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A new way of applying the non-spherically-symmetric phase-functional method of Wil-
liams and van Morgan to the band-structure problem is derived that results in a generalized
(non-muffin-tin) Green’s-function band theory that is variationally stationary and exact in
the single-electron, local-potential approximation. The “near-field” correction, believed to
destroy the separability of Green’s-function band theories, is implicitly included in the non-
spherically-symmetric phase-functional basis. This basis is discussed in some detail as we
correct an error in the previous work of Williams and van Morgan. Using this basis to ex-
pand the crystal wave function, we obtain an equation that is the most general expression of
Green’s-function band theory. This equation contains a sum over the structure constants of
the Korringa-Kohn-Rostoker method and two “phase functions” (corresponding to the
cosine and sine of the nondiagonal partial-wave phase shifts) that are independently calcul-
able; hence the effects of structure and cellular potential completely separate. The varia-
tional procedure of Kohn and Rostoker then yields a secular determinant that can be solved
for the non-muffin-tin bands and wave functions; the resulting theory is suitable for self-
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consistent-field applications.

I. INTRODUCTION

One of the principal requirements for performing
a calculation of the macroscopic properties of a
crystalline solid is an adequate knowledge of the mi-
croscopic quantum states of the crystal. This is be-
cause the bulk properties seem to depend, occasion-
ally quite sensitively, on the details of the electronic
states rather than the average over those details.
Various approximational schemes have been
developed to determine the quantum states and their
associated energy spectra (the electron bands), but
most of these theories rely heavily on the so-called
muffin-tin (MT) potential. In this approximation,
the potential is assumed to be nonzero only inside a
spherical domain inscribed in the Wigner-Seitz (WS)
cells of the crystal, and is often assumed to be spher-
ically symmetric as well, though that requirement
has been softened in the last ten years.!

Even for those crystals where the MT approxima-
tion seems to be well justified a posteriori, it is not a
desirable restriction. In atomic physics, the “best”
solutions to the single-electron time-independent
Schrodinger equation are the variationally stationary
self-consistent field (SCF) solutions that result in an
electronic charge distribution that reproduces the
potential used.? SCF band-structure calculations are
indeed possible in the MT approximation; however,
it is well known that the results do not adequately
describe any system where there is substantial aniso-
tropy in either the potential or the charge density
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distribution. A useful review article by Koelling®
discusses the SCF energy-band techniques and their
shortcomings; two of the weak spots in virtually all
the techniques currently used are the lack of a gen-
erally usable basis set and the muffin-tin approxima-
tion. We wish to quote a phrase from Koelling’s pa-
per that emphasizes this latter point: “So, although
the inclusion of non-muffin-tin effects has often
been discussed, the additional calculational effort in-
volved has often caused them to be neglected in
practice.”*

In order to perform the highly desirable non-
muffin-tin SCF band-structure calculations, it is
first necessary to have a theory that allows the cal-
culation of energy bands from non-muffin-tin
(NMT) crystal potentials in a straightforward,
economically feasible manner. It is this need that
primarily motivates our work. As a bonus, the basis
used is quite generally applicable and should go a
long way towards eliminating the guesswork from a
calculation (i.e., does the basis used adequately ap-
proximate this particular problem? etc.).

This paper develops a generalized (NMT) band
theory corresponding to the Korringa-Kohn-
Rostoker™® (KKR) or Green’s-function technique
for separating the structure-linked and potential-
linked aspects of the problem. It is based on solving
Schrodinger’s differential equation via an inhomo-
geneous Fredholm integral equation of the second
kind with the appropriate Green’s function. The
crystal solution is directly constructed from a
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multiple-scattering equation so that it satisfies Bloch
boundary conditions on the surface of the WS cell,
and the matrix elements of the Hamiltonian never
explicitly appear.

The method of solution is to expand the crystal
wave function sought in a set of basis functions that
are themselves integral equation solutions to
Schrodinger’s equation. These basis functions are
the so-called “phase functional” solutions to..the
Schrédinger equation with the correct, non-
spherically-symmetric potential supported on the
smallest sphere circumscribing the cell (called the
bounding or circumscribing sphere in the text). The
result is a secular determinant with all the advan-
tages of the KKR determinant, i.e., independent cal-
culation of the structure constants and the scattering
matrix, and a spherical harmonic representation.
This method of calculation does not require the MT
approximation as it matches the boundary condi-
tions imposed on the solution at the surface of the
circumscribed, rather than the inscribed sphere.

The phase-functional solutions used as a basis are
non-spherically-symmetric generalizations of the
phase-functional solutions of Calogero,” Babikov,®
and others. Nonspherical phase-functional (PF)
solutions similar to the ones we derive were first
used by Williams and van Morgan (WM),” who used
multiple scattering off the full cellular potential to
derive a secular determinant of the same general
form as our own. They obtained preliminary results
that were quite promising in several artificial prob-
lems; however, as was pointed out by Ziesche'” and
Faulkner,!! they neglected what has been called the
“near-field” correction that arises from the region
where the bounding sphere overlaps the nearest-
neighbor cell. Inclusion of this effect has always led
to the elimination of the clean separation of the ef-
fects of structure and potential, which is the princi-
ple desirable feature of Green’s-function band
theories. Our procedure differs from WM’s in the
following three ways:

(a) Our PF solutions are constructed using the
crystal potential throughout the bounding sphere.
We demonstrate that these solutions form a com-
plete, linearly independent set of functions in terms
of which an “arbitrary” solution (to Schrédinger’s
equation at the same energy) can be uniquely ex-
panded, subject to an easily verified determinantal
condition. We were unable to construct a similar
completeness argument for the basis functions of
WM, and it seemed to us that they were not the best
functions to use to expand the solutions sought.

(b) We avoid the use of their three-center expan-
sions of the Green’s function from which they ob-
tain the structure constants. In WM’s derivation
they reorder an infinite sum; we were able to extend

their argument and show that such a reordering im-
plies that the standard expansion of the Green’s
function in free spherical waves [see Eq. (2.13)] can
be written with the arguments in either order.
While this may be algebraically true, the infinite
sums so expressed no longer converge, which sug-
gests that WM’s terms containing the structure con-
stants might be divergent when summed (see Appen-
dix A). We were able to manipulate the equation
arising from matching solutions on the bounding
sphere (which does not diverge when summed) into a
form that appears to match solutions on the surface
of the cell but contains the effects of structure and
potential in a completely separable form.

(c) We use the full variational procedure of Kohn
and Rostoker (KR) to ensure that our energy bands
are correct to second order in the error in our wave
functions. While we could have used a projective ar-
gument similar to that of WM and obtained essen-
tially the same secular determinant, such an ap-
proach would not guarantee us second-order accura-
cy, nor would it explicitly check for completeness
and orthogonality to core states as the variational
procedure does. Finally, a projective argument in-
volving spherical harmonics is not generally valid
when applied to an equation derived only for T re-
stricted to a nonspherical domain.

