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Torrance et a/. have made the interesting observation that several mixed-stack organic
compounds undergo transitions from neutral states to ionic states as the temperature or
pressure is varied. We examine a simple model of such transitions including Coulomb in-

teraction and hybridization of neutral and ionic states. In the limit of weak hybridization
and long-range repulsive interaction between ionic planes, it is proven that there is a com-

p/ete devil's staircase where the degree of ionicity assumes an infinity of rational values.

For attractive interactions between ionic planes, the neutral-ionic transition is shown to be

first order for weak hybridization. Comparison with experiment indicates that this situa-

tion applies to tetrathiafulvalene chloranil. For strong hybridization the transition is con-

tinuous but goes through a metallic phase. It is shown, for the first time, that the spectrum
of the charge-transfer Hamiltonian contains both a bound spectrum, the observed charge-
transfer excitations, and a continuum.

I. INTRODUCTION

Mixed-stack charge-transfer organic compounds
consist of stacks of alternating donor (D) and
acceptor (A ) molecules. ' They either come as

mostly neutral ( . . DADADA . . ) such as
perylene-tetracyanoquinodimethane (TCNQ), or as
mostly ionic ( . . D+A D+A D+A . ) such
as tetramethylphenylenediamine- (TMPD) TCNQ. 2

In both cases they are exceptional because the
lowest excitation above the ground state is a charge
transfer along the stack, which creates an ionic pair
in a neutral material ( . DAD+A DA ) or a
neutral pair in an ionic material
( D+A DAD+A ).

Recently, Torrance et al. made the remarkable
discovery that several neutral compounds undergo
transitions to ionic states as the pressure or tem-

perature is changed. The most extensively studied
compound is tetrathiafulvalence (TTF) chloranil.
The neutral-ionic transition in this material, which
occurs at 84 K under ambient pressure, is accom-
panied by anomalies in vibrational spectra, specific
heat, " lattice constants, ' and dielectric constant.
Both the neutral and the ionic phase were found to
be substantially hybridized. Gptical, infrared, and
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Raman measurements indicate that the transition
takes place over a finite-temperature region in
which there is coexistence of neutral and ionic mol-
ecules. At the neutral-ionic transition the differ-
ence between donor ionization energy I and accep-
tor electron affinity A is compensated by the
Madelung energy of the ionic lattice.

A simple theory, which does not include hybridi-
zation, gives a linear relationship between the
charge-transfer excitation energy and I-A, which
indeed holds true for neutral compounds. The
theory leads to a sharp first-order phase transition.
Hubbard and Torrance have extended the model to
include the repulsive Coulomb interaction between
fully ionized a cplanes (Fig. l-) and they argue that
this gives a gradual variation of the amount of ionic
a-c planes.

A D-A pair, however, changes from neutral to
ionic in a smooth way as IAis varied if hybr-idiza-
tion is included. Calculations on infinite D-A
chains by Krugler et al. found indeed that the de-
gree of charge transfer p varies continuously with
I-A, while the charge-transfer excitation energy E~
is always finite. Afterwards, Strebel and Soos'
found that p varied discontinuously at the neutral-
ionic boundary although the gap in the excitation
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devil's staircase. '

Our paper is organized as follows: In Sec. IIA
we present our model, in Sec. II B we work out the
phase diagram within the Hartree-Fock approxima-
tion, and in Sec. II C the excitation spectrum is cal-
culated. In Sec. III we discuss the consequences of
repulsive interactions in the limit of small mixing
and prove the existence of the complete devil's stair-
case and in Sec. IV we give a short summary.

FIG. 1. Arrangement of donors (black) and acceptors
(white) in the monoclinic unit cell of TTF chloranil (Ref.
22). The stacking direction is along the a axis.

II. THE NEUTRAL-IONIC TRANSITION

A. Hamiltonian

spectrum vanishes. They used an extended Hub-
bard model. With the same model, Krivnov and
Ovchinnikov" found a finite EcT at the transition.

