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Frequency dependence of the conductivity in presence of an electric field
in one dimension: Weak-disorder limit
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The frequency dependence of the electrical conductivity is examined for a classical hop-

ping model of a random one-dimensional system in the presence of a superposed static elec-

tric field. The effect of the field is taken as a constant bias for the left-right jump rates. A

general expression is derived for the mean velocity and frequency-dependent conductivity.

Explicit evaluation of these equations is given for correlated and uncorrelated hopping rates:

(1) in general for high frequencies and (2) to lowest order in the disorder for all frequencies.

In the latter case, an initial decrease in cr(co) for very small co is found, crz ——ao —also,
oI ——a2co . For larger frequencies, the conductivity crosses over to the form

o(co)=ho+bi(iso)', previously calculated by Alexander and Orbach. The a;,b; are con-

stants which depend on the strength of the bias and the randomness. The crossover fre-

quency increases with the bias. In addition, the variance in the autocorrelation function is

calculated in the long-time limit, for weak disorder in the symmetric case. It is shown that
fluctuations do not significantly affect the determination of this quantity under these condi-

tions.

I. INTRODUCTION

The frequency dependence of the electrical con-
ductivity in one-dimensional systems with symme-
trical random hopping rates has been calculated re-
cently in a series of papers. ' Recent electrical
conductivity experiments on the quasi-one-
dimensional conductor quinolinium di-
tetracyanoquinodimethanide [Qn(TCNQ)2] have
been analyzed using these results by Alexander
et al." All of these studies, with the exception of
Ref. 3, have only treated the case of symmetric hop-
ping rates, and hence were only applicable in the
small electric field regime.

Recently, attention has been directed to the ques-
tion of transport with random, but biased, hopping
rates. These calculations have explored the time
dependence of the mean displacement. Our purpose
is to calculate the frequency dependence of the con-
ductivity in the nonlinear electric field regime. We
sha11 find a result very different from the symmetric
case at the lowest of frequencies, crossing over to a
response which is the same as found for symmetric
hopping at higher frequencies. This crossover has
been anticipated in Ref. 3.

Our purpose here is to formulate the problem in
such a manner that the frequency dependence of the
conductivity can be calculated directly. Section II
describes the formal calculation of the ac conduc-
tivity in a uniform dc field. Section III exhibits the
high-frequency limit for the conductivity. The solu-
tion for weak disorder is developed in Sec. IV, with
figures exhibiting the real and imaginary part of the
frequency response for different biases. In both
Secs. III and IV we treat the case of correlated and
uncorrelated hopping rates. In Sec. V, we derive an
expression for the variance of the autocorrelation
function in the weak-disorder limit, and show that
fluctuations are unimportant in this, and the long-
time, limit. Finally, we summarize our findings in
Sec. VI.

II. FORMAL SOLUTION FOR THE
ac CONDUCTIVITY

IN A UNIFORM dc FIELD

We treat the same master equation for hopping
transfer as in Ref. 1, but with asymmetric hopping
rates. Let P„(t}be the probability that site n is oc-
cupied at time t. Then, for near-neighbor hops only,
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dP„

dt
Yll y 1PII y 1+Xn —lPn —i (Xn + Yn )Pn i

( g'0+ 5'e'"'}el
Y„= exp

B
W„

where Y„+i is the hopping rate to the left (from
n + 1 to n) and X„&is the hopping rate to the right
(from n —1 to n) I.n the presence of an applied
static electric field 8'p, and a small oscillating field
8' at frequency co,

Once Q„and R„are known, we may find V from
Eqs. (5) and (4). From Eq. (6b), Q„R„=Owhence

g [[X„—aX„ i(1 Ee'"')][Q„+R„Ee'"']I
V=

(7)

Writing the velocity in the form V =v +Ee'"'o(co),
one identifies

y [(X„—aX„ i)g„]
(8'0+ I'e'"')el

exp —2
AT

Xn-i (2)
(8)

where we have taken the potential drop to be the
same along all segments of equal length l, and where

W„ is the symmetric hop rate between n —1 and n

(i.e., the hop rate in the absence of an applied static
field). Expanding in 8',

and

g [(X„—aX„ i }R„+aX„ ig„]
o(to) = (9)

X„(ag„~i
—Q„)—X„ i(ag„—Q„,) =0,

itvR„=X„(aR„+i
—R„)—X„ i(aR„—R„ i)

aXn Qn +1+aXn —1gn

(6a)

(6b)