To summarize our procedure, we use a set of PF
expansion functions defined on the bounding sphere
(see Sec. II). They are computable by solving a set
of coupled ordinary differential equations from the
origin to the bounding sphere. They can easily be
shown to be complete and linearly independent sub-
ject to a determinantal condition; therefore, they al-
ready contain the effects of the near field. We use
these functions to solve a second set of ordinary dif-
ferential equations in parallel with the first solution
(see Sec. III). They are derived from the integral
equation solution to Schrodinger’s equation for the
whole crystal. This equation, after suitable manipu-
lation, becomes the fundamental equation of
Green’s-function (or multiple-scattering) band
theory and contains the structure constants of KKR
in a completely separable form. It is converted (via
the variational procedure of KR) into a secular
determinant; the energies for which this determinant
is zero are the band energies e(k). The secular equa-
tion can then be solved for the expansion coeffi-
cients of the actual crystal wave function on the cell
and the results stored for a SCF calculation in, for
example, the local density functional formalism of
Kohn and Sham.!?

The computational advantages of the theory are
that the structure constants are the readily accessi-
ble, well-understood ones of KKR. They can either
be tabulated or dynamically computed in the course
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of an actual calculation,'>'* and carry all the infor-

mation inherent in the lattice structure. For k vec-
tors possessing some symmetry, the secular deter-
minant can be quite small, yet the convergence
should still be good due to the angular momentum
cutoff intrinsic to scattering off a domain with
bounded support. Two sets of coupled differential
equations must be solved once at each energy. How-
ever, as we shall explain in Appendix B, much of the
integration can be done in parallel, and the whole
thing should not take much more time than solving
a single set of coupled equations. Finally, the possi-
bility exists of constructing a linearized version of
this theory along the lines of the existing linearized
muffin-tin-orbital'® or the linearized-KKR (Ref. 16)
theories which may substantially reduce the storage
required to perform a SCF calculation and reduce
the time necessary to calculate the bands, but only
experience can determine the accuracy of the results
so obtained. We defer the development of such a
theory to the time when the algebraic results of this
paper are thoroughly tested.

Two points of potential numerical difficulty are
discussed in the text. First of all, a term that would
diverge if summed independently is added and sub-
tracted under the summation of our secular equa-
tion. It is folded into two terms so that it is ulti-
mately cancelled out; however, one of the two terms
is a summation over the structure constants, the oth-
er is an independently obtained number. This can-
cellation (before the equation is summed) must
therefore depend, in a nontrivial manner, on the
convergence of the sum over the structure constants.
We feel, because of the angular-momentum cutoff,
that this sum will converge rapidly enough to elim-
inate the divergence in all but pathological cases
(this is discussed in substantially more detail at the
end of Sec. III). This feeling is borne out by the test

cases of WM which checked, among other things,
the convergence properties of secular determinants
of the same form as our own. However, only testing
the theory in actual applications will determine if
and when trouble may result. We expect, for physi-
cal reasons, that our theory will be sufficiently rap-
idly convergent to be of use in most cases of physi-
cal interest. The second problem is related to the
first and concerns the decomposition of the crystal
potential in spherical harmonics. This can be done
numerically with a quadrature, and will converge
rapidly enough to ensure good results if the potential
is sufficiently smooth (this also was verified by
WM) inside the bounding sphere. Geometrical con-
siderations indicate that the bounding sphere only
penetrates about 20% of the distance from the cell
boundary to the nearest-neighbor nucleus in an fcc
or bee lattice; this is sufficiently far away from the
nearest-neighbor nucleus that the potential in the
outer part of the sphere should be largely screened
from the deep nuclear potential of the neighboring
atom, and hence we expect its expansion to converge
at an acceptable rate.

This paper is intended to indicate that non-
muffin-tin Green’s-function band-structure calcula-
tions, previously thought to be impractical because
the near-field correction seemed to destroy the
separation between structure and potential, may in
fact be economically and numerically feasible. The
reasons are detailed in the paper and are linked to a
technique for extending a “boundary-value problem”
on the WS cell to the bounding sphere using the
phase-functional approach to multiple scattering.
We are currently engaged in the necessary process of
testing this approach numerically in a variety of
cases of increasing difficulty and hope to report on
our results in the near future.

II. THE PHASE-FUNCTIONAL BASIS

We seek solutions to Schrodinger’s equation,
(V246H)p(T) =V (P)$(T) ,

(2.1)

defined on some domain Q with bounded support. Using a Green’s function for the inhomogeneous equation

(2.1) that satisfies the differential equations
(V3+K)G (T, To)=(V24+k1)G(T, To)

=8(r—T1p) , (2.2)
we construct the integral-equation solution to Schrédinger’s equation,!”
$(O)=— [ m[G(f,?o)\70¢<Fo)—¢(?o)\?’oG(?,?0)]-d§0+ fnG(f',?o)V(f'o)¢(f’o)d3ro : (2.3)
We define
X(M=—[ 20l G (FT0) Vod(To) — (7o) VoG (F, T0)]dS, 2.4)

to be the boundary or inhomogeneous term of the Fredholm integral equation of the second kind [Eq. (2.3)].
X(T) is generally a complicated functional of the boundary conditions and the shape of the boundary; we there-
fore seek a simpler representation that is more appropriate to quantum theory. We let Q go to all space and
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choose zero boundary conditions on the boundary 9(2. Then

$(7)= [ G (T, TV (Fo)$(Fold ro

(2.5)

is the solution over all space (Euclidean 3-space). We can break the integral into two distinct pieces and write

$(T)= fRs_nG(?Z?O)V(f’o)¢(f’0)d3ro+ [ G (ETV(Tog(Fo)d o . (2.6)

If we restrict T €, then we see that

X(F)=— [, [G(F,Fo) Vo (Fo)—(To) VoG (T, T0)]-dSo

= fRJ_nG(aFO)V(F0)¢(?0)d2rO

must satisfy the Helmholtz equation for rE(,
(V2+6X(F)=0. (2.8)

We know from Fredholm’s theorems'®!® that X(T)
uniquely determines the solution #(T) (except at
eigenenergies). We are limited in our choice of X(T)
by the requirements of quantum theory; only those
X(T) that lead to solutions ¢(T) that are square in-
tegrable over all space are candidates. Equation
(2.7) implicitly contains this restriction via ¢(T)V(T)
integrated over all space while (2.4) does not. For
this reason we will work exclusively with this
(multiple-scattering) formulation rather than the
“boundary-value” formulation implicit in (2.3). The
axioms of quantum mechanics always apply to the
“global” wave function while for obvious reasons we
prefer to work within “local” regions of space.
However, we really do not have that much freedom
to choose boundary conditions on a domain with
bounded support in quantum mechanics and should
work with equations that directly reflect that fact.
The advantages of the PF basis is that it explicitly
spans all the axiomatically allowed solutions on a
finite domain without requiring detailed information
about the potential or wave function outside the
domain (except to know that they exist and are
reasonably well behaved).
We will work with the stationary wave Green’s
function
Go(T,To)=7[G 1 (F,T0) +G _(T,Ty)]
_ 1 cos(k | T—Tp|) ’ 2.9)
Ar |71

where G, and G_ are the usual outgoing and in-
coming wave Green’s functions.’’ Note the implicit

