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The thermodynamic properties of the double sine-Gordon chain are studied both analyti-
cally and numerically. Particular attention is given to the regime in which there are two
different kinks (small and large) on the chain. The shape and energy of kinks are found in
the continuum approximation. Comparison is made with numerical determination of the
kink energies. The free energy, entropy, etc. of the chain are found. They are dominated
by the small kinks. To see evidence for the participation of the large kinks the fluctuation
in chain position and its equation of state are examined. The current carried by the chain is
calculated. An unusual polarization precursor to activated conductivity is found. The po-
larization precursor is determined by the small kinks; the conductivity is determined by the

large kinks.

I. INTRODUCTION

The thermodynamic properties of the sine-
Gordon (SG) chain have been treated extensive-
ly.!=® Of particular importance is the low-
temperature regime in which the solitons play a
dominant role in the determination of the properties
of the chain.

A closely related problem is that of the double
sine-Gordon (DSG) chain, which has been shown to
model several physical systems, e.g., the spin
dynamics in the B phase of superfluid *He,” some
features of the propagation of resonant ultrashort
optical pulses through degenerate media,® nonlinear
excitations in a compressible chain of XY dipoles
under conditions of piezoelectric coupling,” macro-
molecules, etc.

In this paper we analyze the equilibrium and
nonequilibrium properties of the DSG chain. For
certain values of the parameter 7 characterizing the
DSG potential two classes of kinks are present on
the chain. This property endows the DSG chain
with features that are qualitatively different from
those of the sine-Gordon chain. Particular atten-
tion is paid to these new features.

In Sec. II we review the properties of the DSG
chain that are the subject of this investigation. In
Sec. III we present the Hamiltonian describing the
DSG chain and derive the equation of the motion,
which is then integrated to yield various types of lo-
calized nonlinear excitations. The energies associat-
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ed with these excitations are also obtained. In Sec.
IV we formulate the equilibrium thermodynamics
using the transfer-integral technique. The problem
of the calculation of the partition function is re-
duced to the problem of finding the eigenvalue
spectrum of a transfer integral. This problem can
be reduced further to the problem of a
Schrodinger-type differential equation in the impor-
tant case of strong coupling and low temperatures.
This case is treated in detail in Sec. V, where the
band structure of the eigenvalue spectrum of the
differential equation is described using a tight-
binding approximation. The thermodynamic func-
tions are explicitly calculated in the various cases,
and special attention is given to those properties
(external torque, phase fluctuations) associated with
the kinks. In Sec. VI, we consider the nonequilibri-
um problem resulting when the DSG chain is sub-
ject to a uniform external field. The phase current
and the polarization found from the numerical solu-
tion to the transfer integral current problem are dis-
cussed. Analytic and numerical results are com-
pared throughout.

II. THE DOUBLE SINE-GORDON CHAIN:
A REVIEW OF ITS QUALITATIVE BEHAVIOR

In this section we describe the qualitative proper-
ties of the double sine-Gordon chain. The various

properties that we describe are analyzed quantita-

474 ©1983 The American Physical Society



27 DOUBLE SINE-GORDON CHAIN 475

tively both analytically and numerically in the sec-
tions that follow. The analytic work employs the
equation of motion for particles on a discrete chain
and the continuum approximation to this equation
of motion; i.e., it employs the equation of motion
for the phase at x, 6(x),

2

£ (sinf427sin20)=0, (2.1)

é—c29xx+ 4

that follows from the energy

H{[0]= [ dxp| 716"~V (cos6-+1 cos26)

r
+ 70§ , 2.1)

where ¢2=I /I, d*=T/V,, and p is the linear-
particle density. The energy in terms of the phase
at site i,0; (i =1,...,M +1), is given by

%16.,-2— Vi(cosO; +1n cos26;)

H-3

i=1

Ta?
> (6 41—6;)

+ (2.2)

and the corresponding equation of motion. The nu-
merical work will employ only the discrete energy.

A. 7 and regions I, II, and IIT

Depending upon the value of 7, the single-
particle potential,

V(8)= —V(cosf+n cos20) ,

has one of three shapes [Eq. (2.1)]. These shapes
shown in Figs. 1—5 define regions I, II, and IIL
The critical values of n that separates regions of
different shape are associated with the curvature of
V(6) at 6=0 and 6=

At 6=0,

V(O)/Vi]=—(1+7)+6*2n+75) ,

and this curvature changes sign at 7 =— %; the
. 1

boundary I-Ilis at n = — .

At 0=,

[V(8)/V]=—(—cos¢+7cos2¢) ,
where 6=m+¢ and
[V($)/Vil=1—n+¢X(—5+27),

where the curvature changes sign at n= +%; the
boundary II-III is at 7=+ . The kinds of kinks
that can be present on the chain are different in re-
gions I, IT, and IIL

B. Kinks in regions I, II, and III

The kind of kinks that are possible in each of the
regions shown in Fig. 1 can be found from integra-
tion of the equation of motion, Eq. (2.1), by quadra-
ture. In carrying through such a procedure one
finds that the kinks correspond to the possible
time-local motions of a particle in the potential
—V(0). This is shown in Fig. 2 where the poten-
tials —¥V(0) for regions I, II, and III are shown
along with an energy diagram for the time-local
motions to which the kinks correspond. In region I
there are two kinds of kinks, a small kink denoted
by < and a large kink denoted by >. In region II
there is one kink which at =0 is the sine-Gordon
soliton (or antisoliton). In region III there is a kink
and a critical bubble (or bounce). Figures 3—5
show the kink structure. Details are in Sec. IIT A.

C. Kink energies

The existence of kink solutions to Eq. (2.1) fol-
lows from the analysis of that equation remarked
on above. Once the solution 6(x) for a particular
kink is found it can be substituted into H(6) and
the energy of the kink determined. The physical
mechanism that gives rise to the kink structure is
the competition between the single-particle potential
(that wants phase evolution to occur over as short a
length of chain as possible) and the elastic energy

I III

= +0.25

S

FIG. 1. 7 regions. As 7 in Eq. (2.1) varies the quali-
tative nature of the single-particle potential changes.
The behavior of V(6) is shown for regions I, II, and III
(see below Eq. (2.2) and Eq. (3.2)).
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FIG. 2. Kinks. ‘The solution to Eq. (2.1) or Eq. (3.3)
is equivalent to the motion of a particle in —¥(6). In
this picture the kinks correspond to motions that are lo-
cal in time. There are two possible such motions in
—V(0) from region I: the large kink 2—3 and the
small kink 1—2. In region III there are two local
motions, the kink 1—2 and the bubble 3—3. See also
Figs. 3-5.

(that wants the phase evolution to occur over as
long a length of chain as possible).> Upon modeling
this competition in terms of the height of the
single-particle potential barrier, 4, the strength of
the elastic force, B, and the total phase evolution in-
volved in producing the kink, A (see, e.g., the small
kink in Figs. 2 or 3), it is easy to show that the ener-
gy of a kink scales as

E¢KVABA.

B, a measure of the elastic energy, is independent of
7. Both 4 and A depend upon 7. At 7=0, the
sine-Gordon kink, we have 4 =2V, A=27. In re-
gion I, for 17~—0.25 we have A=-—V[1
—(1/8|7|)] and A=2cos™!(§7) for the small
kink, etc. Thus the energy required to produce a
kink is a complicated function of the  which deter-
mines the single-particle potential and phase evolu-
tion involved in the kink. See Figs. 3—5 and 7.
Details are in Sec. III B.

D. Kinks or solitons

At 17=0 the DSG chain reduced to the SG chain.
The SG kinks are solitons in the strict sense'’; they
retain their integrity (including velocity) after col-
lision with one another pairwise, etc. Extensive nu-

merical work by the Manchester group'! and
Kumar and co-workers”!? has shown that the DSG
kinks are not solitons. The radiation of phonons
during collision signals their inelastic character and
the evolution of a kink pair into a variety of final
states.

