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Electrical transport in low-resistivity amorphous metals

L. V. Meisel and P. J. Cote
U.S. Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory,

Benet Weapons Laboratory, Watervliet, New York 12189
(Received 3 November 1982; revised manuscript received 12 January 1983)

Diffraction-model calculations incorporating appropriate scattering matrix elements and

phonon-ineffectiveness effects (saturation effects) yield results which are consistent with the
observed temperature dependence of the electrical resistivity in low-resistivity

(p& 100 pQcm} amorphous alloys. In particular, remarkably good quantitative agreement

with available detailed resistivity measurements in a-MgZn alloys has been obtained by
these methods. The results further indicate that saturation effects, which dominate the tem-

perature dependence of the high-resistivity amorphous metals, are important even for resis-

tivities as low as 50 pQcm.

I. INTRODUCTION

Most quantitative theoretical results on electrical
transport in amorphous metals have been obtained
using the diffraction model' and its exten-
sions " in which the electron-phonon interaction
matrix element is assumed to be independent of the
electron mean free path. We shall refer to such cal-
culations in this paper as applications of the stand-
ard diffraction model. The standard diffraction
model also serves as the basis for the analysis of
transport in crystalline metals, yielding Bloch-
Gruneisen theory' for normal scattering processes.
However, the standard diffraction model is of ques-
tionable validity for most amorphous metals whose
resistivities are of the order of or greater than 150
pQcm, which corresponds to electron mean free
paths of the order of ionic spacings. The deviations
of experimental results from the predictions of the
standard diffraction model in high-resistivity metals
are referred to as "saturation effects" or Mooij phe-
nomena. ' ' In spite of the presence of saturation
effects, the standard diffraction model gives reason-
able values for the magnitude of the electrical resis-
tivity and its concentration dependence in a number
pf amprphpus alloys '; in fact, the model is often
not observed to fail unless close attention is paid to
details of the temperature dependence of the resis-
tivity. We refer to treatments of electrical transport
in which the electron-phonon interaction is electron
mean-free-path dependent' ' as "saturated cases"
of the diffraction model.

The treatment of Mooij phenomena has been the
subject of considerable theoretical study. Some in-
vestigators have treated high-resistivity metals in the
context of the diffraction model by postulating in-
terband tunneling channels' or, in analogy with the

Pippard theory of ultrasonic attenuation in metals,
an electron mean-free-path —dependent electron-
phonon interaction. ' ' Other investigators ' have
approached the problem by extending theories in-
tended for transport in materials whose electrons are
localized.

The standard diffraction model is expected to be
valid when the electron mean free path is not too
short. Thus, a test of the theory in low-resistivity

(p & 100 pQ cm} inetallic glasses is of interest. Until
recently relatively few experiments have been per-
formed on such alloys since they are difficult to
fabricate. Notable exceptions were the results in
vapor-deposited a-CuSn (Ref. 22} and a-AuSn (Ref.
23) alloys for a wide range of compositions. These
alloys exhibit the features predicted by the diffrac-
tion model including trends in p and the tempera-
ture coefficient of resistivity (TCR} with composi-
tion, and the presence of a maximum in p vs T in al-
loys with a negative room-temperature TCR, an
essential feature of standard-diffraction-model pre-
dictions.

There are now substantial data for low-resistivity
amorphous alloys. Matsuda and Mizutani complet-
ed a thorough study of electrical transport in a-
MgZn alloys from 2—300 K with Zn concentra-
tions ranging from 22.5 to 35 at. % and in an a-
MgCu alloy 25 Mizutani and Ypshida26 prpvided
data on a variety of Ag-Cu —based alloys from
77—300 K. Earlier, Hafner et al. had found good
agreement between experiment and the theory of
Refs. 7—9 in a preliminary study on a-Mg7Zn3.
These alloys are particulary suited for tests of the
diffraction model because of their low resistivities
(-50 pQ cm) and the existence of supporting data
which determine the relevant parameters in the
Ziman-Faber theory (e.g., Fermi wave number kz
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and structure-factor peak position k~). Moreover,
the conduction-electron states in a-MgZn may be as-
sumed to be almost exclusively of s and p character
in contrast to the complex situation in the more
common transition-metal —based glassy alloys.

In this paper we compare the a-MgZn —alloy
transport data with results computed using the dif-
fraction model with (i} Heine-Aberenkov pseudopo-
tentials as tabulated by Harrison used for the
scattering matrix element in the Born approxima-
tion, and (ii) a phase-shift expansion of the scatter-
ing matrix elements as developed by Evans et al.
Saturation effects are taken into account by invok-
ing the Pippard-Ziman constraint on the electron-
phonoa interaction. ' ' ' A brief review of the
theory is given in Se:.II. The scattering potential is
discussed in Sec. III where the method of selecting
phase shifts appropriate for a-MgZn is described
and problems encountered with the Born approxi-
mation are discussed. In Sec. IV a detailed compar-
ison is made between the data on a-MgZn and the
predicted results using the diffraction model with
both the phase-shift expansion and pseudopotential
scattering matrix elements. Implications for trans-
port in general low-resistivity alloys are also

I

described in Sec. IV. A summary and conclusions
are given in Sec. V.

