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The temperature dependences of the lowest direct gaps of germanium and silicon are cal-

culated. They result from the effect of electron-phonon interaction on the corresponding
electronic states. Both Debye-Wailer (second-order interaction Hamiltonian) and "self-
energy" (first-order interaction Hamiltonian) are included. It is shown that the latter are by
no means negligible. They reduce the calculated temperature coefficients at constant
volume by a factor of 1.7 in the case of Si and 1.3 in the case of Ge. Agreement with exper-
imental data is satisfactory.

I. INTRODUCTION

The measured temperature dependence of energy
bands at constant pressure derives partly from
thermal expansion and partly from the renormaliza-
tion of band energies by electron-phonon interac-
tions. ' The former effect can be calculated by find-
ing the volume dependence of band energies and
combining this with measured values of the thermal
expansion coefficient a =L '(dL /d T)t . This pa-
per describes theoretical calculations of the latter ef-
fect, which is usually the larger contribution but is
much harder to evaluate. We compare our calcula-
tions with experimental values, measured at con-
stant pressure but reduced to constant volume by
means of the measured coefficient (t)EeldP)T. We
have

aE, aE,= —3Ba
aT tQz~z] ezp BP v

Here B is the bulk modulus. Our results are sum-
marized in Table I for the direct gaps at k=O in Si
and Ge. Experimental values of (BEg/BT)v are
—1.9/10 eV/K for Si and —2.8)(10 eV/K
for Ge.

There are two types of electron-phonon contribu-
tions, Debye-Wailer terms and "self-energy"

terms. This terminology is widely used and is ex-
plained in our previous paper, hereafter denoted as
I. A perturbative calculation of the electron self-
energy to second order in atomic displacement u

yields both terms, but only the second is commonly
named a self-energy, the first being independent of
frequency. Both are necessary to preserve transla-
tional invariance. ' As can be seen from the last
two lines of Table I the Debye-Wailer term overesti-
mates the experimental value of (dEs IdT) v by
about a factor of 2, but when the self-energy term is
added, agreement between theory and experiment
improves. For Si the agreement seems excellent, but
this is marred by the difficulty of observing the
k=O which is degenerate with the E& gap arising
from states in the (111I directions. Thus it is im-
possible to be certain that the experimental value
—1.9)&10 eV/K should be assigned to the k=0
state. In Ge the discrepancy is larger but not nearly
so large as our incorrect original calculations in I in-
dicated. The present paper corrects the errors of pa-
per I for Ge and extends the calculations to Si.

II. FORMALISM AND METHOD
OF CALCULATION

We use the same method as in I and only the most
important equations will be repeated. We subdivide
the electron energy shift hE-„„ into contributions
from the various phonons Q,j,
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TABLE I. Room-temperature data and calculations for the direct gap at k =0 in Si and
Ge. Data are from Ref. 2 unless otherwise specified.

Experimental

(me V/kbar)

8 (10" N/m )

a (10-' K-')
as,
as

Si

0.98
2.0

5.2

0.75
5.5

13.

BEg
(10 eV/K)

thermal exp

—0.3 —1.6

as,
(10 4 eV/K)

'BT p

—2.2b —4.4'

as,
BT v

(10 eV/K) —1.9 —2.8

Theoretical calculations at constant volume

BE
(10 eV/K)

BT DQf

—3.2 —4.9

Bsg

tot

(10 eV/K) —1.9 —3.9

'Average value between 200—300 K.
From Ref. 2 for E, edge which contains the I&5~I &5 gap plus transitions along I 111J.

'Linear coefficient at high T from Ref. 21.

BEk„LEE- (T)= g [n- (T)+—].
Bn QJ

QJ-
= J dQg F(k,n;Q)

X[(e""—1) '+-] (2)

where n- . is the occupation number of the phononQ)
mode. The second line of Eq. (2) uses the electron-

I

phonon spectral function g F,

BEkn
g F(k,n;Q)= g 5(Q —c0-.),

BnQJ.
where co

Q
. is the phonon energy. The contributionQJ

from phonon Q,j to the electron energy shift
BE&„/Bnq. is the sum of the Debye-Wailer (DW)
and self-energy (SE) contributions, given by

BEk„
Bn QJ' sE

l

2

[I (k,n, n';Q) u(Q, j;+)+8(k,n, n';Q) u(Q j;—)]
p-+ p~ -+

kn k+ Q, n'
(4)

