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Two-dimensional electrons in a magnetic field. III. Many-body effects
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A many-body theory is given to show that the magnetic properties of a two-dimensional

electron system are dependent on the filling factor yo
' defined as the ratio of the ideal Fer-

mi energy against the field energy. Explicit results are obtained for absolute zero and large
values of this factor. The internal energy is evaluated explicitly in consideration of the

ideal, first-order exchange and ring contributions. The result converges for all r, because

for the ring contribution no small-momentum-transfer assumption is made and for low den-

sities a rigorous analytical continuation is adopted. When plotted against yo, the internal

energy shows parabolic variations in a periodic way until it approaches the average kinetic

energy for large yo . The ideal susceptibility shows zigzag changes characteristic of abso-

lute zero when it is plotted against yo '. It is zero at yo
' ——2m+1, where it jumps from

—2m to 2(m+1), m being an integer. The Coulomb interaction suppresses the zigzag vari-

ations for small r, and inverts the oscillating pattern at r, -0.7. The oscillations thereafter

may be considered characteristic of a liquid state rather than a gaseous state as they are

somewhat different from those for small r, . The susceptibility is convergent for all r, .

I. INTRODUCTION

The de Haas —van Alphen (dHvA) effect has been
used very effectively in the determination of the Fer-
mi surface of metals. Traditionally, information on
Fermi surfaces has been obtained from frequency
analyses of the oscillating susceptibility based on the
ideal-gas theories of Onsager and of Lifshitz and
Kosevich. ' However, since around 1970 it has been
revealed that the amplitude of the oscillating suscep-
tibility deviates from the ideal-gas formula. Such a
deviation indicates that information concerning
nonideality can be obtained from amplitude analy-
ses. In 1971 Ishihara, Tsai, and Wadati' extended
the ideal-gas theory to the interacting case and de-
rived a microscopic expression which represents an
exponential reduction of the amplitude due to elec-
tron interaction.

On the other hand, it has been found that quasi-
two-dimensional electron systems in inversion layers
of metal-oxide —semiconductor field-effect transis-
tors (MOSFET) or at the interface of two semicon-
ductors such as GaAs-GaA1As show strong many-

body effects. Therefore, it has become important to
study interaction effects in these systems. Accord-
ingly, Ishihara and Kojima (hereafter, IK) investi-

gated interaction effects on the dHvA effect in these
systems. They treated both the first-order exchange
and correlation interactions between the electrons,
but reported cancellation of the terms representing
Coulomb interaction to first order in interaction.

In two dimensions a magnetic field is more effec-
tive than in three dimensions in confining electrons
into Landau levels. The two conditions used by IK,
that r, is small and the magnetic field is strong,
cause the electrons to be mostly in Landau levels

and tend to manifest the ideal-gas behavior. Hence
IK's result is understandable, but in order to find in-

teraction effects it is desirable to relax the condi-
tions. The present paper has been written based on
this observation.

We shall treat a more interesting case in which r,
can be large and the magnetic field is not very
strong under the dHvA condition. This condition
requires that the field energy must be less than the
Fermi energy but larger than the thermal energy.
Therefore, we shall reduce the temperature first to
zero before reducing the field strength; that is, the
dimensionless parameter a =Pa (P= 1/kT,
a =pttH is the field energy} is always large and can
be infinite. We shall then be able to confirm our
calculation by taking the zero-field limit. Such a
limit may not be taken in the results of IK.

In addition to the two conditions, IK introduced
further theoretical simplifications. First, they es-

timated crudely the eigenvalues of the electron prop-
agator, obtaining a rough estimate of the correlation
energy. We shall avoid such an approximation and
present a precise evaluation of the eigenvalues.
Second, IK determined the actual Fermi energy pF,
i.e., the chemical potential, as a function of the ideal
Fermi energy po ——2m.n, by using iteration, n being
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electron density. Here, and in what follows in this
paper, the units are such that A'=1 and 2m =1, m
being the electron mass. As we shall discuss shortly,
the Fermi energy is discontinuous at absolute zero,
making applications of iterative processes based on
continuity of functions undesirable.

