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The theory of spin-polarized low-energy electron diffraction (LEED) is used to analyze
the observed fine structure in experimental data for W(001). Within a spin-dependent
scattering model, a saturated image barrier provides a satisfactory description, and the
analysis leads to a model of the surface potential barrier for W(001). Simpler models, such
as those commonly used for LEED intensity calculations, are unable to reproduce all of the
observed structure. The complex fine structure of the spin-polarized LEED intensity curves
is interpreted in terms of the interaction between Bragg peaks, spin-dependent features, and
barrier scattering effects. Resonance effects do not need to be invoked.

I. INTRODUCTION

Although low-energy electron diffraction (LEED)
is one of the most widely used methods for obtain-
ing structural information about surfaces, the use of
spin-polarization effects is a relatively recent inno-
vation. The development of sources capable of pro-
ducing highly polarized electron beams"? has now
permitted the application of the technique, the basic
theory for which was developed more than a decade
ago.>* Feder® has shown that the additional infor-
mation contained in LEED spin-polarization pro-
files is a valuable aid in structural analysis of
heavy-metal surfaces. Pierce et al.’ have recently
published spin-polarized data for W(001) at low en-
ergies and in this paper we interpret the structure of
their curves and show their value in surface-barrier
analysis.”®

The structure of LEED intensity curves from
W(001) for electrons of low energy and low angles of
incidence has been the subject of much discussion in
recent years. Particularly striking are a narrow
feature at about 4 eV, which persists over a range of
incident angles,” and a remarkable asymmetry be-
tween spin-up and spin-down intensities for angles
of incidence 0 near 15°.° The latter feature, a double
peak in the spin-up intensity with a single peak in
the spin-down channel, has been attributed by
Malmstrom and Rundgren!® to a particular form of
threshold effect, namely interacting surface reso-
nances. McRae et al.® analyzed these data in terms
of resonances and interference effects.

Threshold effects and, in particular, surface-
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barrier resonances are well-studied features of
LEED fine structure.!! Their origin is in the back-
scattering of nonspecular beams by the surface bar-
rier and their recombination with the beam specular-
ly reflected from the substrate!? (see Fig. 1). Non-
specular beams require a certain threshold energy to
emerge into the vacuum and the most striking ef-
fects, usually in the form of a series of narrow peaks
in the specular intensity curve, occur just below this
energy.”® The scattering at the surface barrier plays
an important role in the formation of the fine struc-
ture and Echenique and Pendry'* provided criteria
on this scattering for the occurrence of surface-
barrier resonances. Le Bosse et al.!’ have shown,
however, that these criteria are seldom satisfied and
confirm the assessment of Dietz et al.!® that thresh-
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FIG. 1. Mechanism of threshold structure due to bar-
rier scattering in LEED. Full lines indicate the specular
beam and the broken lines a preemergent beam which is
totally internally reflected by the surface barrier. The fig-
ure shows the interaction between the (00) and (10) beams.
In the experiment discussed here, the effects arise from
the (00) and (10) beams.
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old features are more accurately described as in-
terferences or coupling between two diffracted
beams. We therefore use the term (spin-polarized)
LEED fine structure to describe them. Some years
ago, we performed model calculations!” which
showed that this fine structure should also be
present in spin-polarized LEED, but that spin-up
and spin-down peaks may be displaced slightly by
spin-orbit effects in the atomic potential. This pre-
diction was confirmed by the work of Pierce et al.®

LEED fine structure has been measured in Cu,
Ni, and W."®" TIts sensitivity to the form of the
surface barrier means that its analysis can provide
information about the scattering potential for elec-
trons near surfaces,'® an essential input for calcula-
tions of electron states at surfaces. There have been
numerous discussions of the barrier for idealized
models of metal surfaces,’®?! and Lang and Kohn?!
showed that the potential far from a jellium surface
has the form

V(z)=—1/[2(z —2z4)], (1)

in rydberg units, where z, denotes the center of mass
of the image charge. In analyzing the Cu(001) fine
structure, Dietz et al.'® assumed the asymptotic
form (1), with z; being an adjustable parameter.
Nearer the surface, the image potential “saturates”
rather than becoming infinitely attractive at z =z,
and Dietz et al.'® used a linear continuation to the
jellium edge, where the potential has the value — U,
(see Fig. 2). They found that a line of values in the
parameter space (zo,U;) was consistent with the ex-
perimental data for Cu(001).