X(D= [, GolT,To)V(Fo)d(Toldro

R3-Q

=3 @[

L
(R3—-Q)

N} (FV (F)d(Fod ro+ N (D) [

2.7

[

energy dependence (e=«?). All the results of this
section can easily be extended to more general prob-
lems by using a more general form of the Green’s
function with the time dependence appropriate to
the particular problem of interest, expanded in the
free spherical waves defined by the regular and ir-
regular solutions to

(V24+K2)F(T)=0. (2.10)

We will work in spherical coordinates and index our
solutions with the composite label L =(I,m); the
usual regular and irregular solutions are then

T (F)=ji)(kr) YL (F) (2.11a)

and

N (D)=n(kr)Y(F), (2.11b)

where jj(kr) is the regular spherical Bessel function
and ny(kr) is the irregular spherical Neumann func-
tion of the /th order. We see that

K
Go(T,To)=——F==Ny(T—T)) (2.12
olT,Tg vz Vo 0 )
from which we may conclude, via the addition
theorems for spherical harmonics?! and Bessel func-
tions,?? that

Go(T,T)=—kSNL(| T | WE(|F.]), (2.13)
L

where | T, | is the greater of the two arguments and
| ¥ | is the lesser. The restriction on the size of the
arguments is absolutely necessary in order for the ex-
pansion to converge.

Now let us examine X(T) for r€Q. By Eq. (2.7)
with the use of expansion (2.13),

JH TV (To)d(To)d g (2.14)

(R3-Q)
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or

X(P)=S[CLL(NIL () +SE(INL(D)], (2.15)
L

where we define

Con=—k["  NHEIV(EI(Fod’r , (2.160)
(R3-0Q)

S8 (N=—x [ THEIV(Fod(F)d’ro . (2.16b)
(R3-Q)

The condition R*—Q on the integral indicates the
restriction of the domain of integration to
ToER3—Q; the limits of the integrals are construct-
ed so that the Green’s-function expansions converge
for any T€ Q. (Note that, in practice, restricting the
domain of the integration means multiplying the po-
tential by a unit step function with the shape of the
domain and then integrating over all angles in the
expressions above, leaving us with the radial integral
whose limits are indicated explicitly.)

This is the variable-phase, or phase-functional
(PF), construction. It always involves two radially-
dependent functions called the “phase functions”
C%.(r) and Sy (r), that arise from the breakup of
the integral equation required for the expansion of
the Green’s function appearing under the integral
sign to converge. We shall treat it in more detail
momentarily for the integral over (), where it is
more relevant.

Let us examine Eqgs. (2.15) and (2.16). The phase
function Sy, (r) must be zero when r—0 so that
X(T) remains regular (and hence square integrable)
on (). It will remain zero out to the radius of the in-
scribed sphere. The phase function Cy.(r) as r—0
has been integrated over all space outside 2, and so
becomes a constant, not generally equal to zero, for r
inside the inscribed sphere. Both Cy;(7) and Sy (7)
will continuously vary for all r between the inscribed
sphere and «. Therefore, no form simpler than
(2.15) exists for X(T) if 7 is greater than the radius of
the inscribed sphere, and (2.15), with its varying
coefficients, is very difficult to work with. Recall
that we wish to use X(T) to uniquely determine ¢(T)
for € Q; if X(T) is an expansion with variable coef-
ficients [i.e., (2.15)] for some TEQ, we will not be
able to use linear algebra to find the correct solution.

The situation simplifies if the surface 9Q) and the
inscribed sphere coincide. If Q is a spherical
domain, then we may conclude from the arguments
above that

X(2)=3Ci1 (o0 W (7) 2.17)
L

for all TEQ. (The coefficient is a constant for a
spherical domain. The reason for the « designation

will shortly be apparent.) Only for a spherical
domain ( or a domain where the actual potential de-
fined on all space, V(T), is zero in the region be-
tween the bounding sphere and Q [see Egs. (2.16)
and Fig. 1] can we write X(T) in the form (2.17).

We find that the integral equation solution to an
“arbitrary” boundary value problem in quantum
mechanics is [from (2.5) and (2.7)] for TEQ

$O=X(D)+ [ Go(T, TV (Fo)(Told’ro
(2.18)

or

$(F)=F C(e0 V(D)
L
+ [(Go BTV (F)(Toldry  (2.19)

if S is a spherical domain and TES. Note that the
simple form of (2.19) arises from the spherical shape
of S, and V(T) in this expression must be the same
V(T) appearing in (2.1) everywhere in S. This is an
error made by WM in Eq. (2.5) of Ref. 9. They con-
structed a set of solutions with the form of (2.19)
where they truncated the Schrodinger potential at
the edge of some nonspherical domain, expecting to
obtain the effect of the potential and wave function
outside the domain from multiple scattering. How-
ever, as we have seen, this effect is phase functional
(i.e., the phase functions vary) for various T inside
the domain and cannot in general be represented by
a linear combination like (2.17). Thus their equa-
tions appear to be unable to represent any solutions
to (2.1) (where the potential is defined over all space
and the wave function is a permissible one) restrict-
ed to a nonspherical domain, as those solutions (ex-
cept for the trivial one) cannot have the form of
(2.19). The correct form of (2.18) for a nonspherical
domain must be

$(T) = [Cor(PVL(T)+SgL(rINL(P)]
L
+ fnGo(?,fo)V<?o)¢(ro)d3ro (2.20)

for T€Q, where the phase functions C?L(r) and
Sg.(r) must contain the information in V() and
#(T) integrated over all R>—Q. [Alternatively, they
contain functionally the boundary conditions im-
posed on ¢(T) at 3Q2, which is equivalent to the oth-
er from integrating by parts twice over R>—Q, with
suitable asymptotic conditions at «.]

