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Unitary group approach to the theory of nuclear magnetic resonance of higher-spin nuclei
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The unitary group approach to the treatment of nuclear-magnetic-resonance spectra of A„
systems with nuclei of higher than —spin is presented. The treatment of one- and two-body

operator matrix elements in this context is discussed and some actual examples are worked

out. The development is made with NMR in mind but it is otherwise completely general.

I. INTRODUCTION

In a recent paper Siddall' has discussed the use of
so-called many-spin basis sets in evaluating matrix
elements of the NMR Hamiltonian. In that paper
the matrix elements of the nuclear-spin unit irredu-
cible tensor were obtained using various basis sys-
tems and the computational efficiency of each
method was discussed. It was concluded that by
adapting the pure nuclear-spin configurations to
permutational symmetry maximum efficiency was
obtained.

Siddall's paper treats the case of two particles in
each pure configuration and the coupling of two
pure configurations to a resultant mixed configura-
tion. The symmetry-adapted basis states are defined
in terms of the total spin of each pure configuration
and the total resultant spin of the mixed configura-
tion. It is not fully evident from that treatment,
however, that either the construction of basis states
or the evaluation of matrix elements of the coupling
tensor operators is simplified when one considers an
arbitrary number of particles in a pure configuration
or a mixed configuration comprised of pure configu-
rations of differing spins.

In this paper we outline the use of the unitary
group approach (UGA) to symmetry-adapted basis
states of pure 0. configurations where for an N-

particle system o is the single-particle spin. The
mathematical formalism for this procedure has ex-
isted in the literature for some time, but only re-
cently has it been actively investigated in the context
of atomic, molecular, and nuclear applications.

This paper is divided into the following parts. In
Sec. II we present the general theory for treating
pure configuration cases, o . Section III. is a refor-
mulation of the two-particle spin-1 case of Siddall
and is presented for comparison purposes. We
present in Sec. IV the example of the completely

symmetric basis states of four spin- —, particles. Fi-
nally, in Sec. V we discuss various programming as-
pects of the unitary group approach.

II. GENERAL THEORY

In a pure configuration of N particles with
single-particle spins o the permutational symmetry-
adapted basis states will be labeled ~o( ),(a)tM)
where [A,] designates the various partitions or irredu-
cible representations of the symmetric group S(N).
The arrangements of numbers in the tableau boxes
(a), formed by taking all possible numerical com-
binations satisfying lexicality conditions (a; increase
down the columns and are nondecreasing across the
rows) designate the uniquely labeled basis vectors, or
constitute what are called Weyl-Young tableaux.
Each entry at (i = 1,2, . . . , N) is defined in terms of
the single-particle spin and its z projection;
a;=o+1—m. (a;=1,2, . . . , 2o+ I), and M is the
sum, M = g, , m;. Within each M family there
will be a number of tableaux QM which we can label

«)t (I=1,2, . . . , QM).
For a complete description of the unitary group

approach to o configurations we refer the reader to
Refs. 4—6. For spin- —, configurations, in particular,
we refer the reader to Refs. 7—9 and references con-
tained therein.

Each irreducible representation of S(N), labeled
by a given tableau shape, has a unique, highest total
spin-basis vector. It is formed by filling in the
tableau boxes with the smallest allowed numerical
entries u;. The remaining basis vectors are generat-
ed from the highest tableau using the unitary group
generators E(at, a&') which destroy the ul' labeled
particle and create the e; labeled particle.

We define the nuclear-spin unit irreducible tensor
operator
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k 0.
E(a;,aJ ) .

mj'

(2.1)

The matrix elements of Iq are particularly easy to
calculate in the tableau basis. There are two types
of nonzero matrix elements. First, there are diago-
nal matrix elements where the bra and ket states are
the same. In this case the operator E(a;,a; ) simply
counts the number of a; entries in the tableau.
Second, off-diagonal matrix elements are found
from only one term of the sum (2.1) since the bra
and ket tableaux may differ by one box only in order

20'

~NMR
k=1

(2.2)

T are unit tensor operator coupling constants. The
scalar product of unit tensor operators is written

that the matrix element be nonzero. These two
points greatly simplify the computational procedure.
In addition it should be pointed out that nonzero
matrix elements exist only between tableaux of the
same [A,] and not between those belonging to dif-
ferent irreducible representations of S(X).