In this paper, we analyze the W(001) fine struc-
ture present in the spin-polarized LEED data of Pi-
erce et al.® and the high-resolution LEED measure-

0

Uo 1-05 ~
5 <
e >
S

\ \
0 e e L
0.2 1 1 1 1 1 1
-20 -10 0 10

z (Qo)

FIG. 2. Surface barriers with image plane (z,) located
at z=—3.3 bohr. I: classical image barrier. II: form
used in Ref. 16, with discontinuity at z=0. III: form
used in present calculation. Vj, denotes the imaginary
part of the barrier potential.

ments of Adnot and Carette.!° The barrier we as-

sume is also described by the parameters (zo,U,),
but is continued linearly to the point where it joins
continuously the crystal inner potential (—U,).
This construction avoids the discontinuities in the
fine-structure profiles produced if the barrier is
truncated at the outermost layer z =0. The saturat-
ed image barrier is one-dimensional and necessarily
approximate. However, it allows for two essential
features, the translation of the image plane and bar-
rier saturation.

In Sec. II we review the experiments which are
the basis of the present analysis and in Sec. III
describe the details of our method of calculation. In
Sec. IV we indicate how we determine the barrier
parameters and, in Sec. V, discuss the origin of the
fine structure at low angles of incidence. The results
we obtain are summarized in Sec. VL.

II. EXPERIMENTAL DATA TO BE ANALYZED

A. Spin-polarized LEED

The data of Pierce et al.® were collected in a
LEED apparatus containing a GaAs source which
produced spin-polarized electrons by photoemission
with circularly polarized light. The spin-
polarization obtained is 43% and its direction is
changed by reversing the direction of rotation of the
light polarization. In the experiment,' Pierce et al.
modulated the spin-direction in the incident beam
and used a lock-in amplifier to measure the specu-
larly reflected alternating current synchronous with
the modulation. They also measured the direct-
current component of the scattered intensity and
calculated the Sherman function S as the ratio of the
ac to the dc signal divided by the magnitude of the
polarization of the incident beam | Py |,

1 I—1,

S=- .
[Po| I,+1,

()

I, and I, are the scattered intensities for incident
beams with up and down spin-polarizations with
respect to the scattering plane.

The intensity of scattering for hypothetical 100%
spin-polarized incident beams can be found from the
Sherman function using

I,=1y(148), 3)

I,=Iy(1-S), (4)
where

Iy=(1,+1,)/2. (5)

The data were collected for W(001) at a temperature
between 500 and 600°C to ensure that the surface
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had a (1 1) periodicity. The intensity curves were
collected over the range 0—12 eV with an energy
resolution of 130 meV and for angles of incidence 6
between 15° and 43° along the (01) azimuth.

B. LEED measurements

High-resolution LEED data from W(001) have
been reported by Adnot and Carette!® for §=48°
along the (01) azimuth, with energies between 0 and
7 eV. The energy resolution was 15 meV and the
angular resolution better than 0.8°. The threshold
fine structure is clearly resolved and the peak split-
tings are known accurately.

LEED intensity curves for incident energies below
20 eV have been obtained at normal incidence by
Khan et al.?? and by Herlt et al.f The latter data
have been obtained using crossed E and B fields and
have a resolution of approximately 20 meV. The
angular resolution is less satisfactory, however, and
there is no evidence of any fine structure in the pub-
lished data. The two sets of data’>?® are rather
similar and will prove useful in interpreting the
low-energy and low-angle structure in the LEED in-
tensity profiles.

III. METHOD OF CALCULATION

A. Spin-polarized LEED

Consider a single electron beam incident on a sur-
face barrier giving rise to N diffracted beams. The
reflection coefficient matrix R+ for the crystal
may be expressed as'?

Ri+t=r—++1~~R-*(1—r*-R-+)7't++,
(6)

where (see Fig. 3) r~* is the reflection matrix for
the incoming beams at the barrier, £t~ is the
transmission matrix for the outgoing beam at the
barrier, R % is the reflection matrix for the sub-
strate, r+— is the internal reflection matrix for the
surface barrier, and ¢t is the transmission matrix
for the incoming beams at the barrier. The crystal
fills the halfspace z >0 and we use the convention
that r —+, for example, describes the scattering of an
electron moving in the direction of z>0 into the
direction of z <0. In general, r —* is small except at
very low energies and may be neglected. Owing to
inelastic scattering, the diagonal elements of R~
are much smaller than unity and the matrix inverse
in Eq. (6) can be expanded as follows:

(A—r*-R~H)'=14rt-R~*4---, (D
so that

Ry*~t=—R—*1*+
+t~ R~ rt Rttt ®)

As illustrated in Fig. 3, this expression includes all
scattering effects up to second order, and Dietz
et al.'® found this to be an adequate approximation
for Cu(001). We have tested it for W(001) and find
that the higher-order terms are indeed negligible due
to inelastic scattering. We also find that the evanes-
cent beams can be neglected in the barrier region be-
cause they decay rapidly and contribute very little to
the calculated intensities.