We are now ready to define and construct the PF
basis on a spherical domain S. By basis we mean a
set of solutions to the Schrodinger equation (2.1) at a
given energy e, restricted to the domain S, which is
complete in the sense that any allowed solution to
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(2.1) at the same energy also restricted to S can be
expanded as a unique linear combination of these
solutions.”> We require the domain S to be spherical
so that we can exploit the simplicity of X(T) in
(2.19); once we construct the PF basis we will be
able to seek a particular solution working only with
the X(T)’s. Thus it is very important to obtain a
simple, linear expression like (2.17) to work with.
The PF basis will consist of those solutions of the
form (2.19) that behave like free, regular spherical
waves at the origin. We index the solutions with the
label L such that
|

limg, (F)=J, () 2.21)

and

¢, (P)=3,Cir (0 AT)
T

+ [(GolF,FoV (Fod(Foldry . (222)

As before, we use expansion (2.13) and break the in-
tegral in (2.22) into two parts to ensure the conver-
gence of the Green’s-function expansion. We get

¢L(f")=2 CIS‘L'(OO)JL'(?)—KJL'(?)f:’NZ'(?0)V(F0)¢L(?0)d370—KNL'(?) f;JZ'(?Q)V(F0)¢L(?0)d3r0
T

(S)

or

¢L(f')=Z[CiL'(r)JLr(f’)+Ssz(r)NL'( ]
T

(2.24)
with
Cir(N=Cir (o) —k [ “NIT)V (Fo)dy(Fod’r
(S)
(2.25a)
St =—« [ JE(F)V (Fo)br(Fold’ry,  (2.25b)

(®

where our use of the notation Cj;:( ) is manifestly
justified. Equation (2.24) defines the PF basis, and
Eqgs. (2.25) define the phase functions. It is now
easy to see that the Cf;(r) and Sj;.(r) are the non-
diagonal equivalents of the cosine and sine of the
partial-wave-phase shift of ordinary scattering
theory. They are defined so the partial-wave phases
are zero at the origin, so that the condition (2.21) ap-
pears as the boundary conditions

CI{L'(O)=8LL'

and

(2.26a)

WD) =a,¢,.(F)=a;
L L

L

(S)

(2.23)

$§.:(0)=0. (2.26b)

The “scattering matrix” defined by Egs. (2.25) is
nondiagonal because a non-spherically-symmetric
potential mixes partial waves with different L.
These equations [(2.22)—(2.26)] provide a mar-
velously flexible framework in terms of which a
problem in quantum mechanics can be expressed
and solved.

Let us prove the conditional completeness and in-
dependence of the PF basis. This can be done by
noting that an arbitrary solution to Schrodinger’s
equation on S can be written [via (2.19)]

YT =P C5 (0 WL (D)
L
+ f( Go(BTV(F(To)d’ry . (2.27)

We seek a set of coefficients {a; } such that

WD) =S a6, (7). (2.28)
L

But then [with the use of (2.22)]

SCi (o N(D)+ [ GolF,To)V (Fo)dr(Fld’ro

=L2 [EGLCEL'( ) ]Jy(?)‘f‘ LS)GO(?’?O)V(?O)‘/’(?O)dSrO , (2.29)
’ L

which can be true only if (relabeling the indices)
C:I,L(OO )-—_-zaL'CZ'L(OO ). (2.30)
T

The last step is essentially a restatement of

T
Fredholm’s theorem that X(T) uniquely determines
¥(T) via the integral equation (see Refs. 18 and 19).
The conditions from Fredholm’s theorem appear
here in slightly different form. From linear algebra,
we know that (2.30) uniquely determines a set of
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{aL}’s that solve the problem via (2.28) if and only
if C{;+( ) is invertible, i.e.,

det | Cir ()| 0 . (2.31)

This is the condition that must be satisfied if the
¢, (T)’s are to form a “basis” in the sense we dis-
cussed earlier. If condition (2.31) is violated, it im-
plies the existence of an energy eigenvalue or a pecu-
liar angular degeneracy that amounts to the same
thing. (The determinant will be zero if one or more
of the rows or columns are directly proportional to
each other or if a diagonal element of the diagonal-
ized matrix is zero.) This energy eigenstate will
have a well-defined angular behavior, and this par-
ticular mix of partial waves will not participate
directly in scattering processes. Once this particular
state is determined, however, the rest of the partial
waves are still available to construct a scattering
solution. This point is discussed again in Sec. III in
the context of the band-structure problem.

Before we go on to the next section and a specific
application along the lines of (2.27)—(2.30), we
should note that the phase functions (2.25) can be
calculated by solving a set of coupled ordinary dif-
ferential equations implied by (2.25). This is dis-
cussed in Appendix B, and an algorithm for obtain-
ing the more specific solutions required for the ap-
plication to the band-structure problem is given.
These differential equations cannot be solved for a
completely arbitrary potential. As one might ex-
pect, the potential must be less singular than an in-
verse cube for the solution to be well defined.?*
Furthermore, we would prefer that the potential be
spherically symmetric in the vicinity of the origin so
that the solution can be expressed in spherical har-
monics there. Finally, for practical (i.e., numerical)
reasons we would prefer that the potential be reason-
ably smooth and spherically decomposable in the re-
gion of interest. Fortunately, all of these conditions
can usually be satisfied for some cellular division in
the band-structure problem, and even in the cases
where they cannot something can still be done at the
cost of some accuracy.

In order to apply this theory, we see that a way
must be found to determine the Cy; (0 )’s for the
spherical domain and Green’s function chosen. In
some cases (like the ordinary scattering problem)
these can be determined a priori; in other cases both
they and the energies for which they are defined
must be determined by constructing and solving a
secular equation. In Sec. III we will discuss the
specific application to the band-structure problem?
which is an example of the latter kind of problem.
However, we feel that the PF basis has a number of
possible applications in quantum physics that have
not been fully exploited, and we hope that this treat-

ment is sufficient to suggest new lines of application
in other problems of interest as well as this one.

ITII. THE MULTIPLE-SCATTERING
APPROACH TO THE BAND-STRUCTRE
PROBLEM

Let us briefly review the relevant aspects of the
band-structure problem. We seek a solution to
Schrodinger’s equation

(V+ (D) =V (DPp(T) , 3.1

where ‘the crystal potential possesses the symmetry
of some infinite regular lattice,

V(D)=V.(T+Z,), (3.2)

for any _ZF that is a basic lattice vector. For simpli-
city we will assume that identical atoms are located
at the Z,; more complex crystals can be treated in
this theory but we do not discuss them at this time.
It is a well-known result of group theory that a solu-
tion to (3.1) for potentials (3.2) must satisfy Bloch’s
theorem; that is,

Ye(D=e " EryT4Z,), (3.3)
where K is a vector in the reciprocal lattice that la-
bels the particular solution to (3.1) satisfying (3.3).26
Only certain energies € are compatible with a given
k in the reciprocal lattice; we seek these energies
and their dependence on k. These functions e(k)
occur in bands and form the energy spectra of elec-
trons interacting with the crystal potential.

We wish to calculate the bands and their associat-
ed wave functions using a mechanizable procedure
derived from a NMT theory that can be made self-
consistent. This theory should, ideally, augment our
understanding of the physics of a given problem
rather than confuse it. Furthermore, in order to be
of practical use, the theory (which will involve the
truncation of some infinite set of expansion func-
tions) should be rapidly convergent.