The NMR coupling Hamiltonian is defined as

q i&jt&r

0 k 0.
[E(a;,aj )E(a„a,' )+E(a„,a,' )E(a;,a~ )] .

mr —q mt'
(2.3)

This form of coupling operator necessitates the
evaluation of the two-particle generator product
E(a;,aj )E(a„,a,' ). Once again, however, this pro-
cedure is simplified by the fact that for off-diagonal
matrix elements, at most two-boxes may differ be-
tween bra and ket tableaux and for diagonal matrix
elements the manner in which the sum (2.3) is per-
formed is prescribed by the tableau entries a; them-
selves. In this respect one of the major computa-
tional advantages of the tableau scheme is in the au-
tomatic bookkeeping arrangement afforded by the
labeling.

The actual evaluation of multistep (a; &aj +1)
matrix elements is performed iteratively using the
commutation relations

Finally, the tableau basis can be transformed into
an R (3) adapted basis. The correlation between 0(~}

and states of definite total spin can be determined by
inspection of the QM values in each [A,] family of ta-
bleaux. At a given M & 0 the difference
b,Q =QM —QM+, gives the number of states of spin
S =M. The actual states ~SMr ) [~ is an additional
arbitrary label used to distinguish multiple (b,Q & 1)
total spin states] are linear combinations of tableaux
at the M level. The particular coefficients multiply-
ing each tableau are determined either using a corn-
bined lowering-projection operator technique (see
Refs. 9 and 10) or, alternatively, a raising operator
technique (see Ref. 11).

[E(a;,aj' ),E (a„a,' )]=5(a„,aJ' )E (a;,a, )

—5(a;,a,' )E(a„aJ ) . (2.4)

The right-hand side can then be evaluated as a sum
of products of one-step matrix elements. These in
turn would be evaluated using Barter's "jawbone"
formula. ' In practice this iteration is performed as
a matrix multiplication involving sparse banded ma-
trices. Two-body operator matrix elements require
the following expression:

E(a;,aj' )E(a„,a,' ) = QE(a;,aj }
~
(a })

(a)

X ((a )
~
E(a„a,' ), (2.5)

where the sum is over all allowed intermediate ta-
bleaux.

III. TWO-PARTICLE SPIN-1 SYSTEM

In this section we present the detailed description
of the basis vectors for a two-particle system, each
of spin 1, and the calculation of the matrix elements
of the coupling operator (2.3). The tableaux corre-
sponding to the partitions [2] and [1 ] are given in
Table I. Only those tableaux are given for
which M&0 since the full tableau listing is sym-
metric (in QM) about M=O. The correlation be-
tween the irreducible representations of
SU(2cr+ 1) }and those of R (3) is also listed.

There are only six nonzero matrix elements of the
generators E(a;,aj' ) which are required here for our
purposes, namely,
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(11
I
E(1,2) I

12)=~2,
12

I
E(1 2) 122) =v 2,

(12 IE(2,3)
I
13)=1,

(11
I
E(1,3)

I
13)=~2,

(12
I
E(1,3)

I
23) =1,

(13
I
E(1,3)

I
33)=~2,

(3.1)

where the first three are one-step and the last three
are two-step matrix elements. The matrix elements
within [1 ] are all 1.

Using the results (3.1) we can immediately
proceed to evaluate the matrix elements of the cou-
pling operators I'I' and I I . These values are
listed below:

TABLE I. Tableau states of 0~ ~ for 0=1 including
correlation with R {3).