LEED fine structure therefore arises from
second-order scattering involving total internal re-
flection of a diffracted beam at the surface barrier,
subsequent diffraction back into the specular beam,
and transmission through the barrier. These
features, more properly described as interferences
rather than resonances, produce a series of peaks
(sometimes called “Rydberg series”) converging on
the emergence of a new diffracted beam into the
vacuum. Other features in the intensity curves
which arise from constructive interference in
scattering from the bulk crystal are known as Bragg
peaks. Barrier scattering can redistribute intensity
between beams, and Bragg peaks in preemergent
beams can produce corresponding maxima in the
LEED fine structure. Such features are usually
broader than the peaks in the Rydberg series and are
most evident when they are somewhat removed
from the emergence energy.

For spin-polarized LEED with N diffracted
beams, the scattering matrices in Eq. (8) will have
the dimensions 2N X 2N, as each beam has both
spin-up and spin-down components. The scattered
beams are then composed of spin ensembles of the
form

¢',~=e’.r' N 9)

U3

where U} and U5 are the spin-up and spin-down
projections of the ith spin ensemble of the beam.
The matrix R7 * contains a set of 2X2 submatrices
M which link the incoming specular beam ¥ to the

\5//7\ - t—
\ _ \"\ -

7 ~ e

R+ ~ R+

FIG. 3. Contributions to total scattering matrix [see
Eq. (6) and Fig. 1].
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outgoing beam ¢ as follows:
Vi =My (10)

The density matrix p’ for a scattered beam is given
by a sum over the N spin ensembles,

e’z_l— i ¢I¢'T
Nq=1 974
=MpM'

M(1+PoM', (11)

0| -

where pj is the density matrix of the primary beam.
The intensity of the diffracted beam is given by

I=Tr(p") (12)
and the polarization by
P'=Trlp'a)/Tr(p’) , (13)

where g=io, +jo,+ko, and 0x,0,,0, are the
Pauli spin matrices. The density matrix of the pri-
mary beam is given by

po=73(1+Py-a)

1| 14Po;  Poi—iPy,

=5 1—Py,

. 4)
2 P0x+1P0y (1

in general, and
1
po=71

for an unpolarized primary beam. In the present
calculations we have assumed that the incident beam
is totally polarized in either the spin-up or spin-
down state. Since the z axis is perpendicular to the
crystal and the primary beam is incident along the x
axis, the scattering plane is the xz plane. Therefore,

, 1 1 —i
Lo=%1i 1
and (15)
L1 1 i
B0=%5 |—-i 1

The scattered intensities for the specular beam can
then be found from Egs. (11) and (12).

B. Scattering by the substrate

The substrate scattering matrix R — % is calculated
with the use of the layer Korringa-Kohn-Rostoker
(KKR) procedure of Kambe?** and the transfer ma-
trix method of McRae.?* This is a similar approach

to that taken in most other theories of LEED. The
spin-dependent layer KKR procedure has been
described in detail elsewhere.* The amplitude reflec-
tion and transmission coefficients for a single layer
are obtained by solving a set of linear equations
whose coefficients depend on the atomic scattering
of the substrate. These phase shifts are obtained by
solving the Dirac equation for the W muffin-tin po-
tential of Mattheiss®® using the program of Bunyan
and Schonfelder.” This program is widely used in
spin-polarized LEED calculations for this purpose.
The scattering between the muffin-tin spheres is
treated as described previously.?®

The reflection and transmission coefficients so ob-
tained are used to construct a reduced transfer ma-
trix R for the semi-infinite solid. This matrix is
then diagonalized by a matrix transformation
T—'R T and the backscattered amplitudes b, from
the substrate calculated from the primary ampli-
tudes g using

bo=—T%'Tya,
=R~ *g,. (16)

_Tzz and le are the 2N X 2N submatrices of T 1,
where N is the number of diffracted beams. The
substrate scattering matrix R ~% is then used in Eq.
(8) to calculate the spin-polarized LEED profiles.