'

BE-„„
Bn QJ

i ~, [I (k, n, n', 0).u(Q,j;+)] +[8(k,n, n', 0).u(Q,j;—)]
n' kn kn'

Explicit formulas for the vectors I and e are given
in Eq. (16) of paper I in terms of pseudo-wave-
functions and pseudopotentials. The prime in the
summation in (5) indicates that only interband terms

n'&n are summed. The displacements u (+) are the
even and odd combinations of displacements of the
two atoms (labeled 1 and 2) in the unit cell, namely
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u(Q,j;+)=(A/'2MNco
&

.)'~'
QJ

X [PQ,j;I)+e(Q,j;2)],
i u (Q,j;—)=(fi/2MNco- . )

'~

X [~(Q,j;I ) —~(Q,j;2)],
where e is a (complex) polarization vector, which in
diamond structure obeys E'p=E'). Thus the arnpli-
tudes u(+) are real as is everything else in Eqs. (4)
and (5).

The DW term (5) can be written in a more fami-
liar form,

BEk

Q j Dw

g (6 uq. (

V(6)e' ' k, n

G

where V is the pseudopotential, G is a reciprocal-
lattice vector, and

~ up .
~

is the square modulus of
the displacement of either atom 1 or 2 and equals

[u(Q,j;+ ) + u (Q,j;—) ]/2. Equation (5) is much
more difficult to evaluate than (7) because it in-

volves summing squared off-diagonal matrix ele-

ments of V V over many intermediate states. How-
ever, the form (5) has the advantage that it is easily
compared to the SE term (4) (which cannot be sim-

plified). In particular, consider the limit of (4) as Q
gets small. For an acoustic phonon u(Q,j;—) goes
to zero so the term involving e is irrelevant. The
diagonal part of I, I'( k, n, n;Q), vanishes as Q goes
to zero by the deformation-potential theorem. '

Then Eqs. (4) and (5) exactly cancel as required by
translational invariance. A long-wavelength acous-
tic phonon becomes a rigid translation of the lattice
which cannot alter the electron energy. Our calcula-
tions use the form (5} rather than (7}, but we have
verified that (7) gives exactly the same result.

The error in I arose from the labeling of atoms 1

and 2 located at positions ~& and ~&. Our energy-
band program used v

&

——(a/8)(1, 1,1) and 7 p= —'T&.

For the phonon frequencies and eigenvectors we
used bond-charge —model" programs' of Weber
which had chosen the opposite convention. Unfor-
tunately we did not notice this inconsistency
until after I was published. Thus, although the

formulas in I are correct, the amplitude u(Q, j;—)

had the wrong sign in the calculations. It can be
seen from Eqs. (4) and (5) that the sign of u(Q,j;—)

does not affect the DW term. Further, the SE term
is unaffected at values of Q near Q=O where the
modes are purely acoustic [u(Q,j;—)=0] or purely

optic [u(Q,j;+)=0]. Thus extensive tests at Q= 0
reported in I failed to detect the error. The present
calculations have been checked at all symmetry lines
and we find that Q&0 electron-phonon selection
rules are strictly obeyed, whereas the previous calcu-
lations contained violations.

III. PSEUDOPOTENTIAL AND DEFORMATION
POTENTIAL

The DW terms (5) or (7) require the pseudo-

potential V(q) only at reciprocal-lattice vectors G,
and the value V(0) at 6=0 occurs with vanishing

weight. The values V(G) are taken from band

theory. ' Unfortunately there is ambiguity in the
pseudopotential V(Q+6} for Q&0 which enters

the SE terms. Strictly speaking, this should not be

exactly the same pseudoIiotential as occurs in band

theory. In place of (Q+G) V(Q+G) there should be

g ~ '(Q+G, Q+6')(Q+6') V, (Q+6'), (g)
G'

i.e., the screened gradient of the bare potential.
Note that the screening and the gradient operators
only commute in a homogeneous system. Also the
band-structure pseudopotential V only equals the
screened bare potential e 'Vb if the potential Vb is

very weak although the discrepancy is probably not
large for Si and Ge. '

The rigid-atom model ignores these difficulties
and assumes that when an atom moves the pseudo-
potential moves rigidly. This model becomes
very reliable at large ~Q+G~ corresponding to
V(r) for small r where the inner electrons reside.
However, for small

~
Q+6~ or large r the outer

valence electrons deform in a way which remains

largely unknown.
There is an infinite variety of rigid-atom models,

one for each possible way of splitting the total po-
tential of the periodic crystal into a sum of identical
potentials centered on each atom. In reciprocal
space we can draw any curve V(6) which passes
through the known values V(G) when q=G. Each
curve corresponds to a possible splitting of the total
potential. In I we drew a curve which passed
through V(0)= —2'/3 where ez is the free-
electron Fermi energy, following guidelines reviewed
in Ref. 13. However, this choice for V(0) is not
compulsory except in a nearly-free-electron metal.