All of these authors, however, did not include in
the Hamiltonian the Coulomb interaction between
different sites but added a self-consistent Madelung

energy afterwards. Because of this, they all found
that the lowest excitations were extended plane
waves (DAD+ADADA DA) while they really are
bound pairs (DADAD+A DADA ).

In this paper we introduce a model for neutral-
ionic transitions including hybridization of neutral
and ionic states in addition to Coulomb interaction.
The Hamiltonian is essentially an XFZ model in a
staggered magnetic field. This model can be solved
exactly at the neutral-ionic boundary. If the D-A

transfer integral 2r is less than the nearest-neighbor

Coulomb interaction J, then the transition is first
order with always a finite ECT. TTF chloranil in

fact shows a small discontinuity in the frequency of
certain infrared, vibrational modes while the
charge-transfer excitation energy is 0.9 eV at 81 K.
If 2r &J, the transition is found to be continuous
with a vanishing ECT. In addition it is shown that
the spectrum of the Hamiltonian not only contains
free states (DA DADADAD+A), but also the ex-

pected localized charge-transfer excitations
(DADAD+A DADA). In the limit of small mixing
and repulsive interactions between planes our model
reduces to the one studied by Hubbard and Tor-
rance, which in turn is equivalent with a model pro-
posed by Safran for staging in intercalation corn-

pounds. ' We solve the model and prove that as the
effective field is varied the ratio of a-c planes that
are ionized passes through all possible rational
functions. This behavior is known as the complete

The states of a charge-transfer compound can be
described by specifying whether any given donor or
acceptor is neutral or ionized. We exclude the pos-
sibility that the molecules are doubly ionized, i.e.,
we work within the physically reasonable approxi-
mation that the strong Coulomb interaction be-
tween electrons with different spin excludes such
configurations.

Every donor or acceptor is a two-state system and
we will use the notation of a spin —, quantum sys-

tem:
~
t,i )z is a neutral acceptor at site i,

~
l,i )z

is a negatively ionized acceptor at site i,
~
t,j)D is a

neutral donor at site j, and
~

&,j)D is a positively
ionized donor at site j. Note the different conven-
tion for donors and acceptors. The position of
donors and acceptors is shown schematically in Fig.
1. Only configurations with total charge zero are
allowed.

First, we construct the Hamiltonian along one
stack with alternating donors and acceptors. It costs
an energy I to ionize a donor while an acceptor
gains an electronic affinity A on accepting an elect-
ron. The associated Hamiltonian is

4 i I g S,(n)+A——g S,(n)+p, +S,(n),
ll (XM

(2 1)

with 2S„, 2S~, and 2S, Pauli spin matrices and
donors and acceptors on even and odd sites, respec-
tively. The charge on a donor site j is given by

and similarly for the acceptor. The chemical poten-
tial p is chosen such that the total charge
&

~ [Q„S,(n)]
~
) is zero.

The next important contribution is the Coulomb
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interaction. We consider in this section only the
nearest-neighbor interaction. The effective nearest-
neighbor Coulomb interaction (e /a ) was calculat-
ed approximately for TTF-TCNQ by Hubbard, '

giving (e /a ) -0.55 eV. Including nearest-
neighbor interaction only implies that the Madelung
constant a is 2. Realistic calculations' on
TMPD+-TCNQ give a=1.29. The Coulomb in-

teraction is given by

4 2——(e la) g [S,(n)+ —,][S,(n+1)——,]

ic donor-acceptor pairs. The only combination of
spin matrices that mixes neutral and ionic pairs is

0':2r—[S„(1)S„(2)+Sy(1)Sy(2)],
0"

~
t, 1)g

~
1,2)D

(2.7)

=r
~

&, 1)„~&,2), , D+A -~D'A' (2.8a)

o"
~

&, 1)„~t,2),
=r

~
t, 1)g

~
l,2)D, D A ~D+A (2.8b)

+(e'/a) g [S,(n) ——,'][S,(n+1)+ —,'] .
n odd o"

I &»~ I &»D 0 ~

Adding (2.1) and (2.2) we find

4 = (I —(e /a)+p) g S,(n)