E. DSG kinks in equilibrium statistical
mechanics and dynamics

1. Statics

The DSG kinks are topological excitations; they
can be at rest. To create them requires a rest ener-
gy, the kink energy from Sec. IIC above. Thus the
kinks will be seen in the equilibrium thermal prop-
erties of the chain through their Boltzmann factor
signature exp(—pBE,). In region II the participa-
tion of the kinks in the equilibrium thermal proper-
ties will be much like that found for the sine-
Gordon chain.! ¢ Region I will be more interesting
because two rather different kinks are present. (For
7 << —0.25 the two kinds of kinks become almost
similar in energy and structure.) Consider the
behavior of the chain for 1< —0.25. The kink
most copiously present, the small kink (which al-
ways has less rest energy than the large kink, even
at 7 << —0.25) will make itself known in the ener-
gy, in the entropy, in the specific heat, etc., through
the Boltzmann factor exp( —ﬁE¢<) that determines
N <, the equilibrium number of these kinks. At low
temperatures the free energy will be given by

F=F0+N<AF(T,N<) »

where Fy is the free energy of the kinkless chain.
On one hand, the large kink will also be present but
it will be hard to see its thermal signature,
exp(—BEg ), against the background of small
kinks. On the other hand, when phase evolution is
involved it is accomplished by the creation of equal
numbers of small and large kinks. Phase evolution
from 0 to 27 requires one small and one large kink.
Thus evidence for the presence of large kinks is
found in the fluctuations, {8(x)?) —(6(x))?, or in
the total phase evolution, ® =(68,,,,—0, ), that re-
sults from application of a torque, the ®—r rela-
tion, or equation of state. Details are in Secs. IV
and V.

2. Dynamics

When each particle on the SG chain (or each
piece of the chain) is subject to a constant external
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torque a steady-state phase current results. This
current has been the subject of a number of stud-
ies.>!® The feature that emerges from these studies
is that, at low temperature and low external torque,
the important current-carrying object is the sine-
Gordon soliton, the kink. We expect the same qual-
itative result for the DSG chain. The torque drives
the phase; the current that flows in response to this
drive is a phase current. A phase current, a mea-
sure of the rate of phase evolution, corresponds to
the rate of kink evolution, a kink current. The
phase evolution of a typical piece of the chain
might be 0—27—47— - - ; i.e., the phase evolu-
tion must involve both the small and the large
kinks. However, as there are many fewer large than
small kinks the current W is governed by the num-
ber of large kinks,

W «exp(—BEg ) .

Details are in Sec. VIA.

There is a further consequence of the application
of an external torque to the chain. An external
torque produces a polarization of the chain. Be-
tween two large kinks spaced apart by

(N>)"'~exp(BE} ),

there can be many small kinks, typically N </N~.
The external torque polarizes this small-kink region
of the chain, (8)40, etc. Details are in Sec. VIB.

III. THE KINKS
A. O(x)

In this section we discuss the stationary-wave
solutions of the DSG equation (the kinks) and write
down their energies. The structure of the kinks and
their energies depend upon the parameter 7, which
characterizes the shape of the potential. We begin
with the discrete DSG chain, whose Hamiltonian is
written as

M .
H=Y |316}—E(cos;+ncos26;)
i=1

E
+ 22(0;,1—6;)

) ) (3.1)

where 6; and 6; are, respectively, the coordinate and
angular velocity corresponding to the ith particle.
It may be useful to think of the Hamiltonian (3.1)
as representing a collection of physical pendula
joined by torsion springs of strength E, and placed

in an external potential equal to
—E (cos@+1 cos26)

(Ref. 2); 6; and 6; are then the displacement from
equilibrium and the angular velocity of the ith pen-
dulum, and I is its moment of inertia.

If a is the lattice constant (the spacing between
the pendula) and p a suitably defined linear density,
we can use the transformations

E1<—>p V1
and
E,—Tp/a?

to write the continuum version of the Hamiltonian
(3.1), which reads:

H=f % 92—V1(cos6+n00526)
+ % 6% |pdx , (3.2)

where 6, =06 /09x.
The potential

V(0)= —V(cosf+n cos26)

has different behavior in each of the regions I, II,
and III (shown in Fig. 1) determined by 7.

(@ n<— % The minima in V() are located at
the positions

6=cos“‘(—%17)+2n1r ,

for all integers n, and are all degenerate. There are
absolute maxima at 6=(2n + 1)7 and relative maxi-
ma at 6=2nm (see Fig. 3). The equation for the
spin dyamics in superfluid *He B belongs in this re-
gion, having n=— 1.

® |n|< -;— There are degenerate minima in
V(0) at 6=2n7 and maxima at 6=(2n + 1) (see
Fig. 4). The usual sine-Gordon chain, for which
1=0, belongs in this region.

© 7> % There are absolute minima of V'(6) at
6=2nm and relative minima at 6=(2n +1)7.
These relative minima are called “false vacua” by
Mason.!* The maxima are located at

O=cos~(—1/4n)+2nm

(see Fig. 5).
Defining ¢?>=I/I and d*=T/V;=£%? the
equation of the motion corresponding to the Hamil-
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FIG. 3. Kinks in region I. The potential V(6) for
n=—1 is plotted at the left vs 6. In the right part of
the Fig. 6(s) is plotted vs x for the undisturbed chain
(up), for the large kink (middle), and for the small kink
(down).

tonia (3.2) is
2

< | (sin6+29sin20)=0. (3.3)

6—c20,, + 7

Since we will be interested in the solutions to Eq.
(3.3) that represent waves traveling with speed v, it

FIG. 4. Kinks in region II. The potential ¥ (6) for
7=0 is plotted vs 6. In the right part of the figure 6(s)
is plotted vs x for the kink (in this case 7=0, a soliton)
and the antikink (antisoliton).

is convenient to define s=(y/d)(x —uvt), with
y=[1—(v/c)*]~'/2, and write Eq. (3.3) as

O, =sinf+ 27 sin26 . (3.4)

The kinks 6y(s) are the solutions of Eq. (3.4)
which  satisfy the boundary  conditions
O4(s =+ 0)=0,,0;, (d6s/ds) (s =+00)=0. Here
6, and 0, are minima of V(6). It is useful to note
that Eq. (3.4) is the conventional equation of the
motion for a particle of unit mass in the potential
+(cosf + 7 cos20), that is, the motion of the kinks
in the potential V(8) can be thought of as the
motion of classical particles in a potential
V'(6)=—V(0) (see Fig. 2).

Integrating Eq. (3.4) twice with the stated boun-
dary conditions, we find that the kinks 64(s) satisfy
the following equations.

(a)n<—%:
12
tan i -+ |4 —1
2 ~ 4| +1
172
16 2 1
X coth K
16| 7| l ‘
(3.5)
and
< 1/2
04 4|9 -1
tan |[— |=+
2 4im|+1
16 - 172
X tanh — s]|.
H 16| ] ]
(3.6)

The solution 6y (s), which we call the “large kink,”
links two minima across one of the absolute maxi-
ma at 6=(2n + 1)m, while the solution 6 (s), the
“small kink,” links two minima across one of the
relative maxima at 6=2n1. These kinks are depict-
ed in Figs. 2 and 3. The double signs in Egs. (3.5)
and (3.6) show explicitly the possibility of having
kinks and antikinks.
®) 7] < 71;:
21

tan =+ (14+41)~"2 cosech[(1+47)/%] .

(3.7

The potential has the simple structure shown in
Figs. 2 and 4, and we obtain only one type of kink,
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which we call 63 (s) because it goes continually to
the solution (3.5) when 7 goes through — -1-.