C. Scattering by the surface barrier

The barrier reflection and transmission matrices r
and ¢ required in Eq. (8) are obtained by solving the
one-dimensional Schrédinger equation for the bar-
rier model shown in Fig. 2. The real part of the bar-
rier potential is given by

Ve(2)=1/[2(z —2y)], z<2;
=—U1—Z/[2(Z—Zo)2], z2,5zLz,
=—Up, 22>z (17

where Uy is the inner potential of the crystal, U, is
the barrier height at the top layer of atoms, z; is the
image barrier origin, z; is the point at which satura-
tion begins, and z, is the point at which the inner
potential is reached. The origin is chosen at the nu-
clear positions of the outermost layer of atoms. In-
elastic scattering is represented by an imaginary
component of the barrier potential of the form

Vi exp(—az?) forz<0

Viml(z)= (18)

V, forz>0,

where the adjustable parameters V| and a have the

values 0.1 Ry and 0.1 bohr~2 in these calculations.?
The amplitude reflection and transmission coeffi-
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cients for each of the diffracted beams are found by
integrating the Schrédinger equation for this one-
dimensional barrier from large negative z to a value
of z beyond z,. The appropriate Schrédinger equa-
tion is

2
%+[ki—V(z)]¢=0 , (19)

where k, is the normal component of the k vector
of the beam in the vacuum and ¥(z) is the potential
given by Egs. (17) and (18). The solution is started
with the asymptotic form of the wave function for
the image-potential barrier

y—Elexp(—£/2) , (20)

where §=2ik,z and A= —i/4k,. The Numerov al-
gorithm is used to propagate the solution from two
starting values in the asymptotic region to a point
zg >2.. The reflection and transmission coefficients
for the barrier are then given by

oo it

. —exp( —2ik zg) , 21
ik, o—vo !
and
2ik
—=—‘4—,—exp(iklzg) ) (22)
ik, o—vo

where 1 is the value of the wave function at the
point zz. The derivative of the wave function at
zg, ¥ is found from the three-point formula

, 1
¢0=E(3¢0_4¢—1+'I’—2) . 23)

In practice, a starting value of z~ — 30 bohr and
an integration mesh of Az=0.05 bohr give adequate
precision in the calculations of Rr+. Since previ-
ous calculations have provided no evidence for signi-
ficant external backscattering by the surface barrier,

we choose
£=r=0, 24
tH+=(k,/k)V?, @4

where k| is the normal component of the reflected
wave vector in the vacuum region.

IV. COMPARISON BETWEEN THEORY
AND EXPERIMENT

A. Fitting procedure

To fit the spin-polarized LEED fine structure we
have used the following procedure:

(1) The inner potential U, is determined by com-
paring the observed and calculated Bragg peaks in

the specular reflectivity curves. In general, U, is a
function of energy and on extrapolation to low ener-
gies it approaches a value of (¢ + Er), where ¢ is the
work function of the surface and Er the Fermi ener-
gy of the material. We have selected a constant
value of Uy=1 Ry (13.6 eV) for these calculations,
based on an overall fit of the data of Pierce et al.
near 6=20°. Herlt et al. determined a similar value
(14.0 eV) by comparing theory and experiment for
normal incidence.?

(2) The barrier height U, and origin z, are varied
over a reasonable range and the location of the fine
structure noted. This yields a table of peak positions
as a function of U, and z,.

(3) The best choices of U, and z, are determined
by comparing the experimental data with these re-
sults.

(4) The fit is refined by adjusting the inelastic
damping and using a fine energy mesh to locate the
upper peaks of the Rydberg series.

(5) The above procedure is repeated at several an-
gles of incidence to determine the overall best fit and
the surface-barrier structure.

In their calculations on Cu(001), Dietz et al.'®
found that a line of barrier parameters in the
(zg,U;) space gave an equally good fit to the experi-
mental data. In the present calculations, R~1 is
determined exactly from first principles and we
found only three small regions in (zy,U;) space
where a good fit existed. By using the data for
several angles of incidence we were able to find an
optimum one-dimensional barrier of the saturated-
image form.