One of the important features of the present ap-
proach is that a dimensionless parameter yo

——a /po
enters in a natural way. The inverse of this parame-
ter, yo, is commonly known as the "filling factor. "
According to the recent study of Wilson et al. , it is
this parameter, rather than electron density itself,
that is crucial in characterizing the cyclotron reso-
nance of electrons in inversion layers. Our present
treatment confirms their finding of the important
role played by the filling factor.

Another important feature of the present work is
that our theory becomes exact in the limit of small

yo. Furthermore, by taking the zero-temperature
limit in an appropriate way, we shall obtain the sus-
ceptibility in closed form rather than in series form
as has been the case in the past.

In the next section we shall treat the ideal case in
which some of the basic features of the present ap-
proach will be seen. In Sec. III we shall derive the
eigenvalues of the electron propagator to be used in
later sections. In consideration of the ideal case we

shall evaluate the eigenvalues by splitting the
domain of another important parameter y=a /pF,
where pF is the actual Fermi energy. This split pro-
vides the key to overcome mathematical difficulties
characteristic of the dHvA effect. The parameter y
is a theoretical parameter in grand ensemble theory,
while yo is a parameter of practical importance.
Section IV deals with the first-order exchange con-
tribution. For this purpose we shall make use of an
exact sum rule. Section V will treat the ring-
diagram contribution. Different from IK, we shall
evaluate this contribution for both high and low
densities analytically. For intermediate densities we
shall employ a numerical calculation. This calcula-
tion is facilitated by a close examination of the ideal
case. Since both the first-order exchange and ring
contributions are treated exactly for small y, we
shall observe an exact cancellation of the first-order
exchange contribution for low densities. Finally, we
shall put all the contributions together to investigate
interaction effects on the dHvA oscillations.

II. IDEAL GAS

According to Eq. (2.14) of IK, the grand partition
function of the ideal case is given by

g pp~4 ~2, , 4 ~, ,
cos(ln. /y) cos( ,gin)—

1n=o —— 1+,+[(—,g)' ——, j +, g ( —)'+'4n3rl. ' ' '
rl I ~ l sinh(n 1/a)

(2.1)

1 1 2 1 . lm—sin
yo y n. I, l y

(2.2)

where A is the surface area, p=1/kT, rl=ppF,
a =Pa, y=a /p~, and g is the Lande g factor. The
first two terms on the right-hand side are what we
obtain even in the absence of field. The third term
represents the nonoscillating field contribution in
which the paramagnetic and diamagnetic parts
maintain a 3 to 1 ratio as in three dimensions. The
last term is the oscillating field contribution. The
partition function is correct in the absence of terms
of order e & and higher.

Let us now consider the special case of g =2 for
explicit results. Taking the zero-temperature limit,
we arrive at a number-density relation in a dimen-
sionless form as follows:
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The sinusoidal oscillations of the number density
which is represented by the filling factor
1/yo ——2mn/a are clear. The oscillations consist of
an infinite number of harmonics, but the zero-

FIG. 1. Relation between the actual and ideal Fermi
energies. The ordinate represents pF/a and the abscissa
is po/a, where p~ and po are the actual and ideal Fermi
energies, respectively, and a =@AH. Solid curve: 0 K;
dotted curve: 0.1 K, H =10 G (schematic).
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1 2m +1, 2m &1/y&2(m +1)
yp 2m, 1/y= 2m (2.3)

temperature limit has resulted in a simple Fourier
series. Therefore, by summing the series we arrive
at U/A

po4/4~

4myp —4m yp,

2m —1 & 1/yp &2m +1
4m (m +1)(2m + 1)

1/yp ——2m +1 .

(2.7)

8 ln "p

ap

We obtain for absolute zero the following result:

{2.5)

U/A

pF /4m

4m(m +1)y, 2m & 1/y&2(m +1)
1, 1/y=2m .

(2.6)

As a function of electron density, the energy is given
by

where m is an integer.
Although the average density n is given now ex-

plicitly as a function of 1/y, it is necessary to invert
the functional relation and express 1/y as a function
of 1/yp because it is the latter that can be adjusted
experimentally. This inverse relation is

2m, 2m —1&1/yp&2m+1
(2 4)2m +1, 1/yp ——2m +1 .