(c)n>%.

0>
an [’f’ =+ (1+4n)~2cosech[(1+47)! %] .

(3.8)

This solution connects two absolute minima of
V(6). The wavy shape of the kink shown in Fig. 5
near the maximum ¥V (0) is due to the passage of
the chain over these maxima and the intervening re-
lative minimum. There are also solutions Gf(s)
which tend asymptotically to the same relative
minimum when s — + o0 and s — — 0,

=+ (4n—1)"2sech[(4n—1)"%] .

68
¢
tan 2

(3.9)

This solution hangs over one of the maxima into
the absolute minimum, as it is shown in Fig. 5. The
point of its closest approach to the absolute
minimum lies at

0=2tan"'[(49n—1'"?],

the position at which the potential reaches the same
value it has as the relative minimum. The unstable
object described by Eq. (3.9) has been called a criti-
cal bubble.!

The dynamical behavior of the DSG kinks has
been extensively studied by several groups.''!?
These studies reveal that the collisions between
kinks are not radiationless; therefore, the Kkinks
described here do not qualify as solitons.

The argument of the hyperbolic function appear-

T I I T
V(6)
2
Lg (1)
:]
8
6 o
-2n
| 1 | |

FIG. 5. Kinks in region III. The potential V(8) for
n=+1 is plotted vs 6. In the right part of the figure
6(s) is plotted vs x for the bubble (middle) and for the
kink (down). For the bounce only a small part of the
chain is not at large potential energy. The “anomalous”
slope of 65 has been exaggerated for the sake of clarity.

ing in the equations above for a kink can be written
in the form y(x —vt)/L (7)), where L (1) character-
izes the length of a kink at rest. This proper length
of the kinks is plotted in Fig. 6 as a function of 7.
For example, if |7| <+, L(n)=(1+49)"'"%4.
Note that L(n) gets larger and larger as we
approach 1 = — %: Owing to the flatness of the po-
tential, it takes the kink a long distance to reach the
minimum. On the contrary, if |7 | is large the po-
tential minima and maxima are sharp and L (7) is
small. The length of a moving kink is Lorentz-
contracted to L'(n)=L (n) /7.

B. The energy

From Eq. (3.2) and Eqgs. (3.5)—(3.9) it is easy to obtain the kink energies E(n). We express these in terms
of Eg (0)=81V E,E, =81V ,Tp, the rest energy of the usual sine-Gordon soliton.

@n<—7:
E (m)=vlE§(0)/8|7]| 121[(16m*— D 24 —cos~ X5 | )], (3.10)
EF(m)=y[E (0)/8 7| 21[(160* =)' —cos~ (5 |9 |)] - G3.11)
® 7] <3
E = YIEZ (0)/4]n | 21(2] 7| Y21 4+49) 2 +sin" (2| 7| /2], n<0 (3.12)

YIE (0)/47'2]{20'%(14+40) >+ 1n[(1+47)"/*+27'*]}, 1>0. (3.13)
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Note that when 17—0, both Egs. (3.12) and (3.13) go to the sine-Gordon limit.

c)n> %:
E} (q)=v[E} (0)/47'21{20"2(1+40)' > +1n[(1+4n9)'*+29' %]} , (3.14)
ES()=y[E} (0)/47']{20' *(4n— 1> —In[(4n—1)'*+29' ]} . (3.15)

The factor y in Egs. (3.10)—(3.15) shows explicit-
ly the relativistic form of the energy. It is interest-
ing to note that

E¢>(11—>+oo), Ef("—’+°°)~’]/E¢>(O)17|/2’
but
E¢>('r]——>—oo), E¢<(77_’_°°)~YE¢>(0)|7]|1/2/2.

This factor of 5 arises because the kinks 64 and 65
span only a phase of 7, while the two types of mini-
ma found in case (c) are nondegenerate for any fin-
ite value of 7 and thus both 64 () and Bg(n) must
span a phase of 27 when 71— .

IV. EQUILIBRIUM STATISTICAL
MECHANICS

In this section we present the formalism which
will be used in Sec. V to compute the thermo-
dynamic properties of the DSG chain in the
strong-coupling, low-temperature limit. The parti-
tion function for a DSG chain containing M +1

L(n)/L(0)

FIG. 6. Kink length. The proper length of the kink
is plotted as a function of 7 (in units of the proper
length at 7=0). The asymptotic behavior for large |7 |
is shown. This length is a measure of how much of the
chain is involved in the kink structure.

particles (pendula) and embedded in a temperature
reservoir at temperature T is

Z(T,®)=QRuwkgT/HM-1"27 4.1)

where we have made explicit the dependence of the
partition function on the total phase ®, which is de-
fined by

M
Q=3 (6;11—6;)=0py41—06, , 4.2)

i=l1

and is due to the applied torque 7. We write the
constraints on the partition function as 6,=6,
Oy 1=®+6, with 6=0 if 7> —-0.25 and
0= |cos“'(% [7])] if n < —0.25. In the last case,
the first particle is therefore constrained to be at the
bottom of the right-hand well in the first unit cell.
The configurational partition function is

Zv: f dG] e d6M+18(01——6)
X8(Oay 41— B —O)e P O Oust)
@.3)

with
M+l
V(Oy,...,.04 1= 3 [—E(cosb;+mcos26;)
i=1
+(Ey/2)(6; 11 —6;)] .
(4.4)

The thermodynamic properties of the system can
be obtained from Eq. (4.1). The Helmholtz free en-
ergy is

F(T,®)=—kzTInZ(T,®) . 4.5)

Since dF = —SdT —7d®, the entropy S and the
torque T are given by

oF
S=— aT |, (4.6)
and
oF
= 3 T, 4.7

Other quantities of interest are the internal energy,
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U=F+TS, (4.8)
and the specific heat at constant length,
U
=\ - 4.
&= ot |, “9)

We will evaluate Z, using a complete set of
orthonormal states {1,(0)}, whose completeness re-
lation

86—6)= 3 ¢,(0)09,(0") (4.10)

allows us to write
Z,=3 [ do,,...d0y,14,(®+0),(0),(6)
v

—BV(6,,..
e

.,0 )
X MY Orr 11) - @.11)

We choose 1, and ¢, to be the right- and left-

hand eigenfunctions of the transfer integral prob-
lem!516

fd6i+1€ ' e'+l)¢v(6i+1)=e st'pv(ei)’

K (6;,6; 1) = —Ay(cosb; +n cos26;)
+(Ay/2)(6; 1 1—6;), (4.14)

where A, =pBE, and A,=pE,. Repeated use of Eq.
(4.12) in Eq. (4.11) leads to

Z,= ¢,(0+0)y,(8)e P

(4.15)

If we were using periodic boundary conditions,
i.e., 0;=0) 4, it would be simpler to symmetrize
the kernel and work with only one set of eigenfunc-
tions. However, since we intend to study the system
when it is acted upon by an external torque and the
isotropy of the chain is broken, we are forced to
keep explicitly different right-hand and left-hand
eigenfunctions. By inspection of Egs. (4.12) and
(4.13), we see that these eigenfunctions are related
by
¢v(0)=ehl(cosﬂ+cos29)

The single-particle and two-particle averages can
be readily obtained as'®!®

(F165:)) =53 $D+OW (01,

Uh() . (4.16)

4.12) i
oo~ M~ By, —iBe,
—K(8,,6, —Be,
[ d6:8,46,0e K liri) =e 7" p 00, 1), 4.17)
4.13) with
with fuv=[ d68(OF(©),0) (4.18)
]
<f(e,~+,)g<ek+1)>=zi S P+ OWL(O)f ygyne M P TUTIB THEG (4.19)
v p,w'

Our problem has been reduced to the calculation of the solution to the transfer-integral problem defined by

Egs. (4.12) and (4.13), i.e.,

© . ) — . —8.)? —
f—wd6i+le}~1(oos6,+ncos29, )e Ay(6; 1 —6;) /21/’1;(91-{..1):3 B€v¢v(9i) ) (4.20)

Using a cumulant expansion® we cast Eq. (4.20) in a
differential form,

A,(cos@+1ncos26) D2/2A —BE
e e T0)=e “YPL0),

4.21)

where D=d /d0 and BE,=pe,— %ln(k2/27r). Two
simple special cases are as follows.