B. Determination of barrier shape

As discussed in a previous publication,?® the above
procedure was used to test the adequacy of the
saturated-image barrier for analyzing the data
described in Sec. II. Using the high-resolution data
of Adnot and Carette,'” we could locate three pairs
of (z9,U;) which provided a good fit. The three
barriers are similar in shape and differ by an ap-
proximately rigid translation perpendicular to the
surface. The spin-polarized LEED data contain a
wealth of structure at low energies which then en-
abled us to test the barrier models thoroughly and
determine an overall best fit. One barrier (—3.3
bohr, 0.7 Ry) gave a satisfactory fit to the experi-
mental data, and calculated and measured intensities
are shown for 6=15°, 26°, 43°, and 48" in Fig. 4.

It is clear that very good agreement between
theory and experiment is obtained, particularly for
the Rydberg series near the (01) beam emergence.
At lower energies the agreement is also good, al-
though some of the relative peak heights could be
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FIG. 4. (a) Experimental data for 6=15°, 26°, 43°, and 48°. The measurements for 6=48° are from Ref. 19, the
remainder from Ref. 6. (b) Corresponding calculations using the saturated-image barrier of Fig. 2. The full curves denote

spin-down and the crosses spin-up results, respectively.

improved by adjusting the damping parameters.
The sensitivity of the fine-structure peak heights to
surface roughness limits their significance, however,
and we have not done this. It may be seen that the
change in the double-peak structure in the spin-up
channel with increasing 6 is more pronounced in ex-
periment than in the calculations. The calculations
for 6=17.5°, for example, show better agreement
with experimental curves with a nominal angle of
incidence of 15°. This is consistent with the retard-
ing field method used to vary the energy in Ref. 6.2°

The saturated-image barrier model thus provides

a satisfactory description of the fine structure in
these experiments. Other models, such as the
modified-image barrier, have been shown to be less
satisfactory for the analysis of LEED fine structure
on Cu(001).” It should be noted that these barriers
are special cases of the saturated-image barrier with
appropriately chosen parameters. There is no evi-
dence from these calculations for dynamical ef-
fects®® such as an angular or energy dependence of
U,. However, when further high-resolution LEED
data with a wider range of 0 and energy become
available, it may be possible to detect such effects.
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V. EXPLANATION OF LOW-ANGLE
FINE STRUCTURE

The structure of the low-energy and low-angle
specular intensity curves for W(001) has been the
subject of considerable analysis and speculation. To
determine which features are spin dependent and
which barrier dependent, we have performed parallel
sets of calculations with and without spin-
polarization for both the saturated-image and nonre-
flecting barriers. In the latter, the internal and
external reflection coefficients are neglected and
only the transmission coefficients retained.

In Fig. 5, we compare the spin-free and spin-
dependent calculations for both barrier models with
the normal incidence data of Herlt et al.?> The re-
sults show clearly that a broad Bragg peak is present
near 6 eV in all calculations and that a secondary
Bragg peak near 14 eV is modified by barrier
scattering near the (01) beam emergence at 15 eV.
Only the spin-dependent calculations give rise to the
narrow peak at 3 eV, and this peak is present for
both barriers. In agreement with the recent analyses
of Willis and Christensen,®® Herlt ef al?* and
McRae et al..% the peak may therefore be ascribed to
a gap in the spin-dependent band structure. This re-
sult demonstrates the need for a spin-dependent
model for LEED calculations on substrates with
high atomic numbers. It is also interesting that the
very low energy peak, clearly resolved in the experi-
ment, is present in both spin-dependent and spin-
free calculations for the saturated-image barrier, but
absent for the nonreflecting barrier. A shoulder at
11 eV is not reproduced by the present calculations.
Herlt et al.? found that its intensity was significant-
ly enhanced by contraction of the top layer spacing.

The spin-free and spin-dependent calculations
with and without barrier scattering are compared
with experiment for 6=15° in Fig. 6. This is an ex-
ample of a complex fine structure due to emergences
interacting with Bragg features. It is again clear
that spin-free calculations are quite inadequate and
that only the spin-dependent calculation with barrier
scattering provides satisfactory agreement with ex-
periment. As noted above, the calculated curve for
0=17.5° shows improved agreement with the exper-
imental curve for 6=15° [Fig. 6(a)]. In particular,
the second of the peaks in the spin-up curve near 5
eV is much narrower than the corresponding peak in
Fig. 6(e).