The variation of 1/y as a function of 1/yp is illus-
trated in Fig. 1. As we see, 1/y is constant about
I/yp ——2m and jumps from 2m to 2(m+1) at
1/yp= 2m + 1. y= yp when 1/yp is an integer.
Hence 1/y makes zigzag changes about the line
1/y=1/yp. Such abrupt changes are of course due
to the zero-temperature limit and will be rounded
off at low but finite temperatures. The dotted curve
in Fig. 1 corresponds roughly to the case of T =0.05
K, H=10 6, anda=12. 8.

The internal energy is given by

M =2m yp —m
2Npg

(2.8)

X 1=2m 2m ——
Xp yp

(2.9)

where N is the total number of electrons, pz is the
Bohr magneton, and Xp=(1/2m )(e /c ). These
physical quantities will be graphically illustrated
and analyzed later in comparison with the cases
with Coulomb interaction.

III. EIGENVALUES OF THE ELECTRON
PROPAGATOR

We remark first that the eigenvalue expression
given by Eq. (4.2) of IK is exact. In order to per-
form the a integration there, IK approximated the
integrand function for small, intermediate, and large
regions of a, estimating the dividing a. Therefore,
their result is very approximate.

We have found that a new exact approach can be
made by modifying the later theory of Isihara and
Ioriatti (hereafter, II). Let us start with their Eq.
(2.5) which is also exact:

Since pp
——2mn with n for the number density,

pp/4m =n (pp /2). Hence (U/A)/(p p/4n ) rep-
resents the energy per particle in the unit of pp/2.

Similarly, the magnetization M and the suscepti-
bility per unit area are found for
2m —1 & 1/yp & 2m + 1 as follows:

1

cosh{ , gan )—
AJ(q) = ( —)"+'z"

2n „, sinhna

X dx exp( n~ j ~

x /a) si—n(Q sinx) exp[ —Q (1—cosx) cothan],
p

(3.1)

where

Q =q /cop, a=Prop/2, cop 2eH/c, z =e, g——=Pp~ . (3.2)

We note that the dummy summation variable n appears not only with z but also with the spin factor g. Hence
it is convenient to split the spin-up and spin-down contributions from each other and write

AJ(q)= —, AJ. q p+ —+AJ q p —+ (3.3)
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If Az (q) is evaluated, we can get both contributions easily by replacing p by p+g/4.
According to Eq. (3.6) of II we have

AJ(q)= f exp — x sin(Qsinx) g 28(k}exp[—Q(1 —cosx}]Lk[2Q(1—cosx)]dx,
2m- 0 a Ic =0

where

(3.4)

8(k)=
exp[2a(k + —, )—q]+ 1

(3.5)

At absolute zero 8(k) is a step function:

1, k&m, e &p r&E +i
2

0, otherwise
(3.6)

where e =(m + —, )coo. We can express the k sum by a contour integral

g 28(k)exp( ——,y)Lk(y)= . f dtexp( 2'yt)—g(t)=F (y),
1

k=0 27Tl
(3.7)

where the path c encircles 1 and

y =2Q(1 —cosx} . (3.8)

oo

A,'(q)= f dx exp( —m
~ j ~x/a)

)&sin(Qx)F (c x) (3.12)

As before, m represents an arbitrary integer and Q
has been defined in Eq. (3.2).

In view of the ideal case, we evaluate g(t) for
restricted domains of 1/y such that
2m —1&1/y&2m +1. The result is

'm

1
(1 r}+-

27T

2m —1 & 1/y & 2m + 1 (3.13)

where c =(4mQ}'~ and r is the solution of

g(t) = —I+ t+1
t —1

2m —1&1/y&2m +1

(3.9)

4 8mys J
1 —T T

2 2 7

where

(3.14)

in the zero-temperature limit. Hence introducing
Eq. (3.9}into Eq. (3.7) we obtain

X2
F (y)=4m + J2(X)+X 24m

2m —1 & 1/y&2m +1 (3.1o)

where

2(my (3.11)

Hence for large m the higher-order terms are in-
creasingly small.