Let us expand the desired solution to (3.1) in
terms of the PF basis derived in the last section. We
seek a set of coefficients {a;(e,k)} such that (for
TES)

Pp(M)=a,(6,k)¢.(T), (3.4)
L

where (also for TES)

¢ (T)=3C51 (00 WL AT)
“
+ f( 0BTV (Tl (To)d’ro  (3.5)

is the PF basis for the domain consisting of the
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FIG. 1. Schematic representation of a typical central
cell, showing the limiting spheres and the separation of
the domains (the near-field region). Note that the bound-
ing sphere does not penetrate deeply into the nearest-
neighbor cells.

sphere circumscribing the central crystal cell (Fig.
1). The function ¢(T) and the potential V,(T)
must satisfy (3.1)—(3.3). We write the integral equa-

tion solution to (3.1) as |

b= [ GoF TV (Tolp(Td’re (3.6
or

Pp(F)= f(

s Go(F Ve Folpg(Fold’ro

+ [ GolT TV Fl(Fodr . (3.7)
Let us, as usual, define
Xp®)= [, Go BTV Folpp(Tod’rg
=§,C§(L(°° WL (T), (3.8)

where the last equality is justified by (2.14) and
(2.17). We will now examine this term in greater de-
tail. If we expand the Green’s function via (2.13) we
obtain

Xﬂf'):—x%h(f') J s NEEOV(F)

X"//T(’( Fo)d3ro ’

(3.9)

which serves to define the {C}; (w0 )}’s.
Let us add and subtract a term to the integral
under the summation:

Xr(?):—x%JL(f’) [ f( o VL FVe(Tolbg(To)d’ro+ [ o NE(Fo)Ve(Folpy(Told’ro
- Ls—n)NZ(?O)Vf(?0)'/’?(?0)‘13'0] . (3.10)

The integral over (S —(Q) is well defined; it is just some number (though we will never have to explicitly evalu-
ate it) and the sum (3.10) converges as rapidly as the sum (3.9). We combine the first two terms (under the

summation) and obtain

X(P)=—k I, () [f(
L

R3-Q)

NE (FV(Fop(Told’ro— [

o N EVe(Fopg(T)d’ro | 3.11)

Let us examine the first term in the large parentheses. If we change variables from T,— Fo+z“ and integrate
over R3—Q by integrating over each WS cell separately, we obtain

Xp(P)=—kSJL(F)
L

Eo fm,,)NZ( Fo+Zu)Ve(Fo+Z,)¥3(Fot+Z,)d’ro
m

- f(s_mNZ(f’o)Vc(f’o)l//;'(Fo)d’ro] . (3.12)

With the use of (3.2) and (3.3), this becomes

Xp(F)=—kSJ.(7)
L

S Jio NEFotZ)V(Tole ™
p0  H

e

iX-Z

¥ 1,/;’( ?o)d3r0

— f(s_mNz(Fo)Vc(Fo)'/’T(’(?o)d}'o ] . (3.13)
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For all lattices such that I_i” | min> | To | max [To is restricted by Eq. (3.13) to lie in the cell; this condition
and its limitations are discussed in detail below], we can expand®’

NETo+Z)=3 3 1111 JE(FoINLAZ,) (3.14a)
L L

where

Ippo= [ YEA YA Y AP (3.14b)
and perform the sum over L’ and u, using the fact that

D K)=3 |Slipr-NpZ)e' e (3.15)

p£0 [ L

are the structure constants of KKR. Then

XT('( F) = —K%JL(?) gDLL'( E) LQ”)JZ'(?O)VC( ?0)1#?( ?0)d3r0 — f(s—mNZ(FO)V‘( FO)lpf( Fo)d3r0 ] .

(3.16)

Note that the term we added and subtracted in Eq. (3.10) is now folded into a sum over the structure constants
of KKR, and thus its cancellation is contingent upon the convergence of that sum.
We now write (3.7) as

w;(f)=_x§L;JL(?) gpw('k*) S/t Ve Folpg(Fold ro— [ NE(FoVe(Folpg(Fold ro

+ f( 5 Go(E5 o)V (Folpy(Told’r (3.17)

and substitute (3.4) for ¥:(T) everywhere it appears in (3.17) (which is now justified since T, T, are both re-
stricted to lie within S). Subtracting everything to the left and relabeling the indices, we obtain

Sau ()| (80— [ GolF,To) Vel ol (Fold*ro |
L

K ZILAF) | J 5o NE TV (Tl (Foldry

- gpwda [ o/t (FoVe(Folbr (Fo)dro | | =0. (3.18)
Using the definition of the ¢; (T)’s, Eq. (3.5), we get
%aL(e,E ) ghm Cirlw)—k [ oo NIATQV(To)(To)d’r
=0. (3.19)

+ kZDppAK) [ JE(Fo)Ve(Fo)pr (Fo)dro
<

We now fold the remaining integral term into the C7;( o0 )’s and define the quantities

CP(0)=Ci1(0)—kK sy NL (FOVe(T0)gL (To)d’ro=—k f( oo VI (TVe(Tog (To)d’ro (3.20a)

and
Sfi(o0)=Siro0) [0 TH(EIVe(Folbr (Fold ro=—k [ | JE(Fo)V (o)L (Fo)d’ro, (3.20b)

in terms of which Eq. (3.19) becomes
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Sa,(e,k) | SJAD)
L L'

CP(00) =Dy KIS 1 (w0)
&

=0, (3.21)

which is almost our secular equation. This is the fundamental equation of Green’s-function band theory and is

exact.

Let us now construct, from (3.21), the secular determinant to be solved for the bands (k). We use the varia-
tional procedure of KR, as this will yield bands correct to second order in the error in the wave function. It
has been noted (by Faulkner) that the variational procedure per se plays little, if any, role in the derivation of
the secular determinant; we disagree, for reasons we shall discuss below.

Equation (3.21) is valid for all TES (not just r €Q) and so we multiply by —KVC(F)¢20( ) and integrate over

S to obtain

%aL(e,E) g_x |l ACT R Et

or

%;aL(ej) %}[SZoLK o)]*

ClL ()= 3 DL KIS o (w0)
2

This will have a unique solution [a set of normalizable a; (¢, k )’s] if and only if

det

2[szoL,( o0 )]‘
L

This is the secular determinant. However, it is very
difficult to solve in its present form. If we can show
that

det | [So,.(0)]* |20 (3.25)

[a condition related to the condition (2.31) for the
completeness and independence of the ¢, (T)’s], then
we can use det | 4B | =det | A |det|B | to require

det [Cf (00)— 3D AK)ST () |=0. (3.26)
.