Tableau R {3)
M states b,QM correlation

11
12
13 22

1

1

3

(11II'I'Ill)= —, (11II'I'Ill)=6' 30 '

(13
I

I'I'
I
13)= ——,(13

I
I .I

I
13)=—6' 30 '

, (13II'I'I22&=6' 10

(22
I

I'I'
I
22) =0, (22

I

I'I'
I
22) =

1S
'

1 12I.I 2
————, 2I I

(3.2)

The results in (3.2) can be compared with those of Siddall (Table II A of Ref 1) by .first noting the transfor-
mation from tableau basis to states of total definite spin I[A,],SM ). We find that

I [2],22& =
I
» &,

I [2],20) = ( 3
)'~'

I
13)+ ( —, )

'~'
I
22),

I [2],00)=(—,)' 'I13)—( —, )' 'I22),
(3.3)

'1

I
[1'],ll)= 2

Using (3.2) and (3.3) we find

( [2]00 I

I'I'
I
[2]00)= ——, ,

([2]2M II'I'
I [2]2M) =-,', (3.4)

([1 ]1M
I

I'I'
I
[12]1M) =—

in agreement with Siddall (note that there is a
misprint in Siddall's Table IG A for
([2]OOII I

I
[2]00)).

For a mixed configuration system A282 where
both A and 8 species are spin-1 particles we can
proceed in either of two ways. Using the transfor-
mation to states of definite S within each configura-
tion separately we can vector couple these to a resul-
tant total definite spin I, namely

X
I [4 ]SaMx &

X
I [Aq]SsMs) .

(3.5)

Alternatively, we can express the mixed configura-
tion tableau basis directly using different labels for

([2]OOII I
I
[2]00)= —, ,

( [272M
I

I~ I2
I
[2]2M )=+,

([1 ]1M
I
I I

I
[1 ]1M)=——, ,

I

I[X„]S„,[Z, ]S,,IM)= g (S„S,M„M, IIM)
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t~gl [~galTABLE II. Mixed configuration tableau states of o~ o~ for cr& ——oq ——1 including correlation with R (3).

[Ag][ka] M Tableau states
R (3)

correlation

11
44
11
45
11
46
11
56
11
66

12
44
11
55
12
46
12
56

12
45
12
55
13
46

13
44
13
45
22
46

22

22
45
13
55

23
44
22
55

23
45

33
44

3D

[I'][2] 144
2
144
3
244
3

245
3

145
2
145
3

146
3

146
2
155
3

155
2
156
2

2P

14
25
14
35
24
35

14
26
14
36

15
26

the A and B systems (e.g., a=1,2,3 for A and
a=4,5,6 for B). This approach is demonstrated in
Table II. We have compared our results with those
of Siddall and found full agreement with his Table
III B.

IV. SYMMETRIC FOUR-PARTICLE
SPIN-

~
SYSTEM

We now consider a more complex system of four
particles with single-particle spin —,. To simplify

the discussion we shall deal with the completely
symmetric partition [4]. The tableaux for this parti-
tion are listed in Table III.

For spin- —, systems there are three coupling terms
[see Eq. (2.2)] corresponding to k= 1, 2, and 3. The
matrix elements of the group generators E(a;,aj )
are shown in Table IV for the tableaux at level
M=3, 4, 5, and 6 only. Also, note that u;=aj'+q
for q= 1, 2, and 3.

The evaluation of the matrix elements of I"I"
now proceeds in the following fashion. For the di-
agonal terms one performs the sum (2.3) using the

TABLE III. Four-particle spin- —tableaux for the completely symmetric partition [4].

1111
1112
1113
1114
1124
1134
1144

1122
1123
1133
1224
1234

Tableaux

1222
1223
1233
2224

2222
2223
1333 2233

~QM
R (3)

correlation

6
F
D
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TABLE IV. One-body operator matrix elements for E(a;,a~' ) for a; =aj +q.