Recently, ' Glembocki and Pollak (GP) calculated

Q&0 matrix elements for phonon-assisted indirect
transitions in Si and Ge. Their model, nearly identi-
cal to ours, yielded good agreement with experiment.
However, ' Bednarek and Rossler (BR) improved
the agreement by making a very different extrapola-
tion of V(q) for small q. The idea is that the BR
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dE~
V = —, tr=(k, n) . (10)

Relative shifts of different levels with strain (for ex-

ample, dEsldV) are easily calculated and directly
measurable by optical techniques. Absolute shifts
are hard to calculate because of ambiguity in the ap-
propriate fixed-energy reference. For example, the
muffin-tin zero is not a meaningful reference. There
is no ambiguity in Eq. (8}, which would correctly
give acoustic-phonon scattering. Another unambi-

guous procedure would be a long-wavelength
"frozen-phonon" calculation of the change in elec-
tron potential. Recently Verges et al. ' have
described a simpler method for calculating absolute

energy shifts by specifying that the self-consistent
potentials have long-range Coulombic tails which
vanish at infinity. Their procedure yields numbers

which agree well with experimental values of:-
from dc transport in III-V—compound semiconduct-
ors. For Si and Ge the data scatter widely; the com-
parison with theory is satisfactory but less meaning-

ful. The rigid-ion model makes a prediction about
volume deformation potentials which has absolute

meaning only if the rigidly moved potential is
correctly chosen. This can be checked by compar-
ison with the calculation of Ref. 17. The simplest
procedure for doing the calculation is to alter the
lattice constant from a to a(1+a) where a is
—, 5V/V, V being the volume. When the potentials

are moved rigidly, the Schrodinger equation be-

comes

O=det
(k+G)' —e 5--,
(1+a)

G—G'

(1+0.)' 1+~

potential might represent a more realistic rigid-
pseudoatom model, or more likely, contains empiri-
cal adjustments which make up for a possible inade-

quacy of the rigid-pseudoatom model at small q.
The ideal test of the model for V(q) at small q
would be a study of the electron interaction with
small-q acoustic phonons, i.e., the acoustic deforma-
tion potentials. Unfortunately this is a subject fu11

of confusion.
Suppose the crystal is given a homogeneous exter-

nal strain e~p. Then the shift 5E-„„ofthe energy of
the state k, n, to linear order in strain, is given by
the deformation potential:" p,

5E-„„=:"p(k, n)e p. (9)

If the strain is hydrostatic, e~p={5V/V)5 p, the
volume dependence of the energy is

Pl Si

0.0
q (2'/a)

-0.2
D

-O.C

{ and Poliak)

rgstresser

FIG. 1. Two pseudopotentials used for Si. Both agree
with V~ of Cohen and Bergstresser (Ref. 18). V~ is pat-
terned after Ref. 16 and is used in all the final calcula-
tions. V~, patterned after Ref. 15 and I (Ref. 5), gives
very similar results. For Ge, see Fig. 2 of I.

and V(dE-„„/d V) ( V being the volume) is

, d—E-„ /da B. ecause of the volume factor (I+a)
which normalizes V(G —G'), the results depend on
V(O) sensitively. Specifically, the answer is that
V(dE-„„/dV) equals —V(0) plus the results ob-

tained with V(0) set to zero. The BR potential for
Si has V(0)=0 and gives V(dE/dV)= —8.0 and
—9.0 eU, respectively, for the conduction-band {I&5)

and valence-band (I 25) states at k =0. This agrees
fairly well with the values —8.2 and —7.9 eV found
by Verges et al. ' However, the GP potential
has V(0}=——e~= —8.4 eU which gives3

V(dE/dV) close to zero for the states at k=O.
Note that the directly observable shifts of the gap
Es (or any other interband gaps) with volume
remain independent of V(0).

