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from its augmented-plane-wave band structure
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The detailed energy-band structure of hexagonal-close-packed technetium, corresponding
to the atomic configuration 4d'Ss of its seven outermost valence electrons, has been ob-
tained throughout the Brillouin zone using the composite-wave variational version of the
augmented-plane-wave (APW) method in conjunction with the Xa (a=0.70299) exchange
approximation for obtaining the potentials. From the band-structure data the electronic
density of states (DOS) and the angular-momentum —decomposed DOS were calculated by
the accurate Gilat-Raubenheimer method. These quantities were used to calculate the
electron-phonon coupling constant and the transition temperature (T, ) using the theories of
Gaspari and Gyorffy and of McMillan. Also studied were the Fermi surface and the optical
properties of Tc via the imaginary part of the interband dielectric constant for bound elec-

trons, the latter being the first of such a study on Tc to date. The superconducting proper-
ties and the Fermi surface which could be compared to experiments show, in general, satis-

factory agreement.

I. INTRODUCTION

Technetium is an interesting metal in that, al-
though its atomic number is only 43, all its isotopes
are radioactive, with the longest-lived Tc decaying
with a half-life of 2.1X10 yr. Recent experiments
on Tc have revealed yet another interesting property.
Its superconducting transition temperature (T, ),
which has been raised up to 11.2 K (Ref. 1), has sur-
passed even that of Nb. If one assumes that it is the
electron-phonon interactions which give rise to pair-
ing between electrons, then T, should depend chiefly
on the electron-phonon coupling constant, or mass
enhancement factor A, . Since much progress ' has
recently been made to predict A, (and thence T, )
from energy-band data, it would be interesting to
calculate these quantities from the energy-band
structure of Tc. Two such approximate calculations
of T, exist. In the first case Papaconstantopoulos
et al. , in the process of their extensive study of T,
of elements with Z (49, obtained the superconduct-
ing properties of technetium after assigning an fcc
structure to the material. Their calculated value of
0.03 K for T, is far away from the measured range
of 4.6—11.2 K, ' and the authors assigned this differ-
ence to the incorrect structure assumed for the solid.
With this in mind, Asokamani and Iyakutti have
recently calculated the transition temperature from
the energy-band data taking into account the actual

crystal structure. However, although they have ob-
tained rather good agreement with experiments, the
defect in their calculations lies in the arbitrary as-
sumption of equating the angular-
momentum —decomposed component density of
stated (DOS) to the corresponding free-electron
value for l&2, which in view of some recent calcula-
tions on transition elements, ' and the present re-
sults appear unjustified. Since the theory of Gaspari
and Gyorffy (GG), which has already proved very
reliable in predicting the T, of cubic elements, ' '

compounds, ' and alloys, ' is yet to be properly
tested for the hcp structure, we feel that an attempt
in this direction could be made by conducting an ex-
tensive study of the energy bands of Tc throughout
its hcp Brillouin zone (BZ) and predicting A, accord-
ing to the unapproximated GG formula.

The electronic energy-band structure of solids is
an accurate tool for predicting other material prop-
erties as well. Thus one may predict the optical
properties in the form of the imaginary part of the
interband dielectric constant for bound electrons eq
as a function of the excitation frequency co." No ef-
fort, theoretical or practical, has yet been made to
predict such properties for Tc. However, in view of
experiments by Weaver, Lynch, and Olson, ' we feel
that such a study for Tc would not only be most
relevant and stimulating to experimentalists, but
would also serve to identify the location in k space
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of the important optical excitations in the metal.
Furthermore, in metals it is necessary to have accu-
rate predictions of Fermi surfaces in order to calcu-
late such properties as superconductivity and the
phonon spectra. Only two previous calculations of
the Fermi surface of Tc exist to date, ' both of
which have utilized the Korringa-Kohn-Rostoker
(KKR) method. Since the Fermi surface of the met-
al has not yet been calculated from augmented-
plane-wave (APW) energy-band data, it would be in-

teresting to make a comparative study of the Fermi
surfaces obtained from the two leading methods of
band-structure study, in light of the de Haas —van
Alphen results' for Tc.

With these goals in mind, we present here an ac-
curate study of the energy-band structure of hcp Tc
by the composite-wave variational version' of the
APW method in conjunction with the Xa exchange
approximation for obtaining the potentials. Also
presented are the DOS, the Fermi surface, and the
superconducting and the optical properties of the
metal as calculated from these energy-band data.