We take the zero-temperature limit in an ap-
propriate way. In particular, a in Eq. (3.4) shall be
kept finite because it is associated with the index j
of the eigenvalues. The integrand of Eq. (3.4) is
large for small x so that we arrive at

S =q/pp, J=27TJ/'g . (3.15)

Note that, except for the restriction on y which
caused the appearance of m, the eigenvalue expres-
sion is similar to that in the absence of field. This
similarity facilitates our further calculations. We
also put g =2 for simplification.

IV. EXCHANGE EFFECTS

where

The exchange contribution to the grand partition
function is given by a sum rule which the eigen-
values satisfy,

ln=, „=—,f dq[A(q) —A(0)]u(q),
A

2(2~)2

(4.1)
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u(q)= 27Te

q
is the Fourier transform of the Coulomb potential
and

we can use A& (q) to obtain to leading order in y the
following result:

A(q)= —,[A (q)+A i(q)],
A(q)= lim —QAJ(q) .1

n- 13 J.

Since A(q) is defined by a sum of the eigenvalues, Here

2(m —1) &1/y&2m . (4.3)

2
2 &m

PF 2
A (q)=.

2
2 &m

pF ~ &m &1m

1 ——cos 's +—s (1—s )', s & 1
7T

(4.4)

where

K =(2my)', s =s/(2a ) . (4.5)

The corrections to the result in Eq. (4.4) are of order 0(PFs y } or higher. Note that the combination of pF
with a characterizes A(q).

The exchange contribution shall be combined with the ring-diagram contribution. It is canceled out by a
term in the ring-diagram contribution for low densities, as will be shown in the next section.

The exchange contribution to the grand partition function is given to lowest order in y by

2pAe PF m PF m 1

2( —1) 1/ 2
3~'

Ui„/A

PF/4m.

where

Note that the grand partition function does not explicitly depend on g. This turns out to be so to all orders in
y. Hence the first-order exchange contribution will not change the nuinber-density relation of Eq. (2.2).

The first-order exchange contribution to the internal energy is given to leading order in y by

8~2 irm+&m —i
3 3

' 1/2

r„2(m —1) & 1/y &2m (4.7)
37T 2 yp

r, =e /v 2pp, yp
——a /pp .2 ~t 2 2

1.2004

In the absence of a magnetic field, the energy is reduced to the known result, in rydbergs,

Ui„/A Ui„e 8v2 1

pp/2~ N 4 3m r, r,

(4.8)

(4.9)

It is easy to prove that the corrections to the result in Eq. (4.6) or (4.7) are smaller by the factor y . One can
rewrite Eq. (4.7) in terms of pa rather than pr by making use of

yo

and also

2
'2

yp ——2m +12m 2(m +1}
2m+1 ' 2m+1

[2(m + 1)] yp, 2m + 1 & 1/yo & 2m +3
(4.10)

Ui„/A ~ (2m)3~2+[2(m +1)]3~& y
rs 1/2, 2m ( 1/y (2(m + 1 )

PF/4~ 2 yp

where

(4.11)
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8 2
l'g = rs .3' (4.12)

In concluding this section, we list relevant formulas for the internal energy, magnetization, and magnetic
susceptibility which are correct to the first-order exchange contribution and to lowest order in yp..

U/A 2

p p/4r
=4uimyo 4—uim yo, 2m —1&1/ye&2m+1,

where

(4.13)

r ' 1/2

ui ——1+ r (2m)
~2 2m —1

377 2m

' 3/2 '

m —1

m

' 1/2
2m +1

2m

' 3/2
m+1

m

=1+hu1, (4.14)

2v2
ui ——1+ r, (2m)3'

2m +1
2m

1/2 ' 3/2
2m —1 1+ m —1

2m m
' 1/2 ' 3/2

2m —1 2m +1 1+ m+1
2m 2m m

=1+hu2 . (4.15)

Note that in the high-density limit u1 ——u2 ——1, while for m ~ 00

8 2
EQ1 ——EQ2 ——— rg3'

The magnetization M and susceptibility (per unit area) are given by

M/A =2(1+oui)m yo —(1+oui)m,2

2pB Il

x =2(1+oui)m —(1+oui )—,2 m

2Xp 3'p

where Xp ——e /2m' as before, and 2m —1 & 1/gp &2m +1.