This is the “usual” secular determinant. [In KKR
the diagonal S »( « ), evaluated on the MT restrict-
ed potential, is inverted and separated from the
structure constants to form the cotangent of the par-
tial wave phase shifts; a similar procedure is fol-
lowed in Appendix C.] It can be solved for the ener-
gy bands e(k) by the procedure of fixing € (or  in
the phase functions) and varying k (and hence the
structure constants) until (3.26) is satisfied. Alterna-
tively, the reverse procedure can also be used. One
can then solve the set of linear equations

3 |C (o) =S Dp (KIS (o) |ag(€,K)=0
L L”

(3.27)

[again, using condition (3.25)] for the a;(6,K)’s,
from which one can reconstruct the wave function
Y (T) if it is required for, e.g., a SCF calculation.

C{IL'( [~ )'—EDL'L"( E)S?L"( o0 )
L

CP ()= 3Dy AK)SE () | |=0 (3.22)
<

=0. (3.23)

=0. (3.24)

|
We can now see why a variational procedure is

preferred over the projective approach. First of all,
it guarantees the second-order accuracy of the
bands, which the projective argument, even if it
leads to the same determinant and bands, does not.
Second, as we have seen, a variational derivation im-
plies an additional condition, Eq. (3.25), that would
have been missed by a projective argument. Equa-
tion (3.25) is an explicit check for the completeness
and independence of the ¢;(r)’s. Furthermore, it
checks for the energy eigenvalues of the spherical
potential, which will correspond to the localized
core states of the modified atomic potential. Should
the test associated with (3.25) [or equivalently, Eq.
(2.31)] fail, then the full equation (3.24) must be
used to obtain the band states, which will be proper-
ly orthogonal to the core states. Finally, the projec-
tive argument is actually invalid in the case where
the solution obtained does not correctly extend into
the “moons”; in order to project out against a spher-
ical harmonic, one must be able to integrate the
function to be decomposed through all angles for
any radius r.

At this point we wish to discuss several potential-
ly troublesome aspects of this derivation. First of
all, the integral term added and subtracted in Eq.
(3.10) has been folded into the Cf%.( ) and the sum
over the structure constants and the Siy.( o) (hence
we never have to evaluate it independently). Its can-
cellation depends now upon the numerical accuracy
of the phase functions and upon the convergence of
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the sum over the structure constants. This point
might concern us because this integral term, multi-
plied by J.(T) and summed over L will in general
diverge for |T’| greater than the MT radius. Thus
Eqg. (3.21) contains two terms which, if summed in-
dependently over L, would also diverge for these r’s.

We do not expect any difficulty, numerical or oth-
erwise, to arise from this observation. This is for
two reasons. First, the angular-momentum cutoff
inherent to scattering theories (and one of the prime
advantages of KKR) should guarantee that our sum
over the structure constants will converge sufficient-
ly rapidly to effectively cancel the divergence before
the sum over L is performed. Equation (3.21) con-
verges as rapidly as (3.9) from which it was derived;
only residual errors arising from truncating the basis
set can produce any problems. Second, if Eq. (3.25)
is satisfied the terms in (3.21) separate. That is, the
sum over L is never performed and a set of indepen-
dent equations (3.27) result. We believe this to be
the reason that WM obtained meaningful results in
spite of the divergences in their multiple-scattering
equation. Whether or not their projective argument
was valid, it succeeded in producing a secular deter-
minant that effectively separated the terms in their
fundamental equation. The strong convergence
properties of Green’s-function band theory then
yielded the best results their basis was capable of
though it was incomplete and though their expan-
sion for the Green’s function for the crystal was
divergent for certain r. This is a powerful argument
in favor of using the Green’s-function method in
band-structure calculations; it is so strongly conver-
gent that flaws in the implementation of the method
produce minimal errors.

_A second point to discuss is the restriction
|Z, | min> | To| max On the crystal lattice required
for Eq. (3.15) to converge. There are clearly many
lattices (i.e., the cubic or any close-packed lattice)
where this requirement is always met. There are
certainly other lattices where it may or may not be
met, depending on the substance studied. The re-
quirement that the crystal potential be decomposable
in spherical harmonics in the bounding sphere (see
Appendix B) produces a slightly stronger restriction
of the same sort. The deep nuclear potential of the
nearest-neighbor atoms must be far enough beyond
the edge of the bounding sphere that the numerical
decomposition of the potential can proceed without
difficulty. If it is not possible to satisfy either or
both of these related requirements for a particular
substance, it may be necessary to introduce a basis
(of empty cells) and work with the more complex
problem thus formed. The extension of this theory
to this sort of problem is deferred to some later
time; those interested might proceed along the lines

indicated by WM, who included a site label on their
cellular potentials.

A great deal of the structure of this method
derives from the earlier work of WM. Occasionally,
this paper may seem quite critical of their paper;
however, it is generally details of their method that
we are criticizing, not the overall approach. Indeed,
the authors are indebted to WM, for by isolating the
weak points of their derivation from a point of view
slightly different from those of Ziesche and
Faulkner, we were able to fix them up and so recov-
er an exact theory of essentially the same form. We
were motivated by the feeling that WM’s results cer-
tainly “look right”; that is, they have the form one
would expect the exact NMT theory to have. At
this point we would like to briefly compare and con-
strast the two theories to emphasize their simulari-
ties and differences.

Both approaches begin with the phase-functional
basis. However, WM incorrectly represent the inho-
mogeneous term of the integral equation for the
phase-functional solution on the cell, neglecting the
near-field contribution from the moons between the
cell boundary and the bounding sphere. We correct
this by working with a basis defined throughout the
sphere which includes the near-field effects explicit-
ly and has a simple representation for the inhomo-
geneous term.

Both approaches then evaluate the integral equa-
tion solution to Schrodinger’s equation for the entire
crystal, using the PF basis. WM break the volume
integral into an integral over the cell and an integral
over the outside of the cell. We break the volume
integral into an integral over the bounding sphere
and an integral over the region outside the sphere.
We do this to avoid working with a phase-functional
representation of the exterior integral. By adding
and subtracting a term under the summation over
J(T), we effectively repartition the integral to re-
cover the usual structure constants and modify the
Cir (o) coefficients accordingly. The result is the
multiple-scattering equation that would result if one
scattered the complete set of functions ¢, (T) off the
truncated cellular potential for all the cells of the
crystal.

WM derive the structure constants by examining
the three-argument expansion of the Green’s func-
tion for the crystal. Their argument concerning the
cell partitionings for which their equations separate
is invalid, as it involves the reordering of an infinite
sum. This point is quite important and is covered in
detail in Appendix A. As a result their term con-
taining the structure constants, when summed
against the J (T)’s, does not always converge. This
is by itself not necessarily bad; our equivalent term
does the same thing. However, their coefficients
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C () do not contain the term (that we added and
subtracted termwise to emphasize the point) that
cancels this divergence. Hence their multiple-
scattering equation does not formally converge. As
we noted, this does not seem to make the theory
unusable because obtaining the secular equation ef-
fectively decouples each term in the sum from the
others anyway; the angular-momentum cutoff then
ensures convergence to an answer. The answer sim-
ply contains an error that is very difficult to esti-
mate.