(a) E,=0. The pendula are independent and Eq.
(4.20) yields

[

¢(6i)=ehl(cosei+1]cos28,-) ) 4.22)

(b) E;=0. We have an (M + 1)-particle elastic
band or a piece of spring steel, and Eq. (4.21)
reduces to the differential equation

1 a
2), d@?

with B€=v2/2),, and
$,(0)=135(0)=(2m) 12 —¥0

¥(0)=PBE,(0) , (4.23)
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The thermodynamic properties of the system
described by Eq. (4.23) have already been dis-
cussed.!?

A more interesting case of Egs. (4.20) and (4.21)
occurs when A;>>A;>>1: the torsion spring is
much stronger than the external potential, while the
reservoir temperature is low as compared to the
height of the periodic barrier. The phase evolution
occurs over a large number of sites and a good ap-
proximation to the solution of Eq. (4.21) can be ob-
tained from the associated differential equation’?

1 d2
—— —— __\s(co 0+ 7 co 26 1[; 0 ——/361/} 9).
2}"2 d@z I( s s26) V( ) V( :

(4.24)

If =0, this is Mathieu’s equation. Below we study
the equilibrium statistical mechanics of the DSG
chain in the strong-coupling limit using Eq. (4.24)
and the collection of formulas recorded here.

V. EQUILIBRIUM STATISTICAL MECHANICS
IN THE STRONG-COUPLING REGIME

In this section we discuss the properties of the
DSG system in the low-temperature, strong-
coupling regime. Particular attention is paid to the
torque and displacement fluctuations, which are
sensitive to the behavior of the kinks on the chain.
According to Eq. (4.15) the thermodynamic proper-
ties can be determined from a knowledge of the
eigenvalue spectrum of the transfer integral Eq.
(4.12). In the strong-coupling regime we replace
Eq. (4.12) by the Schrodinger-equation approxima-
tion, Eq. (4.24). We describe the behavior of the
eigenvalue spectrum of Eq. (4.12) and use of that
eigenvalue spectrum in Eq. (4.15) and related equa-
tions to learn about the thermodynamic properties.
Two cases are treated, 7 < —, where two types
of kinks are present, and 7> —%, where there is
only one kink and the thermodynamic properties
are much like those of the sine-Gordon chain.

A n<—7

In this case the potential ¥(6) has the form
shown in Figs. 1 and 3. First, let us determine the
ground-state energy level €y corresponding to a sin-
gle well. This is done by taking a quadratic approx-
imation to the potential near the bottom of the well;
the first energy level is therefore the ground state of

a harmonic oscillator. We then use perturbation
theory to include the contribution of the anharmon-
ic terms. We obtain

Bewo=—M{ |n] +5|n]
—[(16 | 7| 2_1)/16 [7] MAL]V2
+(64|7]2—7)/32(16 | 7| 2= DAA,) .
(5.1

Equation (5.1) suffices to evaluate the main con-
tributions to certain thermodynamic functions, e.g.,
the entropy and the specific heat, at very low tem-
peratures. However, to calculate those quantities
associated with the overall behavior of the chain,
e.g., its length, fluctuations, etc., we need to have
some knowledge of the kinks. These make them-
selves known through the band structure. Under
the conditions we are interested in, the tight-binding
approach presented in detail in Appendix A gives us
the essential features that are called for. The tight-
binding bands are given by Eq. (A8), and

EE =0+ (12 +13+2t,t,c082mv) /2, (5.2)

where ¢, and ¢, are the tunneling rates through the
small and large barriers, respectively. At low tem-
peratures only the “minus” band will be relevant.
The bands are shown in Fig. 7. A satisfactory esti-
mate of the tunneling rates that go into Eq. (5.2)
can be obtained using the Wentzel-Kramers-
Brillouin (WKB) approximation, which yields the
formula®

E(T) —pyp
=—"¢
o

= , (5.3)

E(n)/E(0)

FIG. 7. Kink energy. The kink rest energy is plotted
as a function of 7 (in units of the =0 kink energy, the
sine-Gordon kink energy). Note the different asymptot-
ic limits as 7— + o0 and P— — w.
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with
P,'(T])'—_ (27\,2)1/2

bi
X fa_ [ BE(T)+A(cosO+17 cos20)]'/%d6 ,

(5.4)
where
BE(T)=[(16]9|*~1)/16 7| ]'2 (A /A,)"
(5.5)

is the appropriate harmonic-oscillator ground-state
energy measured from the bottom of the well [see
Eq. (5.1)], and a; and b; are the turning points for
the barrier characterized by the tunneling rate ¢; (cf.
Fig. 15). The numerical value of the WKB prefac-
tor in Eq. (5.3) can be improved,'” but the most im-
portant feature of Eq. (5.2) is the relationship be-
tween its exponent and the static kink energies.

—MlIn]+178]7]]
e

Z,=(1/2m) | Xo(0

One can verify by an explicit calculation of the in-
tegral in Eq. (5.4) that

Py=BE§(n), P,=BEj (7). (5.6)
The tight-binding wave function can be written
as
Y0)= 2m)~ 12 ™[ Xo(0—2mj —©)
J
+Xo(0—27j +0O)],
(5.7)

where Xo(0—27j —©) and X(0—27j+0O) are
functions strongly localized near the right- and
left-hand minima of the jth cell, respectively. (See
Appendix B.) We can use these results and Eq.
(4.16) to obtain an expression for the configuration-
al partition function, Eq. (4.15),

—(M/2)In(A,/2m) —MBE, 172, .~ MB(t2 41242t t cos2my)1/2
)Ize /2, oof e —2miNv, 1+, dv

Using Eq. (B9), we can write the total partition function as

Z=QmkgT/IM =D\ Ay( || —1/16|7]|) /4

with
TNyt =(172m) [ e
Therefore, the free energy is
F(T,®)=Fy(T,0)+AF(T,®) ,
where

kBTl (2mkpT)*
n

Fo( T,O):

and
AF(T,®)=—kgTInJy(N;t,t;) .
AF (T,®) contains the effect of the kinks.

o MPB(t2 12 42t t,c0sx)1/2
sze 1782 12 dx

~1/2
(5.8)
]1/4e_(M/2)1n(A2/21r>e _MBEOOJM(N;tI;tZ) , (5.9
(5.10)
(5.11)

ZﬂkBT o
In QE +Méy, (5.12)
2

(5.13)

The first term on the right-hand side of Eq. (5.12) must be kept if the effects of the finite size of a short
chain are to be considered. However, we will be interested only in the case M >>1 and thus this term will be
neglected. From Egs. (5.1) and (5.12) we calculate the value of some thermodynamic functions in the “one-
well” (F =F,) approximation:

172
2wk T (16|79 |*—1)E, (64|71 |2=TkpT
So=Mkpy | 1+1 , (5.14)
=M | I E,) 7 16|71 E; 16(16 7 |2— DE,
(64 |n |2=T)kpT)?
Uo=M |kgT—(|n| +1/8|7|)E + , (5.15)
0 B [7] |m|)E; 32016 |7 |2 DE,
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(64| |2=TkT

: . (5.16)
16(16 | 7| 2—1)E,

Cu():MkB 1 +

These results contain the phonon and lowest-order anharmonic contributions.