III. OUTLINE OF THE METHOD

components mi(E), inside the APW spheres. In or-
der to calculate m (E) and mi(E), we have made use
of the Raubenheimer-Gilat formula '

m(E) =g g 8'z
M(n E kp)

n k I ~kEn(ko)
I

and its modification

Q„&(ko)AS(n, E, ko)
mi(E)= Wg

' . (2)

Here hS is the element of the energy surface inter-
cepted within the cube centered at ko, Q„i(ko) is
the fractional-charge density inside the APW
spheres, n is the band index, and 8'& is a weight

0

factor associated with the symmetry of kp. . The
values of these quantities at EF are required to cal-
culate the electron-phonon coupling constant and
the superconducting transition temperature in the
manner described below.

In the rigid-ion strong-coupling theory, A. is given
b4

The crystal potential of the muffin-tin (MT) type
was generated by a method' in which the spherical-
ly symmetric contributions from 14 sets of nearest
neighbors are superposed on the potential of the cen-
tral atom. The atomic charge densities used in con-
structing the MT potentials were the results of a
modified Hartree-Fock-Slater self-consistent —field
program, ' wherein the exchange contribution was
calculated via the Xa exchange approximation, us-

ing a=0.70299 for Tc." The configuration as-
sumed for obtaining the charge densities is 4d 5s .
The MT zero was taken at the potential obtained by
performing a spherical average of the potential in
the interstitial region between the APW spheres and
the Wigner-Seitz sphere. The lattice constants used
were a =5.179 58 a.u. and c=8.298 68 a.u. ' The MT
radius was taken at 2.4596 a.u.

With the help of these potentials the electronic
energy-band structure was obtained using the
composite-wave variational version' of the APW
method. Simultaneously, the s, p, d, and f com-
ponents of the fractional-charge densities inside the
APW spheres were calculated by the method
described by Mattheiss, Wood, and Switendick. A
total of 126 points in the irreducible, 4 th wedge of
the BZ (including all the symmetry points and direc-
tions) were studied thus from first principles. These
results were then interpolated to a finer mesh of
24X4200 k points in the BZ via the Lagrangian in-

terpolation scheme in order to obtain the Fermi en-

ergy E~, the DOS m(E), and its angular-momentum

i)=m(EF)(I )

2EF
g(1+1)sin (5i —5i+~)

m m(EF)

m)(EF )m)+ )(EF)

(EF)mr+&(EF)
(4)

Here (A@2) is an average of the square of the phonon
frequency, M is the atomic mass, 5~ is the phase
shift of the 1th partial wave due to the MT potential
evaluated at Ez, and m(EF), m~(E~), and m~ "(E~)
are the total, component, and the "single-scatterer"
component DOS, respectively, at EF. To obtain
this formula GG expanded the square of the
electron-phonon matrix element averaged over the
Fermi surface, (I2), in terms of Bloch functions:

1

%'-„(r ) =g g ai ~(k)R&(r,E-„)YP(r"), (5)
I m= —1

where Y~ (r) is a spherical harmonic and R~(r, E k )

is the asymptotic solution of the radial Schrodinger
equation. In this equation the effect of the ion at
the origin is mainly included in R~(r,E k ) and con-
sidered exactly, while the coefficient, a~ (k), that is
determined by the crysta1 structure, is approximated

M(co2)

where g may be calculated using the following for-
mula due to Gaspari and Gyorffy:
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by

al ~(k) =al(E k ) Yl (k ) .
eD —1.04( 1+A, )

1.45 A, —p'(1+0.62k, }

where SD is the Debye temperature and p* is the
Coulomb pseudopotential which may be taken as
0.13 for a transition element.

In order to calculate the optical properties, we
have made use of the photon energy distribution
function D(co), for the total number of allowed tran-
sitions between the occupied and the unoccupied
parts of various bands for photon energies between
co and co+hcu. This is given by

D(co)=g I d k f(EI(k))
l~s

XI)—f(E„(k))]I &~
I p II& I'

X5(E E„(k))5—(E—a) —E((k)}, (8)

where f is the Fermi function, (u
I p I

I ) the
momentum matrix element, and E„(k) and E~(k)
the energies of an electron with wave vector k in the
upper energy band u and the lower energy band I,
respectively. D(co) is proportional to co'eq(co), where
ez{cu} is the imaginary part of the interband dielec-
tric function for bound electrons.