II. THEORY

The diffraction model (Ziman-Faber theory~) re-
sult for the electrical resistivity is

r 3

S~(K)
i
u(K)

i

2kF

12m Qo

e 2/+2 P 2kF

(1)
where Qp is the atomic volume, VF is the Fermi
velocity, kF is the Fermi wave vector, E is the
scattering vector, fi is Planck's constant divided by
2n., e is the electron charge, and the resistivity static
structure factor S~(K) is defined in terms of the Van
Hove dynamical structure factor S(K,ro) as

S~(K)= f dao xn(x)S(K,u), (2)

where x =fuo/k~ T, n (x)= (e"—1) ', kz is
Boltzmann's constant, and T is the absolute tem-
perature. The scattering matrix element u (K) is ap-
proximated by a pseudopotential in the Born ap-
proximation, or for strong scattering (i.e., large
phase shifts} it can be expressed in terms of phase
shifts as

27rfi3
u (K)= »z g (2l+1)sin[ri&(EF)]e ' P~(cos8),

m(2mEF) Qo
(3)

where the phase shift ri~(E&) for angular momentum quantum number l is evaluated at the Fermi energy and
m is the electron mass. The matrix element in the form of Eq. (3) includes single-site multiple scattering and is
called the t matrix. We shall discuss transport in a-MgZn alloys using both of these formulations. The general
case is described in terms of the t matrix.

The resistivity static structure factor in an amorphous Debye solid may be expanded in the form

S~(K)=So(K)+S) (K)+S$(K)+

where S~(K}is an n-phonon term. The elastic scattering term (no phonons) is

S~o(K }=a(K)e

where e ' ' is the Debye-Wailer factor and the geometrical structure factor a (K) is

a(K)= —g exp[iK (m n)], —1

&m.

(4)

with m, n being averaged ionic positions. The one-phonon term allowing for Pippard-Ziman phonon ineffec-
tiveness as described in Refs. 16 and 17 is

1 q q dQqSf(K)=a(K)e ' '—f d n(x)[n(x)+1] f a( ~K+q
~
)F(qA),

qD qD 4m

where a(E)=3(fiK) /Mk&O where M is the aver-
aged ionic mass, qD is the Debye wave number, 8 is
the Debye temperature, x =(0/T)(q/qD) for a De-
bye solid, A is the electron mean free path, and

F(qA) describes the reduction in scattering effec-
tiveness which occurs for sma11 qA. The calcula-
tions presented here assume that F(qA) can be
represented by the form suggested by Pippard in
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F(y) = 1 (no saturation} . (7b)

We refer to this form of the theory as the standard
diffraction model. Equation (7b) is also clearly the
long electron mean-free-path limit (or low-resistivity
limit) of the Pippard function. One can also
represent saturation effects with a "sharp cutoff"
form

0, y&y
F(y) = '

1
(sharp cutoff),

y &yc
(7c)

where the cutoff value y, is of order qDa where a is
the mean ionic spacing. Note that the placement of
F(qA) in the one-phonon part of the (generalized)
resistivity static structure factor results from a
decomposition of the absolute square of a phonon
wave number and electron mean-free-

path —dependent electron-phonon matrix element
into a simple product according to the prescription

where u(K) is the ordinary scattering matrix ele-

ment which appears, for example, in the elastic
scattering term.

The multiphonon series is approximated in vari-
ous ways. For the range of temperatures of in-
terest here {T&e}the particular approximation
made is not important and the results are given in
Sham-Ziman approximation, i.e., we assume that
the effect of the multiphonon series is to cancel the
Debye-Wailer factor in the one-phonon term. We
shall refer to that modified term as the inelastic
scattering term or simply the phonon scattering
term.

The Debye-Wailer exponent is given (for a Debye
solid }by

2W(K) =a(K) J d [n{x)+—,]
qa qD

2
8/T 1=a(K) — I dx x[n(x)+ —] .