Y„=a(1 Ee'"')X„—

where E=28'el/k&T and a=exp( 28'ttel/k—&T) is
termed the bias. The velocity of the particle at time
t is given by

g nP„{t)
d 5

dt QP„(t)
n

g (X„—Y„)P„(t)
(4)

P„{t}
n

Expanding P„(t) in a power series in the reduced
field E,

P„(t)=Q„+R„Ee'"'+

one can derive expressions for Q„and R„ from Eq.
(1). One finds

These are our two principal relationships (the first is
merely a restatement of the result obtained in Refs.
5—7). We can evaluate Eq. {8) immediately for our
model. Expressing the Q„as

Q„= g a&/X„+p,
p=p

Equation (6a) is solved immediately. One finds

(10)

v =(1—a)
1

Xp

v =2(1/IV) 'sinh( 8'Oeilkz T), (12)

a well-known result, and one which reproduces
Rice et al. ' for the case of a regular lattice. We now

go on to explicit evaluation of the conductivity, Eq.
(9), in the high-frequency (Sec. III} and weak-
disorder (Sec. IV) regimes.

This is the same result as in Ref. 7, if we note
a =exp( 2Ãael/kz T)—and ( 1/Xo ) =exp( O'Oel /
ks T)(1/IV), where W„ is the symmetric hop rate
between n —1 and n in the absence of an applied
electric field. Inserting into Eq. (11),

III. HIGH-FREQUENCY LIMIT

We examine the case when the frequency co is much greater than any of the hopping rates X„,Y„. Using the
relationship Eq. (6b), one expands in inverse powers of cv to find R„ in terms of Q„:

1 2 2R„= . a(X„ ig„—X„g„+i + . 2 ( Xngn+I a +nXn lgn+2+XnXn —ign+ ngn+i a Xn —ign
ice " " " "

(iso)

+a X„ iX„Q„+i+aX„ iX„2Q„ i —aX„ iQ„)+0
(13)
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One now uses the expression for Q„, Eq. (10), in Eq. (13}to obtain the explicit form for R„. Knowing Q„and
R„, n(ro} is known from Eq. (9). We exhibit two forms for a(ro): the X„uncorrelated, and the X„correlated.
The former becomes

a „,(co)=a(X)+ [2a (X) —a (a +1)(X2)+a(1—a)(X) /(1/X) ]

[2a (X)'—3a (1+a)(X)(X )+a(1+a) (X ) —a(1 —a)(X )/(1/X)]+1

(iso)2

(14)

This expansion is, in principle, valid as long as co » (X") '~". This is an interesting form, in that some unusual
averages enter for asymmetric transfer rates (a & 1). For the symmetric case, a = 1, and one recovers the high-
frequency forin for cr(co) given in Ref. 1 [their Eq. (7.8)]. It is interesting to note that the inverse moment of
the X„enters at high frequencies in the asymmetric case. This suggests nonuniversal behavior for distribution
of class (c) (in the notation of Ref. 1) even at high frequencies, whereas the behavior is purely universal in the
high-frequency regime for symmetric transfer rates.

The correlated case has the following high-frequency conductivity:

o„,(co)=[(1—a)/(1/X)] g (Xo/Xp)aP
p=1

1 00 00

+ [(1—a)/(1/X)] a(X)+2 g (XOXi/Xp)ap —(1+a) g (Xo/Xp)ap +, (15)
lN p=2 p=1

if ro»(X")' ". Because of the translational invariance, one can replace averages like (XOXi/Xp) by
(X„X„+i/X„+p)for any n

In the symmetric limit (a = 1) for short-range (sr) correlations, it reduces to

~...„(~)=(X)+. [(X,X, ) —(X,')]+, ~»(X")"".
le (16)

IV. WEAK-DISORDER LIMIT

We pass to the limit of weak disorder in order to
obtain a solution of Eq. (6b). To this order the ex-
pression for the frequency-dependent conductivity
developed below [e.g., Eq. (23)] is exact for all fre-
quencies (see the Summary, Sec. VI, for further dis-
cussion of this question). We set

=A+a„, (e„)' «A .
1

n
(17)

Q„=A/(1 —a)+ g aPe„+p .
p=0

(10')

We must now evaluate R„ in terms of the Q„ from
Eq. (6b). To carry this through (to any order in e,

R„=O), we expand,

In exactly the same manner as before, we can write
the exact solution for Q„,

+a/(1 —a)

+ [a /(1 —a)A 2](e )], (19)

where it remains necessary to calculate the pp de-
fined in Eq. (18). The algebra leading to a solution
is tedious, and we merely exhibit the results here.
For p &0.