Let us now proceed to analyze the thermodynamic properties that depend upon the kinks, i.e., AF(T,®P) in
Eq. (5.11). The number of thermally excited kinks in the sine-Gordon chain has been found to be
N(T)=MPp|t |, where |t | is the tunneling rate. Therefore, a natural generalization permits us to express
the number of thermally excited large and small kinks in the DSG chain at low temperatures as

N>(Th=MB|t,]| , (5.17a)
and
N<(I)=MB|t ]|, (5.17b)

respectively. Since [f,| < ||, it is clear that N>(T) <N <(T). There will be also N large and N small
kinks created by the external torque. The phase evolution corresponding to these 2N kinks is ®=27N.

The integral in Eq. (5.10) can be carried out exactly, yielding a superposition of associated Legendre func-
tions, but we do not find this procedure particularly illuminating. We will consider two special cases that are
amenable to an easy physical interpretation.

(1) {(N(T))}{*>>N, with (N(T))y denoting the harmonic mean between N >(T) and N <(T). The tem-
perature is not too low and we have a reasonably large number of thermally excited kinks compared to the
number of torque-generated kinks. A quadratic approximation for the cosine is possible and the integration
can be easily performed. We obtain

172
(t1+¢;) (t;+1,)
Nit,t))= | —— M (t,+1t ———=N? .1
JM( yH 2) [2TrﬂMl‘1t2 exp[B (¢ + 2)]exp 2BMt1t2 (5.18)
The contribution of this term to the free energy is, according to Eq. (5.13),
kgT kpT (t;+1t;) (¢t +15)
=— 1 —M(t +———(kgT)*N?. .
AF(T,®) 2 2eM 6, ttt)+ g, ke DN (5.19)

Thermodynamic quantities like U, S, and C, are modified; for example, the specific heat has an extra contri-
bution, .

(N(D)) gy

———————  (E>—E<Y42E>?N>(T
N>(T)+N<(T) r2A D

AC,(T,®)=(1/2k5T?)

(E>)*  (E<)

2E<)>N<(T)—N?
+2AESPNHT) N>(T) N>(T)

. (5.20)

The specific heat is increased by the interaction between large and small kinks and is decreased by the interac-
tion between topological and thermal kinks. The largest contribution to C, is (E <)*N <(T)/kpT? Small
kinks are more relevant to the specific heat than large kinks.

Of particular interest is the applied torque, Eq. (4.7),

T=—(kgT/27)[N/N<(T)+N/N>(T)] . . (5.21)

The corresponding result in the sine-Gordon problem is? 7= —kgz TN /27N (T): For a fixed phase evolution
2mN, the torque required to support that phase evolution is proportional to 1/N (T); the more thermal kinks
the chain has, the easier it is to generate phase. According to Eq. (5.21), the increase in the number of one
type of kink in the DSG chain facilitates the phase evolution over the corresponding barrier. Since
N<(T)>N>(T), and often N <(T)>>N >(T), the torque required to provide a given phase evolution is deter-
mined by the number of thermally excited large kinks.

We can also compute the average phase displacements. From Eq. (4.18),

Fuv=(172m) 3, 2™ =RIf (1) (5.22)
!
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where f(I,1)=2m)* if f(8)=6 and f(I,1)=(2m)’I% if f£(0)=6* and we consider only the most important
term. Setting Egs. (5.8), (5.10), and (5.22) into (4.17) we easily get

1 Ip—n(N =13t 00, (L521,2,)
6 =—— Ll . .
SO =5 ;f( : Inu(Nst1,t) 623
This expression can be evaluated in the quadratic limit with the help of Eq. (5.18),
(t,+t,)M |2 t+t.0M  [Nn )
Opy))=|—77"T"T"" (L1) ————— | -1 . 5.24
FOn)= g —m | 2T BPP | = g =) | M (5.24)

If (N(T))y >>1, the sum can be replaced by an in-
tegral whose evaluation is straightforward. We ob-
tain

L

(6,41)=27N ” =x,P, (5.25)

(02 1) =x1D*+(2m)x, (1—x, {N(T)) g .
(5.26)

Hence, the variance corresponding to the phase of
the (n + 1)th particle is

(02,1)—(0, 41 =27, (1—x, (N (T))pg .
(5.27)

In this regime, the fluctuations in the phase are
controlled by the harmonic mean number of
thermally excited kinks. (See Fig. 7.) If N>(T)
«<N<(T), (N(I))y~N>(T), the number of
greater kinks determines the size of the fluctuations.

(2) t, <<t;. The tunneling rates through both

]

IN—I((M —n)Btz)I[(nBtz)

1
e = 2SO 0t )

[
barriers are very different and Eq. (5.10) can be ap-

proximately written as
TN st,t) = (172" [T omitngMBrsyy
=eMBI]TN(MBtZ) s (5~28)

where Iy is a Bessel function. (See Fig. 8.) The
only contribution to the band structure comes from
the tunneling through the larger barriers, the tun-
neling through the smaller ones manifesting itself
only through the splitting of the ground-state ener-
gy level. Therefore, except for the factor eMPh ac-
counting for this splitting, our problem has been re-
duced to that of a sine-Gordon chain characterized
by a tunneling rate ¢,. The properties of such a sys-
tem have been treated in detail in Ref. 2. The
correction to the free energy due to collective effects
is

AF(T,®)=—Mt, —kpT Inly(MBt,) . (5.29)

The average values can be obtained setting Eq.
(5.28) into (5.23),

(5.30)

In the limits N >>N >(T), N <<N >(T), we can obtain explicit results for the torque and the position fluctua-

tions,
kT | N>(T) 1
2 w2 — - |, N>>N>(T
2w | 2N 2N >N>(T)
T=
ksT' N
— , N«<N>(T),
27 N>(T) «<NZD

(9§+1>—<9n+1)2=k

xp(1=x,)27)*N , N>>N>(T)
xp(1—x,)2m)*N>(T), N<<N>(T).

(5.31)

(5.32)
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FIG. 8. Band structure. The tight-binding bands are
shown as functions of the tunneling rates. If ¢,=t¢,
there is only one band, meaning that all the sites are
equivalent, while if either ¢; or #, vanishes we get the
splitting corresponding to an isolated two-well system.

From Egs. (5.31) and (5.32) we can see that in the
case 1, <<t; the small kinks do not have any effect
whatsoever on the collective properties of the chain.
There may be many thermally excited smaller kinks
but the topology of the system does not allow them
to contribute to the size of the fluctuations.

We can now discuss qualitatively the expected
behavior of the system and the influence of tem-
perature. At T=0 K we have a kink lattice [Fig.
9(a)] in which small and large kinks alternate. It'is
clear that small and large kinks of the same sign
must repel each other in order to minimize the elas-
tic energy. At T=07, thermal fluctuations cause
the kink lattice to melt, and the kinks abandon their
lattice positions, moving along the chain; of course,
their motion is limited by the topological con-
straints imposed by the potential. At 7'>0 K ther-
mal kinks and antikinks appear, the number of
small kinks being larger than the number of large
kinks; if the tunneling rates are very different,
N>(T)«<N <(T), and at sufficiently low tempera-
tures the chain will have the appearance shown in
Fig. 9(b). At higher temperatures the departure of a
given pendulum from its mean position x,® is
characterized by the mean number of thermal
kinks, (N (T))}/?, through the random-walk-like
equation (5.27). If the tunneling rates are very dif-
ferent, the size of these fluctuations is determined
solely by the number of thermally excited large
kinks. At even higher temperatures the kink pic-

¢=2mN

$=27N

FIG. 9. Phase evolution: 7 < —0.25. There is an
external torque causing a total phase evolution ®=27N.
Each one of the small kinks generates a phase evolution
A=2cos~! (% |m), while each of the large kinks yields
a phase evolution equation to 2m—A. We show in (a)
the kink lattice occurring at T=0 K, and in (b) the kink
system at 7'>0 K in the case ¢; >>t,, when N <(T) can
become large while N >(T) is essentially zero. The melt-
ing of the kink lattice implies that the large kinks will
not necessarily be at their “official” positions. The
dashed lines mark the position of the degenerate mini-
ma.

ture loses its meaning and the size of the fluctua-
tions, being of the order of M!/2, is determined by
the total number of pendula in the system.