Q~ p 2

(Sa}

(8b)

Note that Eqs. (1)—(8) have been written in a
form appropriate to a pure substance. The product
S~(K)

~
u(K)

~

should be replaced by a sum of
concentration-dependent terms involving individual

his study of ultrasonic attenuation, and
r

F(y) =—,—— (Pippard saturation} .2 ytan 'y 3

y —tan y

(7a)

We refer to this expression as the Pippard function.
If saturation effects can be ignored,

constituent scattering matrix elements and partial
structure factors in alloy systems. Nevertheless, in

the a-MgZn alloys we treat the material with a sin-

gle effective scattering potential in the spirit of the
substitutional model of Faber and Ziman and a
Percus-Yevick form ' for the geometrical structure
factor. This is not quite right when there is short-
range order and 2kF is situated differently with

respect to the peak positions of the various partial
structure factors. However, a broad range of
scattering vectors contribute to the resistivity in a-
MgZn, the constitutents have very similar atomic
structure, and the computations by von Heimendal

suggest that the three partial structure factors are
very similar; we thus assume that the conditions for
the substitutional model apply. The application of
the substitutional model to the other low-resistivity
amorphous alloys considered here may not be as
good an approximation.

III. THE SCATTERING MATRIX ELEMENT
AND THE MAGNITUDE OF p

The atomic structure of Mg consists of filled
shells and 3s electrons, and similarly in Zn, filled
shells and 4s electrons. It follows from straightfor-
ward considerations of the atomic structure of these
simple divalent metals that the appropriate starting
structure in the metallic solid will consist of a nearly
filled s band with some p-band occupation resulting
in a metallic sp band primarily of s character with a
small admixture of p character. (Note that the ener-

gy required to promote an electron to a d level in
Mg or Zn is prohibitively large in contrast to the sit-
uation in Ca, Sr, or Ba.) Thus if we construct a
scattering matrix element as given in Eq. (3), we ex-
pect the s-wave phase shift rip(Ep) to be slightly less
than n', the p phase shift rI&(EF) to be small, and
other phase shifts to be negligible. Such a scattering
matrix element will be drastically different in form
from a Born-approximation pseudopotential matrix
element. We have constructed such a matrix ele-
ment for a-MgZn by adjusting rip(E~) to give the
observed magnitude of p with ri&(EF) constrained to
satisfy the Friedel sum rule. 3' (Since there are only
l =0 and 1 phase shifts to consider and the electron
per atom ratio, z =2, one has to satisfy
qp+3g& n )Th—e—re.sulting values of rip(Ep) and
g&(E~) are 2.87 and 0.09, respectively; we use these
values in our subsequent investigations of the tem-
perature dependences.

Dunsworth has deduced phase shifts for Zn in P
brasses by adjusting augmented-plane-wave —(APW)
form matrix elements to fit experimentally deter-
mined Fermi-surface features. His results for Zn in
crystalline P brasses where z=1.5 electrons per
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FIG. 1. Weighted absolute squared scattering matrix
elements used to describe transport in a-MgZn. Mg pseu-

dopotential is from Ref. 28. Phase-shift-expanded matrix
element is adjusted as described in the text for use in a-
MgZn. Percus-Yevick hard-sphere structure factor with

parameters appropriate to approximate the geometrical
structure factor a(K) in a-MgZn is also shown for the
case where 2kF ——1.1k~. Note that the inelastic part of
the resistivity static structure factor S~(K) will be substan-

tially broader than a(K) for T=8 and that the 5 function
in a(K) at K =0 is not represented.

I.O

atom are gp ——3.114, g~ ——0.289, and gz ——0.001 at
the free-electron Fermi energy. This lends support
to our general expectation that the divalent metals
and alloys will exhibit large I =0 phase shifts (near
r/} and small I = l phase shifts.

It should be stressed that although the magnitude
of p is quite sensitive to changes in the phase shifts,
the T dependence of p(T)lp(8) is relatively insensi-
tive to specific phase-shift values. For example, a
matrix element constructed for gp

——2.00 and
q~

——0.38 yields a factor-of-2 increase in p but only
changes the temperature dependence of p(T)/p(8)
by about 5% over the range from 0 K to 8 for the
values of 2kF /k~ studied here. In fact, for
m/2 &gp&~ and g~ adjusted to satisfy the sum rule,
the scattering matrix elements are similar in form to
that shown in Fig. 1 for g& ——2.87 and give essen-
tially equivalent (i.e., within about 20%) tempera-
ture dependences for p( T)Ip(8 }.

Another point which should be considered is the
effect on p(T) of breakdown of the Freidel —sum-
rule constraint. Although various forms of the
Friedel sum rule ' are invoked to constrain phase
shifts evaluated at the Fermi energy, it should be
noted that calculated phase shifts often fail to satis-
fy the sum rule; for example, in Ref. 36 the phase
shifts computed for Ca and Sr yield Freidel sums
differeing by 15%%uo and 3%%uo, respectively, from the

sum rule. Again the form of the t matrix [which
determines the temperature dependence of
p(T)lp(8)] is preserved even for potentials which
do not satisfy the sum rule as long as m/2 & gp & m.

and g& is not too large.
The point of this discussion is that although the

phase shifts deduced for a-MgZn are not uniquely
determined by the transport data, the temperature
dependence of the resistivity of all the low-resistivity
amorphous alloys studied to date can be discussed in
terms of an approximate t matrix of the form shown
in Fig. 1. Also one might expect the best phase
shifts for a-MgZn to be given within about the devi-
ations from the sum rule seen in Ca or Sr.