(2.2)
The operator 0' does not operate on D-A pairs
with a net charge. The resulting Hamiltonian is

A i 2r g——[S„(n)S„(n+1)

+(A+(e /a)+p) g S,(n)
n odd

+ (e /a ) g S,(n)S, (n +1) . (2.3)
where

+S~(n)S„(n +1)],

r=(D)+Ai ~A ~D)Ai)

(2.9)

with H =(I—A)/2 —J.
In fact, this Hamiltonian is equivalent to that

proposed by Torrance et al. The charge-transfer
excitation energy EcT corresponds to the spin flip
of two neighboring spins:

EcT——2H+ J=I—A —J
for the neutral ground state (H & 0), and

EcT —— 2H+J =3J (—I—A), —

&2.5)

(2.6)

in the ionic ground state (H & 0).
The field H was found to be 0.1 eV at room tem-

perature in TTF chloranil. A first-order neutral-
ionic transition occurs at H=O where I —A =2J
and ECT ——J. These results coincide with those of
Torrance et al. for a =2. However, infrared mea-
surements of certain vibrational modes indicate
that the actual transition involves a change in the
degree of charge of charge transfer of only 45%
from a quasineutral state to a quasi-ionic state and
we need to consider mixing between neutral and ion-

This is just the Ising antiferromagnetic with ex-

change J—= (e /a ) in a staggered field. If the field
on donor sites, I—J+p, is exactly opposite to the
field on the acceptor sites, A +J+p, then the total
charge (

~ Q„S,(n)
~
) must be zero. The resulting

Hamiltonian is

~=H g( —1)"S,(n)+J QS, (n)S,(n+1), (2.4)

+Sy(n)Sy(n +1)] . (2.10)

The order parameter is'

1 1
p ———=—g ( —()"S,(n)),2

(2.11)

where p is the degree of charge transfer from donor
to acceptor. It changes from 0 in the neutral phase
to 1 in the ionic phase.

Because of charge neutrality, (S, ) =0 and we
can only allow singlet excitations of the spin sys-
tem. For H=O, this Hamiltonian was solved' with
the following result. For J g 2z, there is long-range
order in the order parameter and a gap ECT in the
singlet excitation spectrum

sinh8 +
h i (2n+1)n

CT ~
g

cosh
28n= —oo

(2.12a)

is equivalent to the Milliken configuration integral'
and is of the order of 0.1 —0.3 eV. It is important
to note that A 3 preserves the translational invari-
ance along the chain. Our final single-stack Hamil-
tonian for N l2 D Apairs is-

N N
4 =H g ( —1)"S,(n)+J g S,(n)S,(n+1)

n=1 n=1
N

+2r g [S„(n)S„(n+1)
n=1



27 NEUTRAL-IONIC TRANSITIONS IN ORGANIC MIXED-STACK. . . 459

with

coshH =J/2r . (2.12b)

for H&r to —
I
lt) (ionic) for H( —v'. The de-

gree of charge transfer p from donor to acceptor in
thelowerlevelis

I
(D+A Ig ) I

or
For J&&2~,

@= r2/I r2+ [H +(r2+H2)'/2]2] . (2.18)

and

EcT J(—1—4r—/J + . ), (2.13a)
The excitation energy from lower level to upper lev-
el ECT is

I P 2 I

=
2 [( 1 —(2«»' ——.(2«J) EcT =2(H +r )' (2.19)

——
16 (2r/J)'+ . . )] (2.13b)

As J approaches 2~, ECT goes rapidly to zero:
1/2 '

ECT-8m~exp —m 2 2 —1
2 J

2r

(2.14)

Note that p and ECT are smooth functions of H.
Next we turn to the infinite chain.