This result convinced us that the BR potential is a
serious alternative to the potentials used by GP and
by us in I. Therefore we constructed two pseudopo-
tentials for Si, shown in Fig. 1. Both are chosen to
pass through the Cohen-Bergstresser' empirical
values of V(G&0) and to vanish beyond
G=(2n/a)(4, 0,0). The potential labeled V~ is ex-
trapolated to V(0)=0, while potential Vs uses
V(0)= —2e~/3. The potentials V~ and Vs closely
resemble the BR and GP potentials but no attempt
was made to reproduce these potentials exactly.

The significance of deformation potentials in the
electron-phonon problem is that they give the long-
wavelength intraband matrix elements for scattering
by acoustic phonons:

(k+Q, n
~

V,"g""
~
k, n) =ig~u~(Qj): p(k, n-) .

(12)

This is simply the deformation potential theorem, '

and iQ up is the strain e ~. From Eq (15) of.paper
I we find
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BI'p(k, n;n, Q}
:-~p(k, n) =

a Q=O
(13)

-3—

Ge
lp

DW
total

We verified that the same volume deformation po-
tentials emerged from Eqs. (13) and (11}.

IV. RESULTS
U

CV
Ul

As in I we used 59-plane-wave band structures
and performed the Q sums on a discrete mesh of 89
k points in the irreducible 4, th of the Brillouin
zone. The spectral functions g F(k,n;0) were

computed for valence- and conduction-band states at
k =0 in Si and Ge with the use of the tetrahedron
method. ' These calculations took -8 h of central-
processing unit (CPU) time for each element on a
Honeywell-Bull 66-80P computer. Because of the
large time required all calculations were debugged
with the use of 15-plane-wave energy bands, which
needed only -10 min of CPU time. We found to
our surprise that the potentials Vz and Vq gave vir-

tually indistinguishable results for g F in Si using 15
plane waves. The reason is partly because the DW
terms which yield the main contribution to the ener-

gy shift are the same for potentials Vz and Vz. In
the SE terms only acoustic phonons are sensitive to
the difference between potential Vz and potential Vq

and acoustic phonons tend to contribute less than
optic phonons. For example, in the table of Ref. 16,
potentials 1 and 2 are essentially Vz and V~. For
Q=(2n/a)(0. 85,0,0) the optic-phonon effects are
large and not sensitive, whereas acoustic-phonon ef-
fects are small and sensitive. However, the insensi-

tivity to the small-q pseudopotential is greater than
can be explained this way. A phonon Q,j contri-
butes to the SE part of BE /Bn . via virtual tran-kn Qj
sitions to all available intermediate states. It must
be that this sum over states is less sensitive than the

5 10 15 20 25 30 35
A(meV)

FIG. 3. Spectral function g F for the I 2 (conduction-

band) state of Ge. This corrects Fig. 5 of I.

individual matrix elements to V( q } at small q.
The insensitivity of g F and

E & „(T) to V(0) is a

happy result because as mentioned in Sec. III there
is no unique prescription for this part of the pseudo-
potential in pseudoatom theory. Our final calcula-
tions for Si used potential Vz. For Ge we continued
to use the potential of I which has the form of po-
tential Vq.

At low temperatures, &&SD, the T dependence of
Ek„derives mainly from long-wavelength acoustic

phonons and thus is sensitive to V(q) at small q.
However, the shift ~-k is very small and probably

not measurable in semiconductors. However, in no-
ble metals, de Haas —van Alphen measurements of
the T dependence of neck areas has shown a T
behavior which can be attributed to ~-„„(T)scal-

ingas T .
The calculated spectral functions g F(Q) are

shown in Figs. 2—5 for the states at the k =0 gap,
i.e., I 25 and I &5 in Si and I 25 and I z in Ge. The
I'qs valence-band states (Figs. 2 and 4) show very
similar behavior in the two elements. The SE terms
suppress strongly the acoustic phonons and enhance

25—

20—

Ge

DW

total

L3)

Si r25
---—DW

total

L3

10— Xe
L3

Ig
I

r/
g

JI

12C:
U
C4
cn 8—

5 10 15 20 25 30 35

A(meV)

FIG. 2. Spectral function g F(Q) for the I 25 (valence-
band) state of Ge. This corrects Fig. 6 of I. Dashed
curve is the DW contribution proportional to F(Q)/Q.

6010 20 30 40 50
Q (meV)

FIG. 4. Spectral function g F for the I &5 (valence-
band) state of Si.