B. 17>—7:-

The potential has the shape described in Figs. 1
and 4 if |7| <% and in Figs. 1 and 5 ifn>-i—. In
both cases, however, there is only one kind of true
vacuum per unit cell. The ground-state energy level
associated with one of these vacua can be obtained
using the same approximation that led to Eq. (5.1).
We now have
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BEoo=—M{ 1+n—[(1+47)/4112,]'
+(141671)/32(14+479)A A5} .
(5.33)
The tight-binding band corresponding to these

ground-state energies has the conventional shape
described by Eq. (A10). We write

€,=€xp—t cos2mv , (5.34)

where t is the tunneling rate, which can be calculat-
ed again in the WKB approximation using Egs.
(5.3) and (5.4); the harmonic-oscillator ground-state
energy is

BE (T)=[(1+47)/4]"4 A /A% . (5.35)

A simple calculation shows that the exponential
in the tunneling rate is again proportional to the
kink energy P =BEg .

Using the tight-binding wave function,

¥,(0)=(2m)'2 Y e>™iX (6 —2m)) , (5.36)
J

the partition function is computed to yield

Z= QukgT/D™M~V2[ A My(1+47) /7?14

e—(M/z)ln(kz/zﬂe—MﬁooIN(MBt) . (5.37)

The argument of the Bessel function is again to be
interpreted as the number of thermally excited
kinks in the system.

The free energy can be obtained as the sum of

kpT 4(mkpT)*
Fy(T,0)= In 3
—kgTM In W €00
(5.38)
and
AF(T,®)=—kgTInIy(Mpt) . (5.39)

If M>>1 we get the following values for the
thermodynamic functions in the lowest order:

2‘)TkBT

(IE))'?
172

S0=MkB 1+ln

12
E,

E,

1447
4

1+16n ksT

, (5.40)
16(14+47n) E,

U0=M kBT—E1(1+7))

1+16n (kpT)?
201+47)  E,

) (5.41)

1+ (1416n) ksT

Coo=Mks 16(1+47) E,

(5.42)

The collective properties, torque, and phase fluc-
tuations are formally analogous to those corre-
sponding to the sine-Gordon problem and are
represented by the results in Egs. (5.31) and (5.32),
with the condition N >> (<<) N >(T) replaced by
N> (<) N(Th=Mpt.

VI. DYNAMICS

In this section, we examine the DSG chain in an
external field; each paritcle is subject to a uniform
external torque. Because the ends of the chain are
free and thus the torque produces a nonzero phase
evolution of the entire chain, i.e., a current, we are
dealing with a nonequilibrium situation. This prob-
lem, when studied in detail®>!>!® for the usual SG
chain, yielded the following picture for the phase-
current versus external-field characteristics. At low
fields and low temperatures, the phase evolved by a
mechanism which could be identified as the motion
of kinks that are produced by thermal fluctuations.
As the external field is increased and reaches the
same order of magnitude as the barrier height of the
SG potential [E; in Eq. (3.1)], nonlinear evolution is
found!® where the current can increase by decades
due to a small increase in the external field. Final-
ly, for large external fields and/or high tempera-
tures, the barrier to phase evolution is completely
degraded and the current is simply proportional to
the applied field, Ohm’s law.

It is clear that going from the SG to the DSG po-
tential is not going to affect the behavior of the
current at high fields and temperatures. In the oth-
er extreme, however, we might expect some novel
behavior because of the presence of extra structure
in the periodic potential and the possibility of an
additional kink. In the following, we outline briefly
our method of calculation (for the details the reader
is directed to Refs. 3 and 18) and then discuss those
new features in the behavior of the system that are
due to the modified potential.

We consider a discretized chain with M sites
whose Hamiltonian is written, Eq. (3.1),
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M
2 [ 3167 —E (cos6; +7 cos26;)

+5E5(6;41—6,)7] . 6.1)

The finite-temperature nonequilibrium behavior of
the chain is described by a Fokker-Planck equation
together with the Langevin equation associated with
the equations of motion derived from Eq. (6.1).313
In the overdamped limit, the Fokker-Planck equa-
tion describes a diffusive motion through configura-
tion space,

do M
where o), is the M-particle configuration-space dis-
tribution function and the ith component of the
current J M can be written

1

JP=_—¢ -ﬁU—,(eﬁUaM) ) (6.3)
T di

In the above,
d d

3 06; ’
7=pIy, where y is a phenomenological damping,
and

U=V+4Vey, (6.4)

where V is the potential-energy function in the
Hamiltonian, Eq. (6.1), and V,,, is the applied
torque which we take to be of the form

M
Vext= —Eo 2 0,' . (6-5)

i=1

Equation (6.2) is known as the Smolouchowski
equation (SE). In the following we shall look for a
steady-state solution to the SE. To this end we
write

oy = PV oM , (6.6)

which defines the quantity w,,. Using (6.6), the
probability current becomes

JW=_ iaMi,(wM +BVey) - 6.7)
T di

One may generate from the SE

2 (x)

a sequence of reduced SE’s by integrating out in-
creasing numbers of site variables. In particular, by

integrating out M —1 coordinates, we obtain the
lowest-order SE,

)
alJ1(1) (6.8)

where J, is a one-particle current. Thus J; is a con-
stant current which we denote by W. Solution for
W can be self-consistently enforced upon assuming
a single-particle form for the function w,,

M
wy= > w(i). (6.9)

i=1

Then from Eq. (6.7) we obtain

) ;o (l)=—Wr, (6.10)
a1
where
}\.OEBEO ,’ (6.1 1)

and

o= [7 d2---dMay(1,...,M) (612

is the single-particle nonequilibrium distribution

function, which itself depends on w (1) through Eq.

(6.6). By requiring that w(0)=w (0 +27m), with m

an integer (which follows from the periodicity of

oy in the steady state), we obtain from Eq. (6.10)
J— 2771,0

= 6.13
Wr T (6.13)

0 04(0)

Equations (6.10), (6.12), and (6.13) can now be
solved self-consistently for W and w (@) for a given
set of potential parameters, external field, and
viscous damping. Equation (6.12) is solved by a
transfer-integral technique which uses the normali-
zation

27
[, onerdo=1. (6.14)

We note that the high-field, and/or high-
temperature asymptotic behavior discussed above
can be immediately read from Eq. (6.13). In these
limits o, ~const, which can be obtained from the
normalization, Eq. (6.14); thus

wr_Ey

B ar
The participation of kinks in the current can also be
inferred from Eq. (6.13) since it is the minimum
value of o(0) which determines the magnitude of
the current. At low temperatures and small fields a

(6.15)
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strong minimum occurs at 0 ~7. We thus have
Wr=2mho(m) . (6.16)

The value o(m) is related to the probability that a
particle is on the barrier,’ i.e., at 7. This probabili-
ty is proportional to the number of kinks for it is
the kinks that carry particles onto the barrier.