V. RING-DIAGRAM CONTRIBUTION

The ring-diagram contribution to the grand partition function is given in terms of the eigenvalues also,

1n"„= I dq g [u(q)AJ(q) —1n[1+u(q)AJ(q)]I .A

2(2m)~

(4.16)

(4.17)

(4.18)

(5.1)

We evaluate the grand partition function for specified intervals of y. The eigenvalues as a sum of the spin-up
and spin-down parts can be given to order y by

AJ(q)= —,[Az(q, m —1)+AJ(q,m)], 2(m —1) &1/y&2m

=A.j(q, m ——, ), 2(m —1) &1/y&2m (5.2)

AJ. (q, m) =AJ (q),
where A~ (q) is defined by Eq. (3.12).

For absolute zero, it is appropriate to replace the sum over j by integration. The convenient variable is

7TJ 27TJ

Qa Pqi

(5.3)
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We introduce also a new variable p defined by

2pF
(5.4)

and then transform the set of variables (z,p ) into a new set (g,P ) in accordance with

p =cosh/ sing

~z
~

=sinhg cosP

To first order in y we can use Eq. (3.13) to arrive at a simple expression

AJ(q, m) = (1—cog ) .1

2m

The g integration in ln=, can be carried out, leading to
'2

e 4 2PFK ~I2
In=, = —PA— f dP(cosP —cos2$)(1—cosP) sing

4

(5.5)

(5.6}

X ——x(((})F(x(P)) I5($)
2

——x (P)+—x'(P) —x'(P)F(x (((})) I&(((})
4 2

where

x (P)=r, (1—cog) sing,

r, = =r, , « =[(2m —1}y]
e' (y~yo}'"

2pF~
' 2'I'~

[2(m —1) &1/y&2m] (5.7)

(5.8)

(5.9)

F(x)= dg 1+x cosh/
'

I,(P}=—
2 + —, ln tan+c~

2sin P

(y)
cosiy 3

1 g cosy
4sin P

' 2 sin t})

(5.10}

(5.1 1)

(5.12)

Note that the grand partition function depends on
the combination of pF with ~. Therefore, it will not
contribute to the number density; that is, the Fermi
energy will stay as in the ideal case.

The integral F(x} is tabulated for x&&1. Note
that the variable x is proportional to r, as in Eq.
(5.8) and that no small momentum-transfer approxi-
mation has been used, that is, Eq. (5.7) is exact. We
now consider high- and low-density cases separately.

A. High density

Ro= —0.6137, ao ——[(2m —1)yo]'
' 1/2

rs
R i ———0.2441, rs ——

v 2a' pp
(5.15)

Introducing Eq. (5.13) into Eq. (5.7) and carrying
out the P integration we arrive at

4
ln", = PnA ao(R—p+R—, r, lnr, +R2r, },

4

(5.14)

where

For high density, x is small and we find

F(x)=—ln —+O(x lnx) .
2

(5.13)

R =1.139.

The ring-diagram contributions to the internal en-
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ergy and susceptibility are given by

U, /A
=(2m —l)y x,

PF /4n.

X(Ro+Rir, lnr, +R2r, ),
&r 2m —1

Xp
Xp 2

Ri R2 —Ri
X Rp+ r lnr+

2 ' '
2

~s

where 2(m —1)& 1/y & 2m and x, =e /2a .

(5.16)

(5.17)

e4 2 Lp L~ L2ln, =PnA —~0
Pg Pg

2(rn —1}&1/y&2rn (5.21)
where

Lp=
3

= 1.0267
2

[I'(1/3)]

L i
——— ———0.848 83,8

3~

=0 088 328
12(hr

L2 ——

Under the same approximation as for Eq. (5.2) we
find for 2(m —1)& 1/y & 2m

ln=, =—
'2

e &Pzir ir / 1

4 m' 2 2mi

fc+im (rg)
X

(s —2) sinns

where 2(m —1) &1/y&2m and

w/2
I{s}=

[sing(1 —cog)]'

1+s
2

1+—S
2

'. I(s),

(5.19)