To find the phase diagram, we will treat the
Coulomb interaction self-consistently. This is done
by transforming A first to a fermion Hamiltonian
using the Jordan-Wigner transformation:

S'(n) =14(„p„——, , (2.20a)

For J &2v, ECT is zero and there is no long-range
order: p= —,. The singlet excitation spectrum is

gapless. At J=2~, the singlet spectrum is'

n —1

S+(n) =f„exp ingP.
m=0

(2.20b)

EcT(q)=171
I
slllq I, I q I

('1T . (2.15)
The spinless fermion operators obey anticommuta-
tion relations,

In the next section we shall see how H affects these
results. Pm Pn +4n 4m ~mn (2.21)

B. Phase diagram

We begin by considering only a single donor-
acceptor pair (dimer) to be able to compare it later
with an infinite chain. The wave function is a
linear superposition of neutral

I
tg) and ionic

I
tt)

states. ' The Hamiltonian may be diagonalized with
eigen values

E+ +(H2+ 2)1/2 (2.16)

and eigenvectors

+ r
I
»)+[H+(H'+"""]

I ~»
I r2+ [H +(H2+r2)1/2]2} 1/2

(2.17a)
and

14
.

I «)+[H —(H'+")'"]
I »)

Ir2+ [H (H2+r2)1/2]2
I

1/2

and the resulting Hamiltonian is

~=H X ( 1)"~.'~.+-J X~.'~.'+ 1~.+1~.
n n

rg (g„p—n+1+C.C. ) (2.22)

N/2

Ie„„)=Pg,'Io),
i=1

(2.23)

where
I
0) is the vacuum. The wave functions P;

are determined by minimizing the energy

Since (S,) =0, we have E/2 particles. It is impor-
tant to note that the spitless ferrnion operators
entering 4 are not the electrons of the D Asystem. -

In the Hartree-Fock approximation' to the
ground state %(n1,n2, . . . , n1v/2), it is assumed
that 4 is the Slater determinant of N/2 single-
particle wave functions P;(n) If g; c.reates a fer-
mion in the state P; then

(2.17b) EHF (+HF
I

~
I +HF ~ (2.24)

The upper level E+ is empty and the wave function
of the lower level Ig ) varies from

I

tJ, ) (neutral)
This gives the Hartree-Fock self-consistency equa-
tions

r[P;(n + 1)+P—;(n —1)]+(—1)"HP;(n)+Jg [PJ (n + 1)PJ(n +1)+PJ (n —1)PJ(n —1)]P;(n)
J

—Jg [P (n+1)$ (n+1)+P (n —1)$;(n —1)]Pi(n)=E;Q;(n), (2.25)
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where E; is the energy cost of removing a fermion
from state P;. For J=O, the solution is found im-

mediately, and

(2.26)

where u; +v; = 1 and

Slater determinant of P; (n). We assume that for
the interacting case, the P;(n) still have the form of
Eq. (2.26) and we solve for u;+- and v;+-:

(v; /u() += (E-,
+

+2m-p cosk )/[H 2J—(p —,
'

)—],
(2.30)

k;=(2~/N)i, i =0,+1, . . . , +N/2.
The eigenvalues E; are

(2.27)
p = 1+ g (uj —vj )coskj

J
7 J

(2.31)

E+ +(4r2cos2k +H2)1/2

and the eigenfunctions

(2.28) and p is the degree of charge transfer. The energy
eigenvalues E;—+ are

(v;/u;) +=(E;+-+2r co-sk;)/H . (2.29)
=+ I 4'7 p cos k; +[H 2J (p ——)] ]—

(2.32)

We have found two bands, E;+ and E;, of N/2
states. The lower one will be filled; the upper one
empty. The ground-state wave function is the

I

Since we know the ground-state wave function, we
can calculate the ground-state energy from pq.
(2.24):

EHF=+E; —J g [P; (n)P; (n}Pi *(n+1)PJ. (n+1)—P; '(n)PJ *(n)P; (n+1)$1 (n+1)]
i,j,n

4 2 2
=N — I4r p—+[K—2J(p ——, )] I' E

7T 4r ~p'+ [H —2J (p ——, )]'
~2—Jp(1 —p)+ (p —1)'J

(2.33)

where E(m} is a complete elliptic integral of the
second kind with modulus m. We still need to
determine p and p. From Eqs. (2.30) and (2.31) it
follows that for