A. The current

Let us examine the effects of the potential param-
eter 77 on the characteristics of the system. In the
following, we use a system of reduced units whereby
energies are measured in units of the 7=0 barrier
height E,. These reduced quantities will usually be
denoted by an asterisk (viz., B*=BE,, a=E,/E,,
V*=V/E|, etc.) and in particular, from Eq. (5.11),
Ao=PB*a. All results to be reported in this section
will be for coupling strength £=E,/E;=1.0.

In Table I we show the current W as a function
of 7 at the temperatures B*=2.0 and 4.0. There is
a maximum in W, at n~ —0.8, for both tempera-
tures. [It is clear that there must be a maximum
somewhere since W is (presumably) continuous in
1, positive, and vanishes as 7— + o.] The reason
why the maximum in fact occurs at negative rather
than positive 1 can be inferred from Fig. 10. There
we have sketched V*(0) and o(0) at B*=4.0 for
1n=10.4. In terms of a kink-conduction process,
the much smaller current for the 7=0.4 potential
(cf. Table I) is a consequence of the much wider
“barrier region”. It is much more difficult to create
a kink for 7p=+40.4 than it is for n=—04. Of

TABLE I. The dependence of the phase current W
and the activation energy E; on the parameter 7. (The
external field @ =10~*)

wr
B

7 B*=2.0 B*=4.0 E}

1.00 1.5x 10~ 8.0x 10~ 10.1

0.80 2.6Xx10~1 2.1x107" 9.8

0.60 49x%10~1 2.3%1018 9.6

0.40 1.1x10~1 43%x10"18 9.0

0.25 2.1x10-1° 2.2x10°Y 8.5

0.10 4.6x10°10 7.5%10~17 8.1

0.0 8.0x 1010 3.2x10-16 7.6
—0.10 1.4x10~° 1.610~ 13 7.1
—0.25 3.5x107° 2.2x10"14 6.0
—0.40 8.0x10~° 32x10~1
—0.60 1.8%x10% 1.6 10~12 6.3
—0.80 2.3x10°% 1.1x10~12 6.7
—1.00 1.8x 102 2.2x10713 7.0

n=0.4
B"=4.0 404

\ il 0.0
*
1.2 M 1 >
3 \ 14-04
2 0.8 !
b \ H-08
0.4\ i
" N\ -1.2
0.0 LN I ! 7

o (8)

FIG. 10 V*(0) and o(0). The single-particle poten-
tial ¥*(0) and the single-particle density o(6) are plot-
ted vs 6 for n=+0.4, f*=4.0, and 7= —0.4, f*=4.0.
The single-particle potential strongly influences the
structure and energy of a kink, the single-particle densi-
ty, etc.

course the current cannot increase indefinitely as 7
is made more negative since the increase in barrier
height will eventually dominate and as |7 | — + o
the current goes to zero as exp(—A4 V7).

In Fig. 11 (and Table I) we show the results of an
activation-energy E, analysis of the current. The
values of E, plotted in this figure are found from
the slope of a plot of In(#r) vs B*. The solid line
in Fig. 11 is the energy of the large kink EJ (n)*,
calculated in the continuum approximation; see the
equations in Sec. II. The good qualitative agree-
ment between the 1 dependence of E, and the 7
dependence of the kink energies E¢>* support the
point of view that the low-temperature, low-field
current is carried by thermally activated kinks. We
note that the best agreement between E,; and E e *
occurs for small values of 7. As |7 | increases the
agreement tends to become worse; however, we can
make no absolute statements as to whether the
cause of the disagreement is physics (i.e., discrete
versus continuum systems) or numerics. (For posi-
tive 7, the activated region usually began for
B*>4.0 and the numerical work tended to become
unreliable for B*> 10.0 [because of the strongly
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FIG. 11. Energies. The energy E., taken from
analysis of the temperature dependence of the current at
fixed 7, is plotted as a function of 7. Shown also is
E}* (continuous line) from the analytic determination
of the kink energy described in Sec. II.

peaked nature of 1/0(0)]. For negative 7
(< —0.25) the situation is somewhat more compli-
cated as will be discussed below.)

One striking aspect of Fig. 11 is the abrupt
change in the relationship of E} to E; as 7 is de-
creased below —0.25. As discussed in the previous
section, in this region of 7 the potential develops a
two-well structure symmetrically located about
6=0 (cf. Fig. 10). One feature of this potential is
the possibility of the creation of a second (“small”)
kink. We find no direct evidence for the participa-
tion of the small kink in the current-carrying pro-
cess. That is, the current is dominated by thermal
activation over the higher barrier. (To be more pre-
cise, we can say that for 7= — 1.0, for example, the
log of the current is linear in 8* for 4 < 3* < 10 and
shows no evidence of two-exponential activation as
might be expected from a phenomenological kink-
gas picture.!’

B. Polarization

In our calculation, the important consequence of
the two-well structure is the appearance of a strong

polarization?® phenomenon which is the precursor
to activation.

In Fig. 12 we plot In(W7/a) and In{@) vs B* for
17 =—0.6 at the two field strengths a =10"3 and
1073, If we first examine the current, we note that
at high temperatures the curves coincide and as B*
is increased past ~4.0 they separate. This remark-
able behavior is unlike anything seen in the ordinary
sine-Gordon problem. In the SG system, we argued
that for small a we could simply replace o(6) by
p(0) (the equilibrium-distribution function) and thus
Wt would be determined by linear response. That
is, Wr/a should be independent of a for small a
[cf. Eq. (6.13), A¢g=B*c]. Figure 12 shows that this
linear-response description is not appropriate to the
DSG chain (with 7 < —0.25) if the temperature is
made low enough. The reason for this behavior can
be understood by now examining (6) as a function
of B*. As the temperature is lowered, the system
becomes polarized (i.e., (8)540) because of the
external field. The degree of polarization (at a
given 3*) depends on the magnitude of the field.
Thus in Fig. 12 we see that the system with
a=1073 is strongly polarized by 8* ~5.0 whereas
for @=10"° the system is still not strongly polar-
ized at f*=7.0 (at B*= o the system will be found
at (6)=1.141). The trend toward strong polariza-
tion in the a=1072 system is vividly shown in Fig.
13 where o(0) is plotted for B*=2.0, 4.0, 6.0, and
8.0. In summary then, we find that the low-field,
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FIG. 12. Current and polarization. Two measures of
the chain response to an external field, the current W,
and the polarization (6), are plotted vs 8* T~!, for
two different values of the field. The current is a weak
function of the field; the polarization, involving the
small kink, is a strong function of the field.
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FIG. 13. Single-particle density. The single-particle
density o(1) is plotted vs 0 for fixed @ and 7. As the
temperature becomes lower, S* goes from 2 to 8, and
the particles become more and more polarized.

low-temperature current in the DSG chain (with
7 <0.25) is nonlinear in the external field. In addi-
tion, the current is activated only after the system
has polarized (cf. Fig. 12). It is this after-
polarization activation energy which is plotted in
Fig. 11. (We note that in Table I there is no entry
for E; at 7=—0.4. This is because of the very
weak double-well structure. The temperatures at
which the system is strongly polarized are below
those we could reach maintaining confidence in the
numerical work.)