We finally obtain, from a slightly different pro-
cedure, a secular determinant that looks very much
like WM’s. In fact, the only dlfferences are in how
we calculate the CfY (o) and Sf¥ () (and hence
the nondiagonal scattering matrix) and the varia-
tional approach to the secular determinant. As a re-
sult, we feel that our secular equation has the form
one would expect a NMT Green’s-function band
theory to have. For this reason, and the reasons de-
tailed above, we believe this to be a viable general-
ized theory suitable for use in SCF band-structure
calculations and the most general statement of
Green’s-function band theory made to date.

IV. CONCLUSIONS

In this paper we have presented the derivation of
a general technique, based on multiple scattering in
the phase-functional formalism, for solving the
band-structure problem. The results presented are
valid for lattices without a basis; the results can be
extended to a complex lattice (i.e., a lattice with a
basis) by addlng a species index (label) to the quanti-
ties CLL (o0), SLL ), V.(T), ¢.(T), and a (e, k)
The structure constants would then be modified in
Eq. (3.15), since ¥ (T) [through the a; (¢, k)] satis-
fies Bloch’s theorem on the lattice but not the basis.
We do not present the actual equations in this work,

as they can be obtained from WM’s papcr, changing
their basis functions Ciy (o) and SLL (o0) to ones
calculated along the lines suggested in this paper.
The results presented in this paper suffice for stud-
ies of pure metallic crystals, including the transition
metals, in a self-consistent manner.

At this time we are engaged in the application of
these results to a variety of test cases. We intend to
study a number of metals, including several treated
in some detail in the MT approximation for pur-
poses of comparison. Initially we will not do a SCF
calculation to avoid obscuring the direct utility of
the method, but eventually we hope to make the en-
tire procedure self-consistent. It is too early to re-
port on these results (though preliminary work
shows some promise), but we hope to complete at
least one calculation in the near future for demon-
stration purposes.

We feel that the phase-functional solutions
developed by WM and in this work have not been
exploited as fully as they might be in physics. In
particular, they appear to have possible applications
in ordinary scattering theory and atomic physics
where the Born approximation or other methods
turn out to be too expensive or inappropriate.

To conclude, we hope that this work fills the need
for a reliable, reasonably cost-effective method for
calculating SCF electronic energy bands without
recourse to the MT approximation.
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APPENDIX A: THE GREEN’S-FUNCTION EXPANSION

In this appendlx we discuss the convergence properties of the Green’s-function expansnon In particular, we
will examine the algebraic consequences of reordering the sums in the three-point expansion of Gy(T,Ty+ Z), as
was done by WM, and show that it leads to a diverging result. As usual we will work with the stationary
Green’s function; the arguments are trivially extendable to include the other Green’s functions for incoming or

outgoing waves.
We begin by examining [via (2.13)]

Go(T,To+Z)=—k SN} (Fo+ZWL(F), (|T| < |To+Z]) (Ala)
L
=—kIN(T=ZW}(To), (|FT=Z|> |Tol) (A1b)
L

=—kINL(ZWFF-To), (|Z]|>|F=To]), (Alc)
L
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which are the three ways of expanding the three-
pomt function so that Z is part of the argument of

(Alc) is the usual muffin-tin requirement and
expansion and we will not discuss it further. (Ala)
and (Alb) can both be expanded again if
|Z| > | Ty| and |Z| > | 7|, respectively. We have

S Sy NAZEA(F)
L' L"

Go(T,To+Z)=—«3,
L

XJ(T) (A2a)
from (Ala) and Eq. (3.14a), and

S Sl NAZ AT ’
L

Go(T,To+2)=—«3,
L

XJL(Tp) (A2b)

from (A1b). The parentheses are necessary to main-
tain the order of the sum. Suppose, now, we at-
tempt to reorder the sum, that is, claim that (A2b) is
equivalent to

Go(l' r0+2 = —-Kz
"

2 EILL LNEZW L (Fy) ]

XJp(T), (A3)

which is just (A2a) if we relabel the indices. (I;;~
is completely symmetric) We can then contract
(AS5) according to_(3.14a) and find that (assuming
|Z| > |T| and |Z| > | To])

Go(T,To)+Z)=—k 3 NI (To+Z)AT)
o2 To)+ “% L(Fot ENLA) 1

if the requirement on (A1b) (|F—Z| > | T,|) is sa-
tisfied. But this is not convergent for all T,T, such
that this condition is met. We already know that
(Ala) will only converge if its conditions are met,
and there clearly exist T, T that will violate the con-
dition on (Ala) but satisfy the condition on (A1b).
We can make the contradlctlon more apparent by
changing variables so that To= r0+Z Then

Go(T,To)=—k N[ (T (T) (A4a)
L

is the equivalent of (Ala) and requires that
[To|>|T|. If |T|>|To|, then

Go(T, ?b)——KZNL(?)JZ(Fb) s (A4b)

but we can always find some |Z| —0 such that
|T—Z| > | To|. For that Z, (Alb) implies (Ala),
which implies (A4a), and we find that our reorder-
ing of the sum in (A2b) leads us to the contradictory
result that the Green’s function can be expressed as
(Ada) or (A4b) for any T, without regard to the

relative size of their arguments. This is algebraical-
ly true. The terms in the sums (A2a) and (A2b) have
a one-to-one correspondence, but those sums will
converge only if added in the order indicated by the
parentheses.

This is why we were careful in Sec. III to perform
all of our algebraic manipulations under the summa-
tion over J; (T). If we treated the integral term over
the moons around the cell independently, it would
not sum in a convergent manner. This would neces-
sitate treating diverging sums numerically, and,
while the sums would still cancel to produce a con-
verging result, the requisite subtraction of large
numbers would introduce an unacceptable error. By
working within the sum over J (T) we never have to
subtract a pair of diverging partial sums. We sub-
tract only the terms that if summed would diverge,
but are perfectly well-defined numbers otherwise,
and thus avoid the necessity of working with large
numbers. In practice we do not even do thls sub-
traction; we actually invert the matrix SLL (o0),
multiply the result into the Cf% () and then sub-
tract off the completely separate structure-constant
matrix (as seen in Appendix B).