(20a)

I

where we shall work only to linear order in e. Using
Eqs. (10') and (18) in Eq. (9), one finds to lowest or-
der in the disorder, for uncorrelated X„,

o'„„,(cg) = [(1—a)/A]

X[(I/A )(ap, —po)(e )

R„= g Ppe+p
P =—0O

+ g g 7'pqen open yq, + ', (18)
p= —oo q= —0o

and for p & —1,

a(A, —1)
(A, —a)(1—a)(A, —a)

where A, is the largest root of

(20b)
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A, —A(1+a+icoA)+a =0, (21)

@=a/A, , and a (1. In particular, for purposes of
Eq. (19),

in frequency behavior can be traced to the same ori-

gin as 'for nonlinear electric field effects as discussed
in Ref. 3.

For the first regime (lowest co), one finds

a a+1—2A,
—i 0

1 —a li, —a

leading to our principal result,

cr,(co)=—+a (e ) a(k —1)

A, —a

(22)

(23)

while for the latter regime,

co&(1—a) /A,

cr,(co}-ho+bi(ic0)' +

o'„„,,{c0}-ao—aic0 +aiico +. . .2 - 3

(26)

(27}
The frequency limits of Eq. (23) are interesting, and
illuminate the essential physics of the transport pro-
cess. The behavior of the roots of Eq. (21) are essen-
tial to our analysis. If one attempts to make a low-

frequency expansion of A., one is faced with a com-
parison of (1—a) to c0A (1+a).

2A, =1+a +icoA

+[(1 a) +—2ic0A (1+a)—(c0A)i]'c (24)

Our analysis of this ratio is based on a comparison
of the "drift" distance with the "diffusive" displace-
ment, exactly as in Ref. 3. We shall show that the
very small co (long-time) limit is dominated by the
drift of the particle under the influence of the elec-
-tric field, the larger co domain by diffusion. The
former will result in a diminution of cr,o,(co) with
increasing frequency, the latter in an increase. The
former is a consequence of electric field driven drift
causing the particle to encounter rare very small
transfer rates which diminish the conductivity. It
would not have experienced these transfers if its
motion were purely diffusive on the same time scale
of I/co. The latter regime is associated with shorter
and shorter root-mean-square distances as co in-
creases, leading to fewer encounters with small
transfer rates.

The crossover condition can be obtained in exactly
the same manner as in Ref. 3 by calculation of the
relevant lengths. The drift velocity has already been
derived in Eq. (11). Approximating (weak disorder)
( I/X) =A, in a time 1/co, the particle experiences a
net average displacement

c0 & (I —a )i/A .
The coefficients are positive, and depend on the
strength of the disorder through Eq. (23}. The limit-

ing behaviors are easily seen if one plots the full
solution to Eq. (23). Taking A= 1 for simplicity, we

have calculated the frequency-dependent part of
o(co), (A, —1) /(A, —a), against co, for a=0.8 and
0.9. Figure 1 exhibits the real part of this factor for
the interesting frequency regime with a=0.8. One
sees a crossover at co=0.046 between the two-

frequency regimes. The low-frequency drift-
dominated limiting regime for the frequency-
dependent part of o(c0) is exhibited in Fig. 2, and
for the imaginary part in Fig. 3. Finally, the
higher-frequency diffusion-dominated regime-
limiting behavior is exhibited in Fig. 4. Similar
plots for a =0.9 are exhibited in Figs. 5—7. One sees
that crossover takes place at lower frequency,
+=0.011 from Fig. 5. This follows closely the pre-
diction of Eq. (24) (as it must).

These curves show that the limiting low-

frequency dependence is an immediate and strong
function of the nonlinear response. For small elec-

Re 9;1)
A, -a2

010—

ld„g, =(1—a)/c0A . (25a)

Likewise, on the same time scale, the particle's
root-mean-square diffusive distance is

ld' ff—(A Co ) (25b)
-0 03

0

I

015
I

020

The ratio of the square of the two is

lpga/ d.fr=[(1—a) /A c0 ]/[I/Aco],

or, more simply (1—a) /Aco which, for small 1 —a,
is precisely the ratio Eq. (24). Hence, the crossover

FIG. 1. Plot of the real part of the frequency-
dependent part of cr(cg), (A.—1) /(I, —a) (defined in the
text), vs co for the bias parameter a=O.S, and background
regular inverse hop rate 2 = 1. Note the crossover
behavior near co =0.046.
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tric fields, the drift regime is limited to very small
frequencies, increasing in scale as the electric field is
enhanced. For the symmetric case, a = 1, we recover
precisely the expression for o „,(co) given in Refs.
2 and 9, to lowest order in co.