The matrix elements in Eq. (8) are time consum-

ing to include in a complete BZ integration. The ap-
proximation of constant matrix elements, which will

be used in this paper, is believed to affect only the
strength of the peaks. " Although this is true for
sharp peaks, fine structures like the shoulders and
the splittings of the peaks may depend on the varia-
tion of the matrix elements with energy. However,

This is a drastic approximation for it assumes that
the bands are spherical. However, John has
shown, by expanding (I ) in terms of the retarded
Green's function, that in cubic crystals for l (2 this
approximation is completely unnecessary and that a
rigorous evaluation gives exactly the same formula
for q. This is only to be expected since the cubic
harmonics are the same as the spherical harmonics
to this order of I. However, for f and higher-order
scattering in cubic crystals (it may be noted that df-
scattering provides an appreciable contribution to g
in transition metals ) and for crystals of lower sym-
metry, this approximation becomes necessary. In
terms of the multiple-scattering theory, this means
neglecting the nondiagonal elements of the ima-

ginary part of the scattering path operator, Tl.'L ~,

although in the spherical approximation the diago-
nal elements of ImT&I are replaced by an average
which depends upon the angular momentum. In de-
fense, therefore, for the application of Eq. (4) to hcp
Tc, which is what we propose to do, it may be point-
ed out, as with GG, that, as this approximation re-
tains most of the nonstructural features of the real
energy-band structure, it is likely to give a fair idea
of g and thence the superconducting properties of
the metal.

To come back to Eq. (4},E~, m(E~), and m~{E~)
may be calculated from the energy-band data while
the usual expressions for 5~ and ml'"(EF) are given
in, e.g., Ref. 9. Thus having obtained all the quanti-
ties in Eqs. (3} and (4}, T, can be obtained from the
usual McMillan formula:

4
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FIG. 1. Energy bands of Tc in the Xa exchange approximation.
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FIG. 2. Density of states of Tc. EF denotes the Fermi

energy.

FIG. 3. Fermi-surface cross sections of Tc within the

fundamental —th wedge of the BZ. The numbers indi-

cate the number of filled states below the Fermi level cor-

responding to the various regions of k vectors.

to obtain a rough idea of the optical properties, it is
sufficient to use this approximation, whereby, at 0
K, where our theoretical calculations are valid, D(r0}
becomes a function of

g fd'k 5(E—E„(k}}5(E—co —EI(k)),
l+u

which is known as the joint density of states (JDOS)
for interband transitions.

III. RESULTS AND DISCUSSION

A. The energy-band structure, Fermi level,

and the density of states

Figure 1 shows the calculated energies at different

symmetry points and axes of the hcp BZ with the

zero of the potential chosen at the MT potential.
The only published band-structure calculations for
Tc are due to Asokamani et al. , wherein they have

made use of the KKR method with three different

types of potentials including (i) only the Slater ex-

change (V, } and including both exchange and corre-
lation by (ii) Overhauser s prescription (VH } and by

(iii) the Vashishta-Singwi formalism (Vvs), respec-
tively. The band diagram along the I MEI direc-
tion is somewhat similar only to the one calculated
using the potential VH, although the number of
bands crossing the Fermi level in our case is larger
than theirs. Figure 1, however, bears a marked
resemblance to the relativistic APW energy-band di-
agram (drawn with spin-orbit coupling neglected)
for rhenium, which lies just below Tc in the
Periodic Table.

The Fermi energy EF was computed from the
energy-band data at 24X4200 k points in the BZ
such that the volume enclosed by the constant-
energy surface is seven times the volume of the BZ.
The value thus obtained is 0.976 Ry relative to the
MT zero. The DOS was also calculated as previous-
ly described by the Raubenheimer-Gilat method '

and the resulting curve is shown in Fig. 2. Again
the curve has some similarity to the one calculated
by Asokamani and Iyakutti using VH, but is more
similar to the one obtained by Mattheiss for Re.
The value of the DOS at E~, m(EF), as obtained by
us, is 8.27515 states/Ry atom spin. Table I com-
pares our m(EF } value with all other calculations of

TABLE I. m(EF) (technetium), in units of states/Ry atom spin, for various calculations in

the literature.