APPENDIX B: EVALUATION
OF THE PHASE-FUNCTIONAL BASIS

The integral equations for the phase functions are
(from Sec. II)

CirN=Cir(w)—k [~ NIV (Foldy (Fold’ro
(S)
(2.25a)
and
St =—k [} TE(F)V (F)y (Foldro
(S)
(2.25b)

on the spherical domain S. We also must evaluate
in parallel the phase functions

ClN=Cl(w)—k [ NE(F)V(FoldL(Fold’ro
Q)
(3.20a")
and
—KfoJL (ro)V(ro)¢L(r0)d3ro
o (3.20b")

on the cell Q for use in the secular equation (3.26).
Recalling that ¢; (T) is given by

¢L(?)=E[CIS_L'(7)JL'( ?)+S;,L’(r)NL’( ?)]
1%

SLL (r

(2.24)

for TES (note that the phase functions on the sphere
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must be used, not the phase functions on the cell) we
define the following decompositions:

Vi(£)=2 Ve (NYL(F) (B1)
L
with
Vy(r)= f(stmYZ(?)dz?, (B2)
where

y |V, TES

8 0, TES

SL(T)=D,¢1,(r)Y(F) for TES (B4)
<

(B3)

—

with
Sr ) =[CiL(r)jr(r)+SiL (rnp(r)], (B5)

and

VQ(F)=§V9L(r)YL(?) (B6)
with
Var(r)= f( o a(OYL(PAF, (B7)
where
Va(P) V(?l’ reo (BS)
0, TEN.

From the integral equations for the phase functions
we obtain the following coupled ordinary differen-
tial equations:

dCi, o o g2
— =xr? f( SNEEWUDIGL(FIEYF,  (BO)
dsir s o g2
- = —«kr? (4")J,'_v(r)Vs(r)¢L(r)d2r,
and (B9b)
dcfy o ~
— =xkr? L VLDV a(D)p (DF,
(B10a)
dS[“lL' — — —> A
— =—Krzf(mJZ/(r)Vg(r)¢L(r)d2r )
(B10b)

Integrating over angles (using the decompositions
just given), we obtain

dCiyp

SN D L AT ) A
dr oo

(B11a)

dsi;.
L k23 iV g oL op
dr T
(B11b)
and
dcd.
LL =kr®Y, Snp(rWVar(r)LL-(rppop»
dr i
(B12a)
asl.
= k3 WV (NP
dr i
B12b)
where (

Ipppe= [ YEAY (A Y (PP (3.140)
(4m)

describes the angular mixing. The boundary condi-
tions on the differential equations (B11) are

CZL'(O)ZSLL' (2.26a)

and

Sir(0)=0, (2.26b)

and they can be numerically integrated out from the
origin to r equal to radius of S, where the phase
functions become constant. Solving (B11) alone al-
lows one to obtain ¢ (T), but we also require the
phase functions on the cell, which depend on ¢, (T)
on the sphere. These functions [the solutions to
(B12) with the same boundary conditions (2.26)] will
be identical to the Cj;.(r) and Sj;.(r) out to the ra-
dius of the inscribed sphere, at which point the
Var(r) begin to differ from the V7 (r). An efficient
algorithm for evaluating the two kinds of phase
functions in parallel is thus as follows:

(a) Integrate the phase functions Cj;.(r) and
Sir(r) from the origin to the inscribed sphere.
[This can be done only after a routine to generate
the Vi (r), Vqr(r), etc., has been written.] The ma-
trix must be truncated at some L,,,,, and need not
be saved at intermediate values of » unless one
wishes to reconstruct the wave function.

(b) Using the values of Cj;-(r) and Sj; (r) on the
inscribed sphere as boundary conditions, one in-
tegrates both (B11) and (B12) out from the origin.
Since both differential equations require the same
¢7.(r) and only (B11) generates a new ¢;;(r +Ar)
a step further out, the routine integrating (B11) must
be kept a step or two ahead of the routine integrat-
ing (B12). In this way one can avoid storing the in-
termediate Cj;.(r) and Sj;.(r) for more than the
one or two values of r needed to integrate first (B11)
and then (B12) the next step out.

When r reaches the circumscribed spheres, both
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sets of phase functions become constant. The
Cj1 (o) or S{; (o) matrices can be determinantal-
ly checked to see if they satisfy the variational-
completeness test (2.31) or (3.25) and then discarded.
I

zaL(e K 2[ o (0)]*

and simplify it to

2 CLL' ZDLL (k)SLL"(OO) a,_(e, )
L
(3.23")
with the use of the condition (3.25). To solve this
equation we define (see WM)
ble,K)=S (c0)ap(€K) (B13)
L
and
CP ()=t A0S (o0) . (B14)
-
Then (3.23') becomes
S0 (00) =Dy (K)]b(e,k)=0, (B15)
L

and the secular determinant is just
det |7 00) =Dy AK)| =0 (B16)

The ngL'( ) is the analog of the nondiagonal
scattering matrix for the single-site potential. If we
use the spherical phase functions

Ciploo)=3n11(0)Si (), (B17)
Yx

then the 7} () is the scattering matrix for the
spherical domain S, related to the cotangent of the
partial-wave phase shifts but nondiagonal due to the
nonspherical symmetry of the potential V(7). (B14)
and (B17) are defined as they are to avoid the ques-
tion of left versus right inverses [since the Cy; /()
and Sy ( oo) are not necessarily Hermitian]. If we
define S;7' (o0 ) by (for the domain S or Q)

ZSEL"(OO)SLL"(OO)=5LL' (B18)
-

then

CLL (o0 )_EDL'L (k)SLL"( )

The Cf} (o) and S{}- (o0 can be used in Eq. (3.26)
to solve for the bands (k) after making the follow-

ing simplifications.
We take

=0 - (3.23)

H

Nl oo )=2CLL’( 00)Siz+(o0) (B19)

in the order shown. This allows us to_ complete the
algorithm for evaluating the bands e(k), which re-
quires that Dy - (K) be available for arbitrary 6K.
When steps (a) and (b) above are completed, we con-
struct nLL (o) from (B14) or (B18) and (B19). We
then vary K for the given € until determinantal con-
dition (B16) is satisfied. This yields the band struc-
ture €(k) at a point in the reciprocal lattice, which
can be carried to several other points using the sym-
metry transformations of the point group. Repeat-
ing this procedure for different €’s, we ultimately
generate the entire band structure e K) for the crys-
tal. Once condition (B16) is satisfied, the set of
equations (B15) can be solved for the {by( 6Kk)})’s
and the {a; (€,K)}’s, if desired.

We strongly recommend that those interested in
performing a band-structure calculation consult
WM’s appendixes and proceed with some caution.
We have simplified the notation somewhat for clari-
ty, but if one wishes, for example, to use real spheri-
cal harmonics and avoid using complex numbers
(which can be done if the lattice and cellular poten-
tial possess inversion symmetry), then care must be
taken to use the appropriate phases so that the addi-
tion theorems used extensively in the analysis work
correctly. (This is the major function of the spheri-
cal harmonics per se in the formalism of the paper
and arises because the Green’s function involves
only |T—T,|.) Ham and Segall also make many
relevant observations concerning imaginary phases
in the free spherical waves (that we have omitted in
the interest of clarity) in their table of structure con-
stants for Green’s-function band-structure calcula-
tions.” These are important when € <0 and can in-
troduce confusion when applying the method
described herein unless caution is used.
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