1 s + 1 1
2(})

sin P s+2 sin P
Note that Eq. (5.19) represents a rigorous analytical
continuation into low-density regions: The high-
and low-density expressions for the grand partition
function hinge upon the change in the analytical
character of F(x) which takes place at x = 1. After
a straightforward calculation we arrive at

B. Low density

In low density, i.e., r, &1, x(i)}) is large Th. e
function F(x) is expanded as follows:

2

F( }=—' g ( )s2"-' r "+'
p n h:" 2

(5.18}
The grand partition function can be given rigorously
in terms of a Mellin transform in the following
form:

e4 2Liin= i„———PnA —s.o (5.22)
4 r,

Hence the second term in Eq. (5.21) cancels precise-
ly this first-order exchange contribution. Note that
the right-hand side of Eq. (5.21) represents essential-

ly the ground-state energy for large r„
Ur /A U]x/A

PF /4~ PF /4~

Lp L2
x (2m 1)y -2/3+ ~/3

~s ~s

2(m —1) &1/y&2m (5.23)

where x, =e /2a as before.

VI. RESULTS AND DISCUSSION

We have evaluated the grand partition function in
consideration of the first-order exchange and ring
contributions. For the latter we have obtained both
the high- and low-density results. Our evaluation
has been facilitated by splitting the domain of y
such that 2m &1/y&2(m+1). We have observed
that both exchange and ring grand partition func-
tions are determined by pF~ or pF~ rather than by

pF itself. Therefore, the number-density relation
will not be changed from the ideal-gas case. There-
fore, no change in the period of the dHvA oscilla-
tions is expected. This is in conformity with what
Kohn observed some years ago.

Assembling all these contributions we obtain the
total energy as follows.

We have
A. High density [2m & 1/y & 2(m + I }]

U/A

PF/4n
= [4m (m +1)—r,'(2m +1)3/tyo ' +a i(2m +1)yo +a2(2m +1)' yo

+a3(2m+1)'/ yo In[(2m+1)yo](y (6.1)
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where r,
' has been defined by Eq. (4.12) and

3
rs

Qi =Rpr' Qi= (Ri lnr, +Rz —Ri In@2),
2

The R's are defined in Eq. (5.15).

R)
&3= — rs .

2v'2
(6.2)

We have

B. Low density [2m &1/y&2{m+1}]

U/A
4m (rn + I)—x,(2m +1)

pF /4m

where

4 2 e 2

x, =e /2a, r,' = rs

2a(2m+1)in &2[(2m+1)yp]i/2
'

(6.3)

(6.4)

The calculation has been based on small y or large m. For practical purposes the y
' interval should be

changed into that for yp
' based on Eq. (2.3}. We find then for the interval 2m —1 & 1/yp & 2m + 1 the follow-

ing result:

U/A (2m —1(2m + 1)=4[1+f(r,)]myp —4 1+ i f(r, ) m yp,
po/4n' (2m)

where the function f(x}is given by

(6.5)

x — ' —0.6137—0.1726x lnx+0. 8653x+, x &1
1.2004

(6.6a)

f(x)= '

1.2935 0.14018

x 2/3 x 4/3 x )1. (6.6b)

Hence the magnetization is

(6 7)

M/A
2 1

(2m —1)(2m+1)=2 1+ r, e(r, ) m y
2pB 7 (2m)

Note that f(r, ) is equal to r, [(ground-state energy
minus kinetic energy} in the absence of field] for
high and low densities. Hence we might suspect
whether the same relation holds even in the inter-
mediate densities. That this is indeed the case can
be proved easily by using Eqs. (5.22) and (5.7) with
the help of Eq. (2.3). Therefore, our final result,
which is correct to order yo, is

U/A =4[1+r, e(r, ))myp
p04/4

(2m —1)(2m + 1)

(2m}

The susceptibility is obtained from

M/A

&0 'VOPB~

All these formulas are
2m —1 & 1/yp & 2m + l. In Eq. (6.8)

8@2 1 8
e(r, )=-

37T rs 7T

(6.9)

restricted to

(6.10)

[where 4 is the P integral of Eq. (5.7) in which r, is
replaced by r, ] is the sum of the first-order ex-
change and ring-diagram contributions to the
ground-state energy in the absence of field.