(1111
(1112
(1112
(1122
( 1122
( 1113
(1113
(1114
(1123
( 1123
(1123
(1222
( 1ZZZ

Ei,z

Ei,z

Ei,z

E34
E
Ei,z

Ez
E34
Ei,z

Ez,3

1112)=2
1122)=&6
1113)=1
1222) =W6
1123)=V 2

1123)=V 3

1114)=1
1124)=V 3
1ZZ3) =Z
1133)=~2
1124)=1
2222) =2
1ZZ3) =V 3

(1111
(1112
( 1112
(1122
( 1122
(1113

E
Ez,4

E
Ez,4

1113)=2
1123)=W3
1114)=1
1ZZ3) =V Z

1124)=W2
1133)=V 6

(1114 Ei 3 1134)=V 3

( 1234 Ei 3 1233)=2
(1123 E24 1134)=1

(12221E~,3 2223) =1
(1222 IE24 1224) =V 3

(1111
~
E) 4 ~

1114)=2
(1112

~
E),4 ~

1124)=v 3

(1122
~

E) 4 ~

1224) =V 2

(1113
I Ei,~ I

1134)=~3

(1114 E, 4 1144)=V 6

( 1123 E, 4 1234)=V 2

( 1222
~
E$ 4

~

2224) = 1

tableau labels to determine which two-body operator
combinations are different from zero. The resulting
set of labels (aj ~a;,a,' —+a„) are used to access a
look-up table of 3 —j coefficients which can be cal-
culated and stored a priori. For off-diagonal terms
only two-boxes may differ in the tableau. One scans
the tableaux to determine these labels and then com-
piles the appropriate factors in a straightforward

manner. ' A list of several of these two-body matrix
elements is given in Table V.

As a final step, if the I"I matrix elements are
required in an R(3) adapted basis one uses the
transformation coefficients listed in Table VI (for I,
6, and F states). We have performed this transfor-
rnation for the stretched states [ML, ——LL (max)].
The results are as given in Table VII.

TABLE V. Nonzero matrix elements ((a )
~

I"I"
~

(a') ) for partition [4] of a four-particle

spin-
2 system. The matrix element ((1112)

~

Ik I"
~

(1112)) is identical with the one at level

M=6.

((a))
14
5

38
35

1113

1113

1122

1113

1122

1122

8
5

5
38
15

8

5

8

5

6
35

6
5

1114

1114

1123

1123

1222

1114

1123

1123

1222

1222

5
29
15

4
5

8

5

13
7

3
35

51
35

12
35

10
7
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TABLE VI. R (3) adapted states: transformation coefficients.

~1,6&=
~

iiii&

i
I,4)

iG4&
=

2
11

1/2

' 1/2
9
11

1/2
9
11

i
1113)

i
1122)

11

' 1/2
1

55

' 1/2

—3
3

55

' 1/2

—3
3

55

3 3

~F, 3&

3 3
2 10

1/2
5

2V 22

—3

2V 10

3

V 22

i
1114)

i
1123)

~

1222)

V. PROGRAMING CONSIDERATIONS

TABLE VII. Matrix elements of the I I operator in
total spin adapted basis.

Total spin

42
15
4
3
4
5

8

5
8

5
8

5

8

5
12
7

68
35

With regard to programing, the unitary group ap-
proach offers several advantages. The tableaux can
be stored economically as binary strings. This al-
lows storage of quite large basis sets. The genera-
tion of the tableaux basis and evaluation of one- and
two-body generator matrix elements can be per-
formed separately by a sequence of program
modules and these results assembled by a master
routine. This has the effect of providing a series of
short, fast programs and allows one to consider
highly complex systems.

The approach outlines in this paper differs in
principle only slightly from applicatons to SU(2) as
outlined previously. ' Thus in most cases only

minor inodifications of already existing programs
need occur. The Harter formula has been pro-
gramed in high-level language' and further work
into low-level language programing is proceeding.
The purpose behind this is to optimize the program-
ing strategy in terms of both time and memory use.

Finally, the major advantage of the use of unitary
group methods lies in the fact that the procedure re-
tains its simplicity regardless of the complexity of
the system. In this sense the example of Sec. IV
does not do full justice to UGA.

VI. CONCLUSION

We have presented an alternative approach to nu-
clear magnetic resonance NMR-type calculations.
The method is sufficiently general so that it can
handle a variety of other theoretical problems as
well as NMR. Further, it can be used to handle
both pure- and mixed-configuration systems, though
further work is still required.

One important computational obstacle still
remains to be overcome. In the treatment of spin- —,

[SU(2)] systems a direct factorization of one-body,
multistep, and two-body operators was achieved. '

This was accomplished through a vector coupling
scheme. Presently, we do not see how to avoid the
iterative approach to such matrix elements based on
either (2.4) or (2.5).
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