We shall end this section by discussing the nature
of the strongly polarized state. At 3*= o0, the par-
ticles on the chain will be 8 function localized at
©=cos~(1/47), the position of the minimum in
the potential. As the temperature is raised the
single-particle density acquires a width and the par-
ticles sense the large barrier at 6= and the small
barrier at §=0. Eventually, a high-enough tem-
perature is reached such that thermal fluctuations
will activate large sections of chain over the (small)
barrier. In the language of nucleation theory,'
when these sections become larger on the average
than a critical size (the critical nucleus) a stable

small kink-antikink pair will be produced, whose
manifestation will be an increased probability of
finding the system at 6 = —© (i.e., decreased polari-
zation). That is, depolarization is an activation pro-
cess. If we examine the In(0) vs B* curves (for
1= —0.6) in Fig. 12 we see that, indeed, in the tem-
perature region where the system is delocalized out
of the well (B3* <4.0), In{0) is linear in B*. In Fig.
14 we have plotted the activation energy obtained
from In{(6) vs B* plots, at n=—0.6, —0.8, and
—1.0, together with the energy of the continuum
small kink. The agreement between the two is ex-
cellent. In further support of the activation picture,
we also show in Fig. 14 the results of an activation-
energy analysis for a system with 7= —0.6 but
&’=E,/E;=2.0. From Sec. II we see that the
small-kink energy is proportional to £&. The ratio of
the activation energy for the £2=2.0 and £2=1.0
systems is almost exactly V2. The polarization
phenomena involving the small kinks can be
modeled quantitatively with a suitably parametrized
Ising model.

VII. CONCLUSION

We have examined the thermodynamic properties
of the DSG chain both analytically and numerical-
ly. In the regime in which both small and large
kinks occur on the chain we find that the impor-
tance of one or the other of these kinks depends
upon the property being investigated. The small
kinks dominate many thermal properties, e.g., en-
tropy, specific heat, etc. The large kinks are in-
volved in properties that are sensitive to phase evo-
lution, e.g., fluctuation in the phase along the chain,
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FIG. 14. Polarization and activation. From an
analysis of (0) vs B*, e.g., Fig. 12, the polarization is
found to involve thermal activation of small kinks. The
activation energy, from an analysis of (8) vs B* is
plotted vs 7.



492 C. S. CONDAT, R. A. GUYER, AND M. D. MILLER 27

the equation of state, and the phase current. The
small kinks are also seen in a polarization phenome-
na that is a precursor to thermally activated large-
kink conductivity.
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APPENDIX A: THE TIGHT-BINDING BANDS

If 7 <—0.25, the DSG system can be suitably described, in the case 1 <<A;<<A,, by the tight-binding

Hamiltonian

Hrp= 2 [?oo(cszLj+C};jCRj)+tl(C£jCLj +CLTJ-CR,-)

J

+(t2/2)(C;jCLj+1+C1TjCRj+l+CZj+1CRj +C]1(.j+1CLj)] , (A1)

where €y is the lowest energy level in each indivi-
dual well, t; and 7, represent the tunneling rates
through the lower and higher barriers, respectively,
and C,Ij(CRj) and Czj(CLj) are the creation (de-
struction) operators for particles in the right- and
left-hand wells of the jth cell. (See Fig. 15.) Defin-
ing the new operators C;Ev,. .., through

C;{j =Y e2mCy, (A2a)
v

and

cl=3 ey, (A2b)
v

we can write Eq. (Al) as a sum over w:

(j=1)=th cell

j = th cell

vi(8)

1
”

FIG. 15. Tunneling rates. In region I there are two
kinds of kinks. Their appearance in the thermodynam-
ics comes from consideration of the tunneling processes
in the potential ¥(0). Each repeating cell contains a
left-hand well (L) and a right-hand well (R). The

single-well energy levels €y and the two types of tunnel-
ing rates, labeled ¢, and ¢,, are indicated.

|

HTB ZZﬂV’ with

H,=%x(C},CLy+Ch,Cry)+1,(C},CLy+CFCry)
+t,(e~2CE Cp e H™C] Cry) . (A3)

This Hamiltonian can be diagonalized in terms of
the operators af, and a,, where

ai’:quL’rv'i'vvCIgv . (A4)

The diagonal form is obtained by requiring that a:r,

satisfies the condition
[al H,1=—2,al. (A5)

On the other hand, if we employ Eqs. (A3) and (A4)
to compute the commutator explicitly, we get

[aI’HV]= _[uvgm+vv(t1 +t23i2m')]CZv
—[Uv?m+uv(t1 +t2e_i2ﬂv)]C}1g.v .
(A6)

Comparing the right-hand sides of Egs. (A5) and
(A6), we get the pair of equations,

(Boo—Euy+(t; +t,e 72w, =0,
(A7a)
and
(t14+t2e 7™, + (€ —€, v, =0 .
(A7b)

The compatibility condition for these two equa-
tions yields

T =T+ (12 +12 +2¢t,1,c082mv) /2 (A8)

This is the equation describing the tight-binding
energy bands. Note that it is symmetric in ¢; and
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t,, as it should be. An important special case of Eq.
(A8) occurs when one of the tunneling rates is much
larger than the other, e.g., 1, <<t;. Then

L =g+ (1 +1yc082mv) . (A9)

The lowest barrier splits the ground state while the
highest barrier provides the band structure. If the
height of the barrier characterized by ¢; tends to
zero, we will have a single well per unit cell, and the
energy €, in Eq. (A9) can be conveniently rewritten
as

€, =€g—1,co82mv , (A10)

where €gy=¢€y—*; determines the true position of
the ground-state energy corresponding to the isolat-
ed single well. Equation (A10) is the usual tight-
binding result for a system having only one well per
unit cell, as it occurs with the DSG chain when
n>—0.25.

If we let t,—>0 in Eq. (A9), then & —&uptl;:
The band structure disappears and we get the level
splitting corresponding to an isolated double well.

APPENDIX B: THE TRANSFER INTEGRAL
AT LOW TEMPERATURE

As T—0 K, both A; and A, are large compared
to one and some meaningful results can be obtained
directly from the transfer integral. We deal

separately with the cases 77 > —-—% and n< —1/4.

A. 11>—%

There is only one minimum per unit cell, and the
solution to Eq. (4.20) can be taken to be

_ 1 2mrvji _ ;
«/Jv(e)_——m?e Xo(0—21)) , (B1)

with  Xo(60—2mj) solving approximately the
transfer-integral problem near 6=2wj. Assuming
Xo(@—21j) is a Gaussian centered at 8 =21,

Xo(60 —2mj)=Aexp[ —(a?/2)(60 —2mj)?] ,

(B2)
we can integrate over 6, in Eq. (4.20) to obtain
a?(n)= (1449)4 A 1,)1?
X[ 1+ 5(1+47) (A /A2
+0(A/2y)] (B3)
and
Beo(n)=—A(14+7)—1In(2m /A,)
+ 5 (1447 20 /A) 2+ 0(M /M)
(B4)

This result agrees with the one obtained in the para-
bolic approximation to the differential form of the
transfer problem. [See Eq. (5.33)].

The normalization condition yields

IX(O) | 2_ 2,”1/2[)\'1}\'2(1+4n)]1/4el](1+4n) .
(BS)

B. 1< fi—
There are two minima per unit cell, located at
0=2nm+0, for all integers n. Here
0= |cos_1(%|'r] BRI

Owing to the similar shape of the potential near
both minima, the solution to Eq. (4.20) appropriate
to low temperatures can be written in the form

1 5 mify (9—2mi —
P,(0)= T ‘? e’ ™ X (027 —O)
+Xo(0—27j+O)], (B6)
with X, having again the form specified into (B2).

Substitution into Eq. (4.20) and integration over 6,
yields

aX(m)=2(|n| —=1/16|q DV [14(|n| —1/16| 7| N A1 /M) 2+ O0(X /M))] (B7)

and

Beo(m)=—A(|m | +1/8|m|)—(1/2InQm /A) +( || =1/16 |9 DVHR /M) 2 +0(M/Ay) . (BY)

Compare Eq. (B6) to Eq. (5.1). The similarity between the results obtained directly from Eq. (4.20) and those
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obtained from the differential-equation (4.24) approach, confirm the validity of this last procedure at low tem-

peratures.
The normalization condition yields

|X(0) [2=V2[mhdy | | —1/16]| 7 | )] /M 171 +1/81mD (B9)
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