In e(r, ) the ring contribution is important for all
densities. However, in the neglect of higher-order
exchange contributions, it is safe to limit our results
to small r, of order 1. Nevertheless, we remark that
Ferrell's condition

d
i [r, e(r, )] &0

drs

—[I+r,e(r, )]m . (6.8)
is satisfied for all r, . Since e(r, ) decreases in pro-
portion to —r, for large r„ it is easy to see that
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FIG. 2. Internal energy per particle in the unit of p 0/2
as a function of $0 =p 0/0, where p 0 =2771k and
a =p&H. The curves from top to bottom correspond
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FIG. 4. Susceptibility of interacting electron systems.
An inversion of the oscillations takes place at around
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The zigzag changes are suppressed by Coulomb interac-
tion for small r, . The right-side graph corresponds to
larger values of the abscissa.

the above inequality is satisfied.
The internal energy U is illustrated in Fig. 2 in

the dimensionless form of Eq. (6.5) as a function of
the filling factor 1/yp in the vicinity of the point at
which e(r, ) vanishes. The left-side graphs corre-
spond to smaller yp

' than those on the right side.
The top curves corresponding to r, =0.6 are similar
to the ideal case. The energy U shows parabolic
changes, the average of which approach gradually
Npp/2, N being the total number of electrons.
Hence the oscillations on the right side have very
small amplitudes despite their appearance in the
graph. These oscillations are larger for small r„
that is, they are suppressed by Coulomb interaction.
The middle curves represent this suppression. At
r, -0.7 the ground-state energy vanishes. Accord-
ingly, the internal energy shows very little change,
and then varies concavely downward, as shown
more clearly in the bottom curves which correspond

to r, =1.4757. Note that the oscillations are some-
what clearer than the case of r, =0.7, around which
the interesting inversion of the oscillating pattern
takes place. Note that in all these cases the periodi-
city remains the same. Note also that the cusps
representing minima (r, &0.7) or maxima (r, &0.7)
of the internal energy appear whenever 1/yp is an
odd integer.

Because the energy is parabolic, the magnetization
curves are almost straight. Since these curves are
similar to those of the susceptibility, we have omit-
ted their illustrations.

The ideal susceptibility in the unit of Xp is illus-
trated in Fig. 3 by dotted lines. The susceptibility
shows prominent zigzag changes. These changes are
rounded off at finite temperatures, but the basic
features of the oscillations will be preserved. Note
that the susceptibility jumps at the odd integral
1/yp, and also that the peak values are even integers.
Hence the peak values increase as 1/gp increases.
The right-side dotted lines show such a variation.
The solid lines corresponding to r, =0.5 have been
obtained from the high-density series of Eq. (6.6a).
Note that the oscillations are suppressed by interac-
tion and also that on the left side the susceptibility
does not vanish precisely at the even integral 1/yp.
As 1/yp increases, however, this deviation gradually
disappears and only the amplitude suppression
remains. In spite of these deviations, the overall
features of the oscillations are the same as those of
the ideal case.

Figure 4 illustrates the important changes which
take place around the point where the energy e(r, )
vanishes. The solid lines corresponding to r, =0.6
still show the ideal-gas characteristics. However,
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the dotted lines for r, =0.7 show opposite zigzag
variations, due to the change in the sign of the
ground-state energy e(r, ). These opposite oscilla-
tions may be considered to be characteristic of a
liquid state as they become enhanced, rather than
suppressed, by Coulomb interaction. The bottom
curves in Fig. 4 illustrate this trend clearly.

In all these cases, the amplitude of the oscillations
is increasing for larger 1/yo. However, it is prob-
ably more difficult to make observations at large
1/pp because the oscillations become very rapid.

It is known that the ground-state energy becomes
negative due to Coulomb interaction. Indeed, the
exchange and correlation contributions have been
considered important for metallic cohesion. It is

known also that electrons will eventually form a
crystalline lattice. Since the lattice energy is nega-
tive and the gas energy is positive, the ground-state
energy must vanish at a certain point if a single en-

ergy function represents both phases. According to
our present analysis, this takes place at around
r, =0.7 where the field effects on the system show
significant changes. Such changes are interesting
and await experimental tests.
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