Potential with
Hedin-Lundqvist

exchange and
correlation

7.86
fcc structure

Potential with
Slater exchange5

( Vs)

9.452

Potential with
Overhauser

exchange and
correlation 5

(VH )

7.616

Potential with
Vashishta-Singwi

exchange and
correlation

(v»)

8.398

Potential with
Xa exchange
(present) (V~ )

8.275 15
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—1.080 13
—0.44077
—1.164 64

0.012 33

0.15608
1.209 70
4.902 85
0.172 34

0.20203
0.31671
5.145 50
0.060 80

this quantity in the literature. It may be observed
that all the results, except the one using Slater ex-

change, lie quite close to each other, although the
energy-band diagrams do not bear much similarity.
In particular, it is surprising that, although the mag-
nitude of the exchange and correlation terms sug-
gests that the Vvs (Refs. 5 and 26) and the present
Xa exchange potentials should give very similar re-
sults for Tc, it is only in the value of m(EF) that
this similarity is manifest —not in the energy-band
diagram.

B. The Fermi surface

The Fermi-surface (FS) cross sections in the dif-
ferent planes of the —„th wedge of the BZ are shown

in Fig. 3. The numbers represent the total of filled
states below the various regions of k vectors. The
general features of the FS are similar to the KKR
calculations of Faulkner' —although our figure con-
tains some extra small pieces. Arko et al. ' have
obtained the FS of Tc from de Haas —van Alphen
measurements. Their observed frequencies seem to
correspond to three hole surfaces around point L:
two small pieces due to bands 5 and 6, which by
group theory are degenerate if spin-orbit coupling
effects are not considered, and a very large piece due
to band 7. This is corroborated by the band-
structure calculations of Asokamani and Iyakutti
using the potentials VH and Vvs and also by the re-
lativistic energy-band data of Mattheiss for hcp
Re. However, the degenerate 5th and 6th bands in
the present calculations lie close to, but do not cross,
the Fermi level near point L, so that only one large

TABLE II. Phase shifts, component DOS, and single-

scatterer component DOS.

Phase shifts I component of Single-scatterer
I of the potentials the DOS l component DOS

hole surface due to the 7th and 8th degenerate bands
is obtained. This fact agrees with the FS calcula-
tions of Faulkner' and of Asokamani and Iyakutti
using the potential Vq. Another important observa-
tion from the de Haas —van Alphen experiments is
the c branch of frequencies which is the only branch
observed for all field angles. It has the shape of a
lens and from the anisotropy of the surface should

be located on the A I line or at point H or E. Such
a surface was not predicted by the FS calculations of
Re. However, a surface which is likely to corre-
spond to this frequency in our figure is the one si-
tuated on the AI line and having 10 filled states
below it. In Faulkner' s' calculation, there is a simi-
lar surface at this position but having seven filled
states below. The cross-section areas of this surface
which intersect planes normal to the [10 1 0],
[1120], and [0001] directions are found experi-
mentally to be approximately 0.017, 0.018, and
0.032 a.u. , respectively. In our case they are 0.0218,
0.017, and 0.022 a.u. as compared to 0.025, 0.0026,
and 0.044 a.u. with potential V& and 0.027, 0.029,
and 0.057 a.u. with potential Vii in th KKR calcula-
tions of Faulkner. '

C. Superconducting properties

In order to calculate the electron-phonon coupling
constant A, and the transition temperature T, we
have also used, besides m (EF), the angular-
momentum —decomposed DOS, mt (EF)

'' The.
latter is shown in Table II together with values of
the phase shifts and the single-scatterer DOS. g and
A, were next calculated according to Eqs. (3) and (4)
and the results are shown in Table III. Two sets of
results are presented. In the first, (a), the full d-f
contribution to g has been considered, while it has
been halved for set (b). The latter is necessary since
d fscattering inv-olves electron-ion interaction in the
outer portions of the atomic cell where non-muffin-
tin (non-MT) and screening effects, ignored in the
rigid MT model being considered here, become im-
portant. It has been shown ' that both these effects
significantly reduce the d fcontribution to-t), and
following Papaconstantopoulos et al. , we have re-
duced this contribution by a factor of 2. Next, in

TABLE III. Electronic and supercouductiug properties of technetium. In set (a) full d-f
contribution to g has been considered, while in (b) this has been halved.

EF
(Ry)

m(EF)
(states/Ry atom spin) p*

'I.
(eV/A~)

T, (K)
calc. expt. '

set (a) 0.976
set (b) 0.976

'From Ref. 1.