If one uses the Born approximation with Heine-
Aberenkov pseudopotentials as tabulated in Ref. 28
for Mg and Zn, approximates S/'{K) by SO{K},and
takes a value of kF appropriate to the a-MgZn al-

loys, then one obtains 20 and 29 pQcm, respective-

ly, for the Mg and Zn pseudopotentials. The
discrepancy between either of these values and the
measured resistivities of the a-MgZn alloys is of the
order found when those methods have been applied
to transport in liquid metals. However, the form
of the Born-approximation matrix element is drasti-
cally different from that of the adjusted phase-shift
matrix element as may be seen in Fig. 1. The can-
cellation near 2kF, which is characteristic of pseudo-
potentials, does not occur in the phase-shift-
expanded matrix element.

Considering only the theoretical results for the
magnitude of p, either approach can yield reasonable
agreement with the data in a-MgZn alloys. Howev-

er, we shall see in Sec. IV that the phase-shift matrix
element leads to a better approximation to the ob-
served temperature dependence in a-MgZn than the
Born-approximation results.

Moreover, there are well-known examples of diffi-
culties with Born-approximation transport calcula-
tions in related systems. For example, the electrical
resistivity computed with Heine-Aberenkov pseudo-
potentials in the Born approximation and with
Percus-Yevick hard-sphere structure factors is in
poor agreement with experiment in liquid Ca, Ba,
and Sr. On the other hand, Ratti and Evans ob-
tained good agreement with the experimental data in
liquid Ca, Ba, and Sr using a phase-shift-expanded
form for the scattering matrix element [Eq. (3)] with
phase shifts computed from muffin-tin potentials.
(The only significant phase shifts in these alkaline-
earth liquids were an s phase shift slightly less than
n and a small d phase shift. )

Furthermore, there are even indications of diffi-
culties with the Born approximation for the treat-
ment of transport in monovalent liquid metals.
Young et al. concluded that Born approximation



27 ELECTRICAL TRANSPORT IN LOW-RESISTIVITY AMORPHOUS. . . 4621

was inadequate in these liquid metals and achieved
improved agreement with electrical resisitivity and
thermopower in terms of phase-shift-expanded ma-
trix elements [Eq. (3)]. In the light of these findings
for liquid Ca, Ba, and Sr, and for the liquid mono-
valent metals, it is perhaps not surprising that we
find that the temperature dependence of the electri-
cal resistivity in a-MgZn and the other low-
resistivity amorphous alloys is better described by a
scattering matrix element of the form of Eq. (3) (t
matrix) than by pseudopotentials in the Born ap-
proximation.

IV. COMPARISON OF THEORETICAL
AND EXPERIMENTAL RESULTS

The parameters used in the computations are list-
ed in Table I. They are based upon the following:
x-ray and neutron diffraction yield values of k in

0 P
a-Mg7Zn3 of 2.7 and 2.6 A, respectively. Hall-
effect measurements bp Matsuda and Mizutani24

give 2.77&2kF &2.98 A ' for the range of compo-
sitions of a-MgZn studied. The mean ionic mass is
used for M and in a-MgZn we take qD

——k~ (since
z =2). Specific-heat measurements in a-Mg7Zn&
yield 8=295 K. We have also assumed a Debye
phonon spectrum and an effective (geometric) struc-
ture factor of Percus-Yevick form with packing
fraction i}=0.525 (which is representative of struc-
ture factors found in amorphous alloys).

In the remainder of this paper, when we refer to
the saturated case, we are quoting results computed
for Pippard saturation with qDA=11.7 in Eq. (7a)
which produces a 25% reduction in the inelastic
scattering part of the resistivity at T=8. (This is
equivalent to assuming the saturation resistivity
p*=200 pQcm in the treatment of Ref. 17.} We
emphasize here that inelastic scattering contributes
less than S%%uo to the total p so that the effect of
saturation in the adjusted phase shifts is negligible.
The unsaturated case results are obtained from the

standard diffraction model, i.e., using Eq. (7b) or let-

ting A~ ao in Eq. (7a}.
Table II summarizes many of the principal exper-

imental results regarding electrical transport for
T &8 in a-MgZn and also in a-AuSn and a-CuSn
alloys along with corresponding theoretical results
based upon Mg and Zn pseudopotentials and the ad-