For correlated X„, the argument goes through as
before, with the following results for the symmetric
case (a= 1):

Re (X-1)
2

1O-'-

10 t

(eo)
o~,(co}= 1/A +

A, +1
10

(28}
0.001

I

0.01

and the asymmetric case (a & 1):

FIG. 2. Same as for Fig. 1, but for small co on an ex-
panded scale. The straight dashed line has slope 2, show-

ing that crq(co) falls off as co for smallest co.

a (eo) a(A, —1) 1 & (A, —a) a~ a(A, —1) 1o,(co)=—+ —+ ——(1—a)a~
A A. —a A i )I, a lt' A—, —a )t'p=l

(29)

V. FLUCTUATIONS
IN THE AUTOCORRELATION

FUNCTION

One of the more intriguing questions which exact
treatments of random one-dimensional systems have
been unable to treat is fluctuations about the ensem-
ble average. The simplest quantity, the autocorrela-
tion function, is an example of how difficult such
problems are. As discussed in Ref. 1, Sec. X, the
variance of the autocorrelation function Po{t), in-
volves the calculation of

(Po(t)) =W ' . I dco'Po(co')Po(co co')—
27Tl

{30)

where Po(co) is the Laplace transform (W) of Po(t),
where

P„(co)= J e "'P„(t)dt .

Because the P„(co) are correlated' for different co,
the averaging process in Eq. (30}does not commute
with the convolution, and one cannot simplify fur-

ha
t (1-1P
A-a J

2

1O-'—

1O-'

10-t—

10-'

10-'

10-t

I

0.01

10-'
0.001

FIG. 3. Same as for Fig. 1, but for the imaginary part
of cr(co), oy(co), for small co on an expanded scale. The
straight dashed line has slope 3, showing that err(co) in-
creases as co' for the smallest co.

FIG. 4. Same as for Fig. 1, but for the real (R) and im-

aginary (I) parts of (A, —1)'/(A. 2—a) above the crossover
frequency on an expanded scale. The straight line has
slope 2, showing that err(co) rapidly reaches this limiting

behavior, but crq(co) does so more slowly.
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-Ra
m (i-1)

10-I

10-'

10-'

-0 03

0

I

0.15

i

001

FIG. 5. Plot of the real part of the frequency-
dependent part of 0(m), (A, —1) /(A, —a) (defined in the
text), vs co for the bias parameter a=0.9, and background
regular inverse hop rate A = 1. Note the crossover
behavior near co =0.011.

FIG. 6. Same as for Fig. 5, but for Oq(co) on an ex-
panded scale. The straight dashed lines have slopes 3 and
—,for comparison with limiting behaviors of ol(co) for
frequencies below and above crossover, respectively.

coP„(co)=5„o+X„[aP„+i(c0) P„(co)]-

+X„ i[P„ i(co) —aP„(co)] . (31)

ther that expression.
Using the approximation of weak disorder, we

have been able to make some progress. The Laplace
transform of Eq. (1), with the initial condition that
the particle is at the origin, n =0 at time t=0, is

As before, we expand in the e„:

P„(co)=Q„(co}+ g a„pep

+ X X ~.c.e'I'e+
p= —oo q= —oo

where Q„, cr„~, and P„~~ are all functions of co. A
little algebra shows that if the X„are not correlated,

&P( )P( ')& —&P.( )&&P„( ')&=& '& g „,,( ) „,,( '), (33)

the P„z ~ cancel when taking the difference (33}. We need only find the a„z(co}to solve Eq. (33). These are
found as before by use of Eq. (32} in Eq. (31). One finds the relations

and

coQ =5,o+(I/A)(aQn+i —Qn+Qn —i
—aQ } (34a)

coa„~=( I/A)[acr„+i &+a„ i z
—(1+a)a,„~]

—(1/A )5„~(aQ„~i—Q„)—(1/A )5„ i ~(Q„ i
—aQ„) (34b)

If A, and p are the two roots of

aA. —A,(1+a +Ace)+1=0,

with ~A,
~

& ~p ~, thenthe Q„aregivenby

(35)

n &0: Q =AAp" +'/(A, —p), n &0: Q„=Ah,"+'p/(A. p) . —

The a„p are likewise given by
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and for

Using these expressions, Eq. (33) becomes

~1~2P'su'2[()(1 ) {)(2 1) 0'lP2+~1)i2(1 O'I) {1 P2} ]
PQ(co)PQ(ro') —PQ(ci)) PQ(rQ')