27 TEMPERATURE DEPENDENCE OF THE DIRECT GAP OF Si AND Ge 4765

0 ———
h

LL -10—
Ch

-15—

Si C ———Dw15 total

I

10 20 30
0 (meV)

I

40 50
I

60

FIG. 5. Spectral function g F for the I 15 (conduction-
band) state of Si.

strongly the optic phonons. The behavior of the I 2

state (Fig. 3) is surprisingly different: All phonons
except small-Q acoustic ones are enhanced. The er-
ror made in I had very little effect on the I 2 state,
but a major effect on the I 25 acoustic-phonon con-
tribution. The I i5 state (Fig. 5) has a third kind of
behavior. The DW term acts to increase the energy
of the I &5 state, unlike the case for the I 2 state in
Ge which decreased in energy. The SE term
suppresses the acoustic contribution (while leaving it
positive) and gives a large negative contribution for
optic phonons which overwhelms the small DW ef-
fect. A partial explanation will be given shortly.

The temperature shifts bE z „(T) of the four

states is shown in Fig. 6. Note that zero-point
motion gives significant shifts, -50 meV upwards
for valence-band states and -15 meV downwards
for conduction-band states, or a total reduction of

-0.065 eV of the band gap. Band theorists current-
ly strive for accuracy at this level and zero-point
shifts need to be recognized as a significant factor
limiting the accuracy of energy-band theory. To our
knowledge this is the first calculation of the zero-
point renormalization which correctly treats SE as
well as DW effects. For all states studied except I 2,
the DW terms by themselves overestimate the
thermal shifts. However, the zero-point shifts are
often underestimated by DW. The reason is that at
T=O the shift bE(0) is proportional to the area
under g F(Q), whereas the high-T shift bE(T) con-
tains an extra factor 2k&T/fiQ in the integrand
which weights acoustic phonons more heavily than
optic ones. Thus for the I 25 state in Ge, the area
under g F is enhanced by the SE terms but the
thermal shift (minus first moment) is reduced be-
cause of the suppression of acoustic phonons. In Si
the I 25 state has the area under g F unchanged by
SE terms but the thermal shift is again reduced.
The l i5 state has the sign of the area (and the zero-
point effect) reversed by SE terms. The thermal
shift is only very weakly T dependent because of a
strong tendency for the positive effect of acoustic
phonons to cancel the negative effect of optic pho-
nons.

The directly measurable quantity is the shift of
the lowest direct gap bEO(T) shown in Fig. 7. The
experimental points for germanium were obtained
by subtracting from the data of Ref. 21 the effect of
thermal expansion [Eq. ( 1)] obtained from the
temperature-dependent expansion coefficients of

200 400 600

-0.05—

-0.05

-0.10)I
0.15

0.10

Ge

-0.10—

0
0) 0

I—
ED

UJ
CI

-0.1

ooo ex

0.05

200
T (K)

400 600 -0.2

FIG. 6. Temperature-dependent shifts hE „„(T) of
k=O states in Si and Ge. Zeros correspond to rigid-
crystal bands. Shifts are not zero at T=O because of
zero-point renormalizations.

FIG. 7. Calculated shifts of the k = 0 gaps b,EO(T) vs
temperature (solid lines). Dashed curves are the DW con-
tributions. Dots are experimental (see text).
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TABLE II. Electron two-phonon deformation potentials Dl in eV as defined by Eq. (14) for
states at k =0 in Si and Ge and phonons at points X and L. In addition to the total, the DW
part is given, and the contributions to the SE part from the lowest eight intermediate states are
listed separately. When the intermediate state is doubly degenerate, the contribution shown is

half the total contribution of the doublet. Similarly, when the phonon is doubly degenerate,
the contribution shown is one-half the contribution of the pair. Occasional small contributions

(&0.3 eV) represent forbidden transitions which appear as weakly allowed because of small

truncation errors. The contribution to dE „„/dT at T & 8D is given by 2D&kqT/3NMco+&&a .
This table corrects Tables I—IV of I.

Initial
state

Intermediate
state X,(TA)

Deformation potential (eV)
Phonon branch

Xi(LA,LO) X4(TO)

Ge I 2g Xi(v)
X4(v)
Xi(c)
X4(c)
DW

Total

1.
0.

—82.
0.

160.
—18.

21.
130.

—60.
—16.
160.
250.