justed phase-shift matrix elements for the saturated
and unsaturated cases. Generally, the adjusted
phase-shift matrix element in the unsaturated case
yields better agreement with the detailed experimen-
tal results than the Born-approximation results and
the phase-shift results including saturation yield the
best agreement with experiment in the a-MgZn al-

loys. Furthermore, there is excellent qualitative
agreement between the phase-shift results and the
amorphous noble-metal —based data. These results

strongly suggest that saturation effects or Mooij
phenomena are readily observable in amorphous al-

loys with resistivity as low as 50pQ cm.
Let us now turn to a brief description of our re-

sults for the various temperature regions studied in

detail by Matsuda and Mizutani in a-MgZn and
the overall temperature dependences predicted for
the other known low-resistivity amorphous alloys.

A. Room-temperature (T=8) TCR

The high-temperature ( T)8}form for the (effec-
tive} resistivity static structure factor to first order
in a(K) is

g~(K) =a(K)e ~'+'/4+a(K)(T/8)

X [&'(K)(1—y)

+(K)e —a(K)/4]

where y=0 in the standard diffraction model (i.e.,
no saturation) and for Pippard or sharp-cutoff sa-
turation, y=p/p*. Generally, p*=200 pQcm in
high-resistivity systems' ' and so we have taken

y= 4 in a-MgZn. This was the basis for our choice

TABLE I. Summary of input for resistivity calculations in a-MgZn. The Debye tempera-
ture 8 was determined from specific-heat measurements (Ref. 40), the position of the first
peak in the structure factor kz was determined by neutron diffraction (Ref. 39) and the Fermi
wave numbers kF were deduced from Hall-effect measurements (Ref. 24). g is the hard-sphere
packing fraction in the Percus- Yevick formula (Ref. 37).

Input

Phonon spectrum Debye form

Description Parameters

0=295 K
qD ——kF

Geometrical structure
factor
Fermi wave numbers

Percus- Yevick
Hard-sphere form
For Zn concentration:
For Zn concentration:

0.225, 2kF ——2.77 A
0.35, 2kF ——2.98 A

9=0.525

kp
——2.6 A
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TABLE II. Summary of theoretical and experimental results in low-resistivity amorphous alloys. The "Brillouin
scattering part" refers to the part of the TCR arising from the 5 function at K =0 in a(K). The values of 2k~ and k~ and
hence 2k+/k~ in the a-MgZn alloys were experimentally determined; the values of 2k~/kz given for a-CuSn are nearly
free-electron (NFE) values and are consistent with the concentration dependence of p; the concentration dependence of p in
a-AuSn suggests that 2k+/k~ is -10' less than NFE values. Coefficient A is defined by p =po(1+A T ) for 5 & T & 40 K.
Coefficient B is defined by p=p& —BT for T & T &240 K. Column headed Avg. lists average values for the alloys
studied in Ref. 24.

Alloy Theory
a-MgZn

Expt.
a-CuSn
Expt.

a-AuSn
Expt.

Z

2kF/kp
Potential

qzh
p(8) (pQ cm)

10 TCR(8)(K ')

10 (Brillouin part)
T~ (K)

10'[p{TM }/p{0 Ki —1]
10B (pQcmK )

10'W (K-')

Pseudo

Mg Zn

20 29
—0.05 1.0
0.32 0.40
& 150 None

2
1.11

Phase shift
Avg.

53
—0.97

2.7y10-4
90
3.0

1.01

46
0.62
3.7
0.48

47
0.69
4.5
0.50

11.7
53 53

—1.2 —1.9

2
1.06

1.6
1.15 —1.0

3.4
-1.3

1.6 3.4

65 99 60
0.6 —1.4 0.8

55
1.11
3.5

40 Monotonic
0.37 at extremes
5.5

18 43

49 57 112
—1.5 —2.0 —1.3

of qDA=11. 7 in Pippard saturation. The high-
temperature limiting form of the averaged resistivity
structure factor Ai'(E) as defined in Refs. 6—9 is
given by

Al'(E)= f d f a( ~K+q
~

) . (10)
qD 4n.

The sign of the contribution to the TCR from
scattering vector K is determined by

A i'(IC}(1—y}—a (E}e

In the extreme backscattering case (as is often as-
sumed for transition-metal —based amorphous al-
loys) one has p ~Si'(2k+) and the TCR is negative if

a(2kF)e ~' ~' &Ai'{2k+)(1—y} .

In particular, for no saturation and Percus-Yevick
structure factors with packing fraction 0.525 (ap-
propriate for a large class of amorphous metals),
negative TCR would be predicted for
0.9 & 2k+/kz & 1.1. On the other hand, when a rela-
tively broad range of scattering vectors yield signifi-
cant contributions to p and the TCR, one must em-

ploy Eq. (1) to determine p(T), and this simple cri-
terion for the occurrence of negative TCR is invalid.
Saturation effects will also invalidate this criterion;
the range of 2k+/k~ for negative TCR is increased
when y&0 and negative TCR will generally occur
for all 2k+/kz values when y) 0.5.