To complement the data in Fig. 6, we show in
Fig. 7 the results of spin-dependent calculations for
6=0°, 5°, 10°, and 26°. The spin-dependent feature
at 3—4 eV persists at all these angles, while the
Bragg peak moves gradually upwards from 6 eV at
normal incidence to about 8 eV at 6=15°. As the
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FIG. 5. Results for §=0. (a) Experimental total reflec-
tivity (Ref. 23). (b) Spin-free, nonreflecting barrier. (c)
Spin-dependent, nonreflecting barrier. (d) Spin-free,
saturated-image barrier. (e) Spin-dependent, saturated-

image barrier. The spin-down (full curve) and spin-up
(crosses) results are indistinguishable at normal incidence.
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FIG. 6. Results for 6=15°. Curves as in Fig. 5. The
experimental curve is from Ref. 6.

emergences of the (10), [(01) and (01)], and (10)
beams separate with increasing 6, the intensity pro-
files become more complex due to the interaction of
the Bragg features and the interference fine struc-
ture. At 6=10°, the interaction of the (10) beam

emergence with the Bragg peak produces a double-
peaked structure which is slightly displaced in the
spin-up and spin-down profiles. At =15, an in-
terference peak is superimposed on the Bragg peak
and slight shifts in the spin-dependent features near
4 eV produce an interesting double-peaked structure
in the spin-up beam. The complexity of the 8=15°
curves can therefore be interpreted as the interaction
of interference fine structure with a Bragg peak and
the spin-dependent feature at 4 eV. It is not neces-
sary to invoke a new type of feature such as the dou-
ble resonance of Rundgren and Malmstrom, ! which
involves the simultaneous emergence of inequivalent
beams.

For incident angles above 20° on this azimuth, the
(10) threshold lies below the Bragg peak and the
fine-structure profiles are dominated by the barrier
interferences. As can be seen from Fig. 4, these pro-
files are much simpler than those for smaller values
of 6. The 3-eV spin-dependent peak is still present
for 6> 20°, but gradually weakens at higher angles
of incidence, as shown in Fig. 4(b).

VI. CONCLUDING REMARKS

The saturated-image barrier of Fig. 2 (zo=—3.3
bohr, U, =0.7 Ry) gives a satisfactory description of
the spin-polarized LEED fine structure for energies
below 10 eV over the entire range of incident angles
from normal incidence to 6=48°. The present data
provide no evidence for dynamical effects, such as
an angle or energy dependence of U, but this would
be an interesting aspect in the analysis of future data
of higher-resolution and different energy ranges.

It is interesting to note that the barriers which
reproduce the fine structure in'® Cu(001) are approx-
imately rigid translations of each other. This is also
true of the three barriers which reproduce the fine-
structure splittings in W(001) at 6=48°, i.e., the dis-
tance between z, and the point where the barrier
joins the bulk inner potential is approximately 7
bohr in each case. This is a similar length scale to
that found in jellium calculations for r;=2,>! where
the barrier changes predominantly over the range of
the Fermi wavelength (27 /kg). For this value of rg,
Lang and Kohn?! also found that z, lies 1.6 bohr
outside the positive background [3.1 bohr from the
outermost layer for W(001)] and that the position
where the barrier is halfway between its bulk and
vacuum values is near the edge of the positive back-
ground. Although a comparison between a
transition-metal surface and a jellium model must be
treated with caution, qualitative similarities between
the jellium results and the barrier of Fig. 2 are evi-
dent.

The saturated-image barrier is able to explain all
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FIG. 7. Spin-dependent LEED intensity calculations for W(001). (a) 8=0° (b) 6=5° (c) 6=10° (d) 6=26°. In each case
the upper curve is for the nonreflecting barrier and the lower curve for the saturated-image barrier. Spin-down and spin-

up results are given by full curves and crosses, respectively.

the observed fine structure in the rather complex set
of spin-polarized LEED intensity curves for W(001).
For 6 <20°, the interaction of Bragg peaks and em-
ergence features provides a demanding test for the
theory. At higher incident angles, only the emer-
gence features are present and the agreement be-

tween theory and experiment is very good. Even
with pseudorelativistic phase shifts, however, the
spin-free model does not provide a satisfactory pic-
ture of the LEED fine structure at low angles of in-
cidence. This shows that spin-dependent calcula-
tions are essential in LEED studies of systems with
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high atomic numbers.

The low-energy electron reflectance from W(001)
has been the subject of considerable dispute for more
than a decade. The present work shows that satis-
factory agreement between theory and experiment
can be obtained by the inclusion of relativistic ef-
fects and a saturated-image model of the potential
barrier.
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