100.
83.

—2.
—36.

160.
360.

Si I 25 Xi(v)
X4(v)
X,(c)
Xg(c)
DW

Total

0.2
0.

—140.
0.

190.
—110.

9.
100.

—58.
—10.
190.
210.

73.
51.

—2.
—29.
190.
300.

Ge I 2 Xi(v)
X4(v)
X,(c)
X4(c)
DW

Total

0.
0.
0.

—12.
—18.
—50.

0.
0.

+ 230.
0.

—18.
+ 420.

0.
0.
0.

—1.
—18.
—74.

Si I)5 Xi(v)
X4(v)
X,(c)
X4(c)
DW

Total

0.2
10.
2.

—1.
48.
36.

1.
32.
47.
—8.
48.

130.

15.
0.

71.
—0.1

48.
18.

Ref. 2. We used (dEsldP) z 13 meV/kbar (——Ref. 2),
a value obtained for P & 10 kbar. Values as high as
15.3 meV/kbar are obtained through quadratic fits
to data for P(100 kbar. We feel that the linear
data for the lower pressure are more suitable to our
purpose. The agreement between theory and experi-
ment shown both for Ge and Si in Fig. 7 can be con-
sidered as satisfactory. In both cases inclusion of
SE terms improves considerably this agreement and
corrects most of the discrepancy found with the use
pf pnly the DW terms. Qne shpuld ppint out,
however, that the experimental data for silicon cor-
respond to the Ei edge (-3.4 eV) which is nearly
degenerate with the I &5~I i5 edge but also contains
transitions between valence and conduction bands

along the I 111] directions. A detailed calculation
of temperature coefficients of the I 111) gaps as a
function of k would be of interest. We have not
performed it here as each k point would require 6
times more computer time than at point I .

We have listed in Table I all relevant calculated
and experimental linear temperature coefficients of
the lowest direct gap of Ge and Si in the
(200—300)-K range. It is apparent that when SE
and DW effect are combined, the result depends
strongly an which state is considered. Further in-
sight can be obtained by examining contribution of
individual phonans. Table II gives an analysis for
X- and L-point phonons. The results are expressed
in terms of the two-phonon deformation potentials
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TABLE II. (Continued. )

Initial
state

Intermediate
state L3(TA) L i(LO)

Deformation potential (eV)
Phonon branch

L2(LA) L 3(TO)

Ge I gs L2(v)
L~(u)
L3(v)
Li(c)
L3(c)
L~(c)
DW

Total

0.
0.5
0.

—54.
—51.

0.
160.

—25.

12.
0.

190.
0.
0.

—0.3
160.
530.

0.
180.

0.
—140.
—11.

0.
160.

3.

120.
0.

640.
0.
0.
0.

160.
1460.

si r,', L2(v)
Li(u)
L3(u)
Lg(c)
L3(c)
L2(c)
DW

Total

0.
0.3
0.

—79.
—47.

0.
190.

—25.

2.
0.

170.
0.
0.

—0.1

190.
490.

0.
110.

0.
—83.
—12.

0.
190.
62.

84.
0.

460.
0.
0.
0.

190.
1120.

Ge I q Lq(v)
Li(u)
L3(v)
Li(c)
L3(c)
L~(c)
DW

Total

0.
0.
4.
0.
0.
0.

—18.
—42.

0.
3.
0.

560.
0.
0.

—18.
540.

0.
0.
0.
0.
0.

—4.
—18.
—56.

0.
0.
0.
0.

—17.
0.

—18.
—90.

Si I 15 L~(u)
L I(v)
L3(v)
Li(c)
L3(c)
Lq(c)
DW

Total

7.
0.

23.
0.
0.

—29.
48.
30.

0.
9.
0.

80.
—80.

0.
48.

—45.

18.
0.

52.
0.
0.

—14.
48.

—52.

0.
16.
0.

19.
—660.

0.
48,

—1350.