The computed TCR's in a-MgZn are listed in
Table II for the various conditions considered. The

"Brillouin scattering" contribution, ' which arises
from the 5 function at K=0 in a(E} and gives the
normal scattering contribution in the crystalline
case, is listed separately in Table II to indicate the
relative importance of this term. (We have generally
assumed that Brillouin scattering contributions are
negligible in transition-metal —based amorphous al-

loys since backscattering is expected to dominate. )

The following interesting features are indicated.
(i) The range of 2k~/kz for which negative TCR's

are predicted with the phase-shift approximation in

Eq. {1}is shifted toward considerably higher values

than those given in the extreme backscattering case.
The Mg pseudopotential results suggest a similar but
smaller shift. The range of 2kF/k& for a negative
TCR in saturated and unsaturated cases {excluding
the Zn pseudopotential case) are consistent with the
data of Ref. 24. Negative TCR values were obtained
for 0.96 & 2kF /kz & 1.24 in the unsaturated case; the
range when saturation effects (qDA=11.7) are in-

cluded is 0.94 & 2k+/k~ & 1.29.
(ii) The computed Brillouin scattering contribu-

tion to the TCR is negligible in the phase-shift for-
mulation, but is significant in the Born-
approximation case. For the Zn pseudopotential,
negative TCR's are essentially eliminated by the
Brillouin contribution for all kz. Frobose and
Jackie' had encountered similar difficulties with
their Born-approximation calculations on a-CuSn.

(iii) The Born-approximation results for the TCR
are in poor agreement with experiment. The phase-
shift results are about half as large as the observed
TCR.
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B. Low-temperature T region, minima,
and maxima in p( T)

The low-temperature limiting form of the resis-
tivity static structure factor neglecting saturation
is

&8.50-

t 8.&8—

0.225

Si'(K}=a(E)+(n /6)a(E)a(X)(T/8) . (11)

Thus the standard diffraction model yields a posi-
tive quadratic temperature dependence for the resis-
tivity near 0 K, independent of the sign of the TCR
at high temperatures. Consequently, a general
feature of the standard diffraction model is that if
the room-temperature TCR is negative, the resistivi-
ty will exhibit small maxima in p(T). (This simple
result is often ignored, leading to improper con-
clusions regarding agreement between theory and ex-
periment in high-resistivity amorphous alloys. )

Matsuda and Mizutani observed a quadratic p(T}
in a-MgZn below 30 K which they attribute to the
low-temperature form of the theory based upon Eqs.
(1) and (11). However, detailed calculations indicate
that significant deviations from Eq. (11)occur above
about 5 K for K near kz so this interpretation is
questionable; in particular, the low-temperature lim-
it of the T coefficient will generally not be observed
above -5 K. Nevertheless, the standard
diffraction-model results for a-MgZn are consistent
with a quadratic p(T) in the range 5—30 K. Howev-

er, the computed coefficient of the quadratic term,
given in Table II, is smaller than the low-
temperature limit (which is about 2&&10 6 K ') in
the unsaturated case but is still larger than the mea-
sured coefficient by a factor of 2. When saturation
is included, excellent agreement with the measured
coefficient is obtained.

Figure 2 shows the p-vs-T curves obtained by
Matsuda and Mizutani for a-MgZn alloys between
2 and 70 K. Small maxima in the resistivity

[p( TM ) —p(0 K)= 10 p(0 K)] are observed for
TM -50 K where TM is the temperature at the resis-
tivity maxima. Figure 3(a} shows phase-shift —based
standard diffraction-model results. The 2kF /kz
= 1.1 case is appropriate for a-MgZn and is in qual-
itative agreement with the experimental results
shown in Fig. 2. However, the computed maximum
occurs at TM -0.38, which corresponds to TM -90
K, and the computed maximum is substantially
larger than observed. When saturation is included,
excellent agreeinent [see Table II and Fig. 3(b)] in
the position and size of the maximum is obtained.
The Born-approximation results at these tempera-
tures are in very poor agreement with experiment.

The data of Fig. 2 exhibit another interesting
feature, viz. , small minima at about 10 K. This
feature is not consistent with standard diffraction-
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FIG. 2. Electrical resistivity vs temperature below 70
K in a-MgZn from Ref. 24.