(~1 P'1) (~2 P2} (~1~2 }M1P2}
(36)

where A, i,pi and A2, p2 are the roots of Eq. (35} (remembering
~

A,
~

&
~ p ~

) for co and co', respectively. For the
symmetric case, a = 1 and Eq. (36) "simplifies" to (p i

——1/A i, p2 ——1/A z),

2A JA2
(Po(rQ)Po(Qi') )—(Po(Qi) ) (Po(~Q') ) = (~') (37)

(Xi+1}(Ay+1} {)L,iA2 —1)

We wish the inverse Laplace transform of this ex-
pression, a formidable task which so far has eluded
us for general co,co'. However, for small co,co',

A, = 1 + (Aco)', whence Eq. (37) reduces to

(PQ(rQ)PQ(rQ') ) —(PQ(~) ) (PQ(rQ') )

(38)
16~A {v co+ ~Q)')

2

Re ( 1)

A -a2

The inverse Laplace transform of (i/co+Vs') ' is
known, so that the long-time behavior of the vari-
ance of PQ(t} is approximately given by

2

(PQ(r})—(PQ(&)) =
64 2~ A

(39}
1~00 .

Comparing with (PQ(t) ) =V A /(2v nr'~ ), we fin.d

(Po(r}) (PQ(i}) v 'Ir (6 ) A

(PQ(t) ) 16v 2 A

t —+0O .

This is a highly satisfying result, for it demonstrates
that the relative variance of PQ(t) falls off with in-

creasing time as t ' for the symmetric case with
weak disorder. The asymmetric case is more com-
plicated, but it is at least formulated [Eq. (36)] in
terms of the Laplace transformed quantities. The
full problem, for arbitrary disorder, seems out of
reach at present.

')

0.01

FIG. 7. Same as for Fig. 5, but for the real part of
(A, —1) /(A, —a) above the crossover frequency on an ex-
panded scale. The straight dashed line has slope —for
comparison with the predicted limiting behavior.

VI. SUMMARY

We have considered the random one-dimensional
near-neighbor hopping transport problem for asym-
metric hopping rates with constant bias. This would
correspond to the problem of measurement of the
frequency-dependent conductivity in the presence of
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a large dc electric field. We have derived expres-
sions for the drift velocity and o(co) and have
evaluated them

(a) exactly for the drift velocity contribution to
the dc conductivity,

(b} exactly in the high-frequency limit, and
(c) exactly for weak disorder.

In case (c), we have shown that a crossover frequen-
cy exists, proportional to the bias, (i.e., strength of
the electric field) below which the real part of the
conductivity diminishes as co and the imaginary
part increases as co . Above the crossover frequency,
the real and imaginary parts increase as co' . We
have exhibited numerous graphs which show the
real and imaginary parts of o(co) over the applicable
frequency range.

We have limited ourselves to the first correction
term for the R„[Eq. (18}]when we work to lowest
order in the disorder [case (c}above]. To that order,
the frequency dependence we have found for o(co) is
exact. One can pose the question of the effect on
iT(co) of introducing higher-order corrections in Eq.
(18}. Such a task is formidable, but we know the
answer in the symmetric case (a=1). There, the
0'(co) can be expanded as a power series in (8).
One finds that these terms carry with them only
higher powers of co'

o'(co} o(0)+0((e ) )co' +0((e ) )co+

Thus, to lowest order in (s ), one obtains the first
frequency-dependent correction to o(co), proportion-
al to co' . To higher order in e, one obtains yet

higher powers of co'~2. This suggests (but we have
no proof) that the next term in an expansion in the
disorder for the asymmetric case would yield fre-
quency corrections of a higher power than we have
found in Sec. IV. Said another way, it may be the
case that the weak-disorder limit may in fact gen-
erate only the lowest-frequency correction to the dc
conductivity in the asymmetric limit (as it does in
the symmetric case), with higher-frequency correc-
tions arising from higher-order terms in the expan-
sion in powers of the disorder (as it does in the sym-
metric case}. This conjecture remains to be proven,
but if true it means that our expressions for case (c)
above can be regarded as a low-frequency expansion

for the situation where the disorder is not necessari-

ly weak.
Finally, we have shown for weak disorder that

one can obtain a closed form expression for the La-
place transform of the variance of the autocorrela-
tion function. We have succeeded in obtaining the
inverse for the symmetric case, and have shown that
fluctuations above the mean value fall off as t
for long times.
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