-
quency of the electron-hole plasma of the free car-
riers, given by

T

cop ——4' e„2 2 —1

m,
*

ng
+

mp

4m-e n,

e„m,*
(34)

v=2000(n, /no) '~
co (35)

We also use (35) for r.
Let us assume that the semiconductor is placed in

a ring cavity as shown in Fig. 4. To simplify the
problem we assume that the sample fills the cavity

entirely and that the fields are linearly polarized
plane waves. In order to obtain the equation of
propagation for the field amplitudes, we closely fol-
low the method of Ref. 7, and write the fields in the
form

and

E=xE(z, t)e ' e (36a)

Here n, nb+n„and nI, is the density of the holes,
i.e.,

ng ——N„)+N„2—n„ i
—n„2 .

The last equality in (34) follows from the fact that
m,
'

&&mj', and n, =nj, . Thus e in the Drude form
depends on the density of the free carriers through
the plasma frequency. From the preceding discus-
sion it follows that in the bucket model, e may de-

pend on I in two distinct functional forms. Apart
from its functional relation to I via co&, e may fur-
ther depend on I via ~, whose numerical value is ad-
justed to give the actual losses in the crystal. In Ref.
3 it was found that the best agreement with the
pulsed beam experiments is obtained for

0,=co„' k, =c'k, , (37)

+i (co/2)(e e„—)e„E . (39)

To obtain (39), we neglected all second derivatives of
E and D, and used

D=eE,

B,D=a B,E,
(co/c')B, E=-k, B,E,
co2(e e)E=—coQ, (e e„)E .—

(40a)

(40b)

With the use of (33), the equation of propagation for
the steady state becomes

c ' E= i co—(S—iA )E, —D
d
dz

where

S=Q,co
' —1+(coze /2)(co r +1}

and

A =no~(2co) '(co v +1)

(41)

(42a)

(42b)

In the ring-cavity configuration, the boundary con-
ditions are

E(z =0)= T'/2E;„+RE(z =L),
T'~ E(z =L)=E,„, ,

(43a)

(43b}

where the mirrors at z =0 and z=L have the same
transmission coefficient T. R is the reflection coef-
ficient, R = 1 —T. E;„and E,„, are the incident and
the transmitted fields, respectively. Since the sam-
ple fills the cavity for z =0 and z =L, the mirrors at
1 and 2 are somewhat symbolic, referring actually to
the surfaces of the semiconductor. T therefore de-
pends on the free-carrier density, and hence on the
internal field intensity. From the Drude model one
finds that

where c' is the speed of light in the semiconductor.
Substituting (36a) and (36b) into the Maxwell equa-
tion of propagation,

V E=c BD, (38)

and using the fact that E (z, t) and D (z, t) are slowly
varying, one finds

c'a,E+a,E=—i(n, —~)E

D=xD(z t)e ' e (36b) T=4e& (1+ei ) (44a)

Here E(z, t) and D (z, t) are the slowly varying ampli-
tudes of the electric and displacement fields. k, is
the wave vector related to a cavity frequency Q„
such that

where

(1—co /6) ) . (44b)

We now use the mean-field approximation to in-



4786 A. EL/I, M. O. SCULLY, AND M. O'HARE

5000 900
b)

CV

E

~~ 3000
cA

UJ
Iz

z 1PPP

0
0

IIc2

s I s I s I s I s I s I I s

100 200 300 400
OUTPUT INTENSITY (W/cm2)

P4

E

600

V)

UJ

z
~ 300
0z

0
0

I

I

!

I

C2
!

I,
100 200 300 400

OUTPUT INTENSITY (W/cm )

2000 (c)

10000

CV

& 1500
CV

E

~ 1000z
UJ

z

500
Z

Ic2

U)z 5pQQ
UJ
I—z
I

CLz Ic2

0
0 100 200 300 400

OUTPUT INTENSITY (W/cm2 &

0
0 100 200 300 400

OUTPUT INTENSITY (W/cm

FIG. 5. Input vs output intensities for various detunings: (a) 0,/co=0. 9; (b) 0,/co=0. 965; (c) 0,/co=1. 0;
(d) 0, /co = 1.1. For these curves L = 10pm. I,'& and I,'2 are the critical output intensities corresponding to I, ~ and I,2.

tegrate (41):

E(0)—E(L)=——i (coL/c')

X[S(E(L))—iA(E(L))]E(L) .

(45)

Clearly, the amplitude E(L) corresponds to I, the
average intensity inside the sample. From (45), and
(43a) and (43b), we obtain

I;„=I,t [(coL/c'T)~S (I „,/T)

+ [1+(r0L /e'T)A (I«, /T)]2j . (46)

Here we have converted the solution for the ampli-
tudes into one that involves the corresponding inten-
sities. The use of mean-field approximation restricts
this result to thin films. Figures 5(a)—5(d) shaw
the output versus input intensities. As we stated
earlier, when 0, /co is varied from 0.9 to 1.1, the
nonlinearity goes from being mostly dispersive in
nature to being mostly absorptive on Q, =co, then
again back to being dispersive.

ACKNOWLEDGMENTS

We thank Dr. T. W. Nee for useful discussions on
the problem, and Mr. Shu-Chuan Cha for the nu-
merical work.



27 ELECTRON-HOLE —PAIR GENERATION AND HYSTERESIS IN SEMICONDUCTORS 4787

~J. F. Figueira, C. D. Cantrell, J. P. Rink, and P. R. For-
man, Appl. Phys. Lett. 28, 398 (1976).

E. O. Kane, Phys. Rev. 159, 624 (1967).
3T. W. Nee, C. D. Cantrell, J. F. Scott, and M. O. Scully,

Phys. Rev. B 17, 3936 (1978).
~T. W. Nee and M. O. Scully, J. Appl. Phys. 52, 102

(1981).
5These parameter values differ somewhat from the calcu-

lated ones. For a comparison of theoretical with exper-
imental best-fit values, see Ref. 4.

sJ. V. Uspenski, Theory of Equations (McGraw-Hill, New

York, 1948).
7M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser

Physics (Addison-Wesley, Reading, Mass. , 1977), Chap.
VIII.

R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento
21, 505 (1978).

sOne also needs to have
~
5

~
&& l, where

5=m —2e„' LA,D
', A,D is the wavelength in vacuum, and

m is the nearest integer to 2e'„LA,D
'.