C. Other low-resistivity amorphous alloys

Other low-resistivity (p & 100pQ cm) amorphous
alloys with 2kF/k~ & 1 that we are aware of and for
which the temperature dependence of the electrical
resistivity has been determined, are a-CuSn, a-
AuSn, a-AuIn, a-MgCu, a-AgCuAl, a-
AgCuMg, and a-AgCuGe. These alloys have
been studied over wide ranges of temperature and

model predictions. However, as may be seen in Fig.
3(b) or from the results listed in Table II, the theory
including saturation is again in excellent agreement
with the data. This is a particularly interesting re-
sult since to observe such effects, qDA has to be
large enough to produce an observable minimum but
not so large as to produce monotonic decreasing
p( T); also the alloys under investigation must be free
of effects associated with magnetic ions or transi-
tions to superconductivity. (Essentially the same re-
sults, although with deeper minima, are obtained in
the case of sharp-cutoff saturation corresponding to
y= ~.) It is possible, of course, that this agreement
is fortuitous.
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composition which correspond to extensive ranges in

2k~/kz, ' for example, for a-CuSn and a-AuSn, this
range varies from about 1.0 to about 1.3. Figure 3
shows theoretical results for similar ranges in
2k~/k& in the saturated and unsaturated cases and
parameters appropriate to the a-MgZn alloys.

Before the results exhibited in Fig. 3 are com-
pared with measurements in the other alloys we
make the following comments: (i) The magnitude of
the variations in the electrical resistivity with T in
the range from 0 K to 8 is governed essentially by
Me. Hence, although the effective masses are
larger, the expected lower Debye temperatures for
these noble-metal —based alloys relative to a-MgZn,
can account for the fact that the temperature-
dependent effects in the resistivity are of the same
magnitude. (ii) The range of resistivities in the other
alloys is considerably larger than in the a-MgZn al-
loys. Thus, we cannot expect qDA=11.7 to be ap-
propriate for all these alloys. This effect can be sig-
nificant; e.g., for p=100 pQcm, saturation effects
could completely eliminate the small maximum in
p(T), for 2kF =k~, yielding a monotonic decreasing
function. (In fact, this was observed in Ref. 23 for
the a-AuSn alloy with p= 100 pQcm. ) (iii) There

could be appreciable short-range-order effects pro-
duced by the differences in effective potential and
application of the "substitutional model" might not
be appropriate for such different ionic constituents
as occur in these alloys.

In spite of these difficulties, all the low-resistivity
alloy systems exhibit the general features shown in
Fig. 3 including resistivity maxima in negative TCR
cases. This strongly suggests that matrix elements
of the form given in the phase-shift expansion rather
than Born approximation pseudopotential is ap-
propriate in these alloys. The temperature depen-
dences of the various composition (i.e., various
2k~/k&) a-CuSn alloys are in remarkable agreement
with the saturated case curves in Fig. 3(b) if we use
free-electron theory to compute 2k+/kp for each
composition. Similar consistency is obtained for the
a-AuSn data if we deduce 2k~/k~ from the p and
TCR vs composition data shown in Ref. 23 (which
leads to 2k+ values about 10% smaller than free-
electron values). The a-MgCu data are essentially
identical to those of a-MgZn. The AgCu-based al-
loys offer a particularly clear illustration of the
shift to higher values for the 2kF/k~ range of nega-
tive TCR values.
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FIG. 3. Relative change in the resistivity vs T/8 computed from the diffraction model with the adjusted phase-shift-
expanded matrix element appropriate to a-MgZn. Parameter associated with each curve is 2k+/kp. (a) is computed from
the standard diffraction model (A~ oo ) and (b) includes Pippard saturation with q&A =11.7. Computed resistivity values
are 29, 40, 59, 53, and 22 pQcm for 2k+/kp —0.94, 0.97, 1.04, 1.10, and 1.39, respectively. The range of 2kF/kp deter-
mined for the a-MgZn (Ref. 24) extends from about 1.06 to 1.15 while in a-Cusn (Ref. 22) it extends from about 1.0 to 1.3.
Note particularly the larger negative TCR values, the movement of the maxima toward lower temperatures, and the ap-
pearance of minima at temperatures below 0.18 in the calculations including saturation. Curves in (a) should be compared
with the plots of SW T)/S~(e) vs T/8 for various E values which are equivalent to +/p vs T/8 for various values of
2kF in the "backscattering dominant" approximation in Ref. 9.
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p(T) =p~ B(T—TM—) (12)

The phase-shift calculation, including saturation,
fits this equation, and thus the experimental data,
surprisingly well both with regard to the value of B
(Table II) and the linearity of the p-vs-(T Tsr )'—~~

plot as seen in Fig. 4.

V. SUMMARY AND CONCLUSIONS

Electrical resistivity of low-resistivity (p & 100
pQcm) amorphous metals has been studied in the
context of the Ziman-Faber diffraction model which
has been generalized to account for saturation ef-
fects by incorporation of the "Pippard function"
which described the reduction of the electron-
phonon interaction at small qA where q is the pho-
non wave number and A is the electron mean free
path. The standard diffraction-model formulas are
obtained in the limit that A goes to infinity. (Essen-
tially equivalent results were obtained with the use
of a "sharp-cutoff" form to describe saturation ef-
fects.)