D&. Suppose the phonon Q,j has amplitude u
&

..QJ"
Then D

~ can be defined in terms of the shift in ener-

gy of the state k, n due to virtual emission and reab-
sorption of this phonon, i.e.,

= —,D~(k, n;Q, j)( )2,
QJ

(14)

where a is the lattice constant. The typical value
shown for Dj is -340 eV for I zz states, about 70
eV for the I 2 state and ——200 eV for the I &5

state. The DW terms do not vary but the total D~'s
show large fluctuations around these averages, i.e.,

between a minimum of 3 eV ( for Ge, I'2q electron
and L, phonon) and a maximum of 1500 eV (same
electron with L3 phonons}. The small value came
from an accidental cancellation. The largest values
always occur in SE terms when a strongly allowed
phonon couples via an intermediate electron state
with a small energy denominator. For I 25 valence
bands the small denominators occur for A3 and L3
states in the [111] direction. The denominator
E(I 25) —E(L3) is 0.75 and 0.9 eV in Ge and Si,
respectively. The L2(LA) and L 3(TO) phonons are
allowed (where LA is longitudinal acoustic and TO
is transverse optical} but the latter couple more
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strongly than the former. This is the origin of the
enhancement of optic phonons seen in Figs. 2 and 4.
The corresponding acoustic suppression is related to
the fact that the L3(TA) (where TA is transverse
acoustic) phonon is forbidden to couple I q& to L3.
An unfortunate large and erroneous violation of this
selection rule (Table IV of I) was responsible for our
incorrect finding in I that acoustic phonons were

enhanced.
Ge and Si differ strongly in details of conduction

bands. The Ge I 2 state is nearly degenerate with
both X~ [E(I'2)—E(X~)=.08 eV] and L~
(E(I 2)—E(L ~ }=0.3 eV] states. Only the
X~(LA,LO) (where LO is longitudinal optic) pho-
nons at 0=28.7 meV couple I 2 to X&. The
anomalously large D& at this point has little effect
on g Fbecause of two factors: (1) Little phase space
carries phonons of this energy, and (2} nearby elec-

tronic states have energy denominators of opposite
sign so that the contributions from states in this re-

gion tend to cancel. The Q-space summation suffers
from computational ambiguities in this region be-

cause of the vanishing energy denominators which
occur on a surface in Q space. To handle this a
phenom enological Lorentzian damping factor
I =0.1 eV was used in the denominator. Reasons
were given in I for believing that our results are not
sensitive to the exact choice of I .

Similarly, only one phonon branch, Lz(LA}, cou-

ples I"2 to L ~. Little effect can be seen at
to(L2)=25.7 meV in g F The un. iform enhance-

ment by SE terms of nearly all phonons for Ge I 2 is
a result which depends on all of Q space and the ab-

sence of any sharp enhancement at particularly
resonant energy denominators.

The Si I ~5 conduction-band state is quite far in

energy from X&. At the L point, two nearby states
occur, E(I »}—E(L~~=1.4 eV and

E(I'~s}—E(L3)= —0.5 eV. From Table II it can be

seen that neither allowed phonon has a large cou-

pling to L
~

and only the L 3(TO) phonon couples I »
strongly to L3. The large negative D~ arising from
this transition accounts for the sharp negative reso-

nance of g F at to(L3)=60.9 meV for the Si I'».
Thus we are able to account a posteriori for much of
the odd behavior of g I'. Clearly it would be diffi-
cult to guess a priori the relative quantitative impor-
tance of the various special points in the Brillouin
zone.

V. CONCLUSIONS

The main conclusion of this work is that SE ef-
fects are very important. Earlier work reviewed in
Ref. 1 had suggested that DW terms alone could ex-

plain most of the results. This now seems incorrect.
Figures 2—5 show clearly that the complete theory
(DW+ SE) is distorted away from the simple DW
theory. The integrated effect on dEO/dT is to
reduce the DW predictions by factors of 1.7 (Si, 300
K) and 1.3 (Ge, 300 K). The details of the physics
are more strongly affected. The early successes of
DW theory must be somewhat spurious, deriving
from the flexibility of empirial nonlocal pseudopo-
tential models, as suggested in Ref. 1, and from the
fact that sometimes the total measured temperature
coefficient is compared with the calculated
(t}Es/AT}t without subtracting the thermal-
expansion effect. The discrepancy is then smaller
than if the comparison is carried out for (t)Es It}T)t.
correctly.

Contrary to our earlier paper (I}, we are now en-

couraged to believe in the suitability of a rigid-
pseudopotential model for these calculations. The
insensitivity of our results to V(q) at small tI re-
moves the largest source of uncertainty on this ques-
tion.

Finally we find that the SE effects are sensitive to
small details of near degeneracy in the band struc-
ture. However, selection rules at symmetry points
are helpful in reducing the number of near reso-
nances and allow rough interpretations to be made.
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