8.275 15
8.275 15

0.13
0.13

12.954 0.865 38 15.37 4.6—11.2
8.9414 0.597 32 5.387 4.6—11.2
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order to calculate T„we have set p' =0.13 and used
McMillan's expression for the quantity. Dynes
and Allen and Dynes have shown that it is more
accurate to use coi~/1. 2 as the prefactor of the ex-
ponent in McMillan's equation. This co~,g can be ob-
tained from a Born—von Karman analysis of neu-
tron scattering data. As no such experiment has
yet been performed for Tc, we have retained the
original McMillan's expression [Eq. (7)] with

eg) ——411 K. It can be seen from Table III that the
T, obtained using the reduced d-f contribution [set
(b)] lies within the observed experimental range, but,
as is only to be expected from the foregoing discus-
sion and results for other transition elements, 3 the
T, obtained considering the full d fcontr-ibution is
overestimated. Thus the GG theory, in spite of the
spherical band approximation, appears to have given
quite a good idea of the transition temperature of
hcp Tc.

D. Optical properties

The electronic energy bands of a crystal have re-
cently acquired primary importance in the study of

the optical properties via the imaginary part of the
dielectric constant e2 in light of recent experiments
by Weaver et al. ' In order to calculate e2, the ir-
reducible, 4 th wedge of the BZ was divided into
126 rnicrohexagons and the energy in each micro-
zone was calculated from first principles. The
JDOS, proportional to co ez, was then obtained by
the stabilized histogram method. It would have
been more accurate" to have considered a finer
mesh of points and used the Raubenheimer-Gilat
method which incorporates a first-order fit to the
energy surfaces instead of the zeroth-order fit as in
the histogram scheme. However, as no calculation
of the optical properties of Tc either experimental or
theoretical exists to date, we feel that even this
somewhat crude approach would be rather useful as
it has the demonstrated ' ' ' potentiality of bring-
ing out the salient features of the et(co) spectrum.

The ez histogram thus calculated stabilizes at
hen=0. 03 Ry and is shown in Fig. 4. There are
three peaks in the curve centered at 0.285, 0.405,
and 0.495 Ry with the first being the most prom-
inent. A shoulder is also seen just beyond the first
peak. The inset to the figure identifies the bands
chiefly responsible for, and the location in k space
where, the important transitions contributing to
peaks labeled 1 and 2 occur. The transitions giving
rise to the high-energy peak marked 3, however, are
uniformly distributed throughout the BZ.

H-4+5
V. CONCLUSIONS

C

L

I I I

0-2 0.3 0.4 0.5 0.6
~&R~)

FIG. 4. e2(co) spectrum for Tc. Hatched, crosshatched,
and dotted surfaces represent, respectively, the important
regions for transitions contributing to peak 1, peaks 1 and
2, and peak 2. The numbers indicate prominent interband
transitions. Contributions giving rise to peak 3 are more
or less uniformly distributed throughout the BZ.

In this paper we have presented detailed calcula-
tions of the energy-band structure of Tc and tried to
predict the density of states, the Fermi surface, and
the superconducting properties and the imaginary
part of the dielectric function from this data. In
particular, the calculations of the electron-phonon
coupling constant and the superconducting transi-
tion temperature have been rigorously performed in
accordance with the theory of Gaspari and Gyorffy
without resorting to any arbitrary assumptions with
respect to structure or otherwise as has been done by
previous workers ' in this field. Therefore, the
rather good experimental agreement obtained for the
transition temperature, and to a lesser extent of the
Fermi surface, is a measure not only of the accuracy
of the APW method but also of the potentials corn-
puted via the Xa exchange approximation. The
present calculations also constitute the first effort to
predict the optical properties of Tc.

Finally, we would like to point out that the one
remaining weakness of the present calculations is
that they are non-self-consistent (NSC). However,
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the NSC APW calculations of Mattheiss (using the
a= I exchange} for Nb, which lie close to Tc in the
Periodic Table, have shown generally very good
agreement with experimental results. Although the
exchange used in this paper is Xa, the fact that the

properties predicted in this paper agree more or less

satisfactorily with experiments, wherever these are
available, indicates that the present calculations
would add to the understanding of the band struc-
ture and properties of Tc in light of the paucity of

data for this metal as compared to its neighbors in
the Periodic Table.
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