The specific computational results were obtained
for a-MgZn alloys which comprise an ideal system
to test the diffraction model because of their rela-
tively simple electronic structure, low resistivity, and
the existence of detailed experimental data covering
temperatures from 2 to 300 K in a series of well-
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FIG. 4. —, power region to the right of the resistivity

maximum in a-MgZn. Points are theoretical values. Line
is a plot of Eq. (12}. Deviations from linearity, extent of
the linear region, and slope agree with the data in Ref. 24.

D. ( T—T~ ) temperature dependence

Matsuda and Mizutani ' discovered that over
an extensive range of temperature to the right of
T~, the resistivity in the aMgZn and aMgCu alloys
has the form

characterized alloys. Moreover, the similarity of the
atomic structures and ionic radii of Mg and Zn al-
low us to make the further computational simplifi-
cation of adopting the Faber-Ziman substitutional
model. The parameters used in the computations
and listed in Table I are thus appropriate to the a-
MgZn alloys.

Pseudopotential matrix elements in the Born ap-
proximation and an adjusted phase-shift scattering
matrix element were employed. The phase-shift-
expanded form was assumed to include only s and p
components (from consideration of the atomic struc-
ture of Mg and Zn) and the phase shifts were adjust-
ed to yield the observed magnitude of p and to satis-
fy the Friedel sum rule. The Mg and Zn pseudopo-
tentials were taken from Harrison. These two
types of matrix elements are quite different in form.
The cancellation near 2kF, characteristic of pseudo-
potentials, does not appear in the adjusted phase-
shift-expanded matrix element.

The adjusted phase-shift results, neglecting
saturation (A~ ae), are in qualitative agreement
with the data, exhibiting all the observed features of
the experimental data in a-MgZn except for the
small minimum at about 5 K. The phase-shift re-
sults, including saturation with qDA=11. 7 (chosen
in accordance with the ideas presented in Ref. 17},
are in remarkable agreement with the observed de-
tails of the temperature dependence of the electrical
resistivity in the a-MgZn alloys, including the
room-temperature TCR, the shape and extent of the
(T TM )

~ regio—n to the right of the maximum, the
magnitude and position of the maximum, the shape
and extent of the quadratic in the T region, and even
the position and size of the minimum near 5 K.

We also note that negative TCR's occur at signifi-
cantly higher 2kF/kz values than predicted with the
extreme backscattering approximation and are con-
sistent with the data of Refs. 24—26. Furthermore,
the adjusted phase-shift results, including saturation,
and with appropriate values of 2kF/kz, are in good
qualitative agreement with p(T) in the other low-
resistivity amorphous alloys ' ' which have
been studied. On the other hand, although the
Born-approximation results are within a factor of 2
of the observed magnitude of p, they fail to exhibit
the temperature dependence of p observed in the
low-resistivity amorphous alloys.

The following conclusions may be drawn from the
above results.

(i} The diffraction model with appropriate matrix
elements and incorporated phonon ineffectiveness
effects at small qA can explain the observed tem-
perature dependence of p in low-resistivity (p ~ 100
pQ cm) amorphous alloys. Qualitative agreement
with experiment is obtained if saturation effects are
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neglected. This latter is to be contrasted with the
situation in high-resistivity amorphous metals,
where not even qualitative agreement with the ob-
served temperature dependence of p can be obtained
if saturation effects are not included in the diffrac-
tion model.

(ii) Saturation or Mooij effects are important even
for resistivities as low as 50 JMQcm. Moreover, the
reduction in electron-phonon interaction (phonon
ineffectiveness) can be adequately represented by the
classically derived Pippard function or even a
sharp-cutoff form. Apparently a consistent pro-
cedure based upon a generalization of the diffraction
model, which assumes that saturation effects in elas-
tic scattering are negligible, describes the tempera-
ture dependence of the resisitivity equally well for
alloys whose resistivity is 50 or 150 pQ cm. This is
particularly remarkable because it seems obvious

that localization effects must eventually lead to a
failure of this simple scattering picture and 150
pQ cm corresponds to A of the order of interatomic
spacings.

(iii) There is strong evidence that the Born ap-
proximation is not appropriate for studies of the
temperature dependence of p in many disordered
metals. Support for this is found in the studies of p
in a-CuSn by Frobose and Jackie, ' the investigation
of monovalent liquid metals by Young, Meyer, and
Kilby, the study of liquid Ca, Sr, and Ba by Ratti
and Evans, in addition to the present results.
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