~

H
~

/r large or J/r large,
v;/u;=+1 so p=l. If both ~H

~

/r and J/r are
small then v; =0 and

p =1+ J
(2.34)

1 1 H
1

Swp
(2.38)

and at H=O a first order tran-sition occurs from a
mostly neutral to a mostly ionic phase. So, as long
as r/J is small, the simple theory remains valid.
On the other hand, for r/J large and H small we
fin/

The degree of charge transfer p is determined by a
self-consistency equation,

1 1
(2.35)

[H —2J(p ——,)]
~ [4r'p'+[K —2J(p ——,

' )PI'"

1 1 7-'
p= —,——,sgn(H) 1—

([H i+J)
(2.37)

4 2 2

4r p +[H —2J(p ——,)]
'
(2.36)

where E(m) is a complete elliptic integral of the
first kind. If ~/J &(1 then p = 1 and

and the degree of charge transfer varies continuous-

ly, as in the dimer but more rapidly. In conc&usion,
for J&2r, p undergoes a first-order transition at
H =0, while for J &2r the transition is continuous.
The resulting phase diagram is shown in Fig. 2.

It should be noted that the Hartree-Fock approxi-
mation underestimates fluctuations and thus overes-
timates

~ p ——,
~

. In fact, for J & 2r and H =0, Eq.
(2.36) gives

1

~ p ——,
~

-exp( m.~p/J), —

which is small but not zero, as would follow from
the exact solution. On the other hand,

~ p ——,
~

will
be enhanced somewhat by interchain Coulomb in-
teraction.
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QUASI —
I ON I C QUASI —NEUTRAL

I ONIC NEUTRAL

FIG. 2. Phase diagram for mixed-stack compounds.
VVhen H &0, the compound is largely neutral, while for
H &0 it is largely ionic. The transition at H =0 is first
order if 2r is less than J.

tightly bound particle-hole pair or Frenkel exci-
ton."

In the following we consider the neutral phase.
There are two types of Frenkel excitons: one with
an ionized donor at site j and an ionized acceptor at
site j+1 (DADJ Az+&DA) and one with an ionized
donor at site j and an ionized acceptor at site j—1

(DADJA, D/+A). They will be denoted by lj )+
and

l j) . They have the same energy but opposite
dipole moment. Their degeneracy is a consequence
of the reflection invariance of the stack.

Since there are N/2 sites for j, we have an X-fold
degenerate excitation spectrum with energy ECT.
The effective Hamiltonian is

Ecr~0=
2 X (4.+IN. +i 4.P. )—

n even

C. Excitation spectrum

The lowest-lying optical excitation is a charge
transfer of an electron from a donor to a neighbor-

ing acceptor (neutral phase). For r=O, this costs an

energy

+ g (g„)g„) P„g„) .—(2.4O)
n even

The first term counts the number of lj )+ excita-
tions, the second the number of

l j) excitations.
Next we include the hopping term

EcT 2
l
H

l +J——-1 ev . (2.39)
=r g (g„P„+&+c.c.), (2.41)

If we compare this with Eq. (2.32) we see that it lies

about halfway between the empty and the filled
band. In the fermion model, it corresponds to a

I

perturbatively. Because of the N-fold degeneracy
we need to solve N secular equations. ' To lowest
order

(E~ E~)a +=gJ+ j 4—' 4 ' j' +a~++ ++ j P" 8" j') ajE+ 4 p i Eg A p

(2.42a)

1
(E~ E~)a; =g —(j 4 j' -aJ + —j A" A" j'+aJ

J E~ —Wp J Ere —A p

I

The exciton motion thus goes in three steps

(2.42b)

Px=Xa,'lj&'+Xa, lj&

is the eigenstate with energy Ez.
The intermediate state on which 1/E —A 0

operates is either the neutral ground state or a dou-

bly excited state. Two excited states
l
j)+ and

lj ') have an energy 2ECT ifj 'Qj +2. Ifj '=j +2
the energy cost is only ECT+2H. A dipole at site j
will polarize the stack nearby making it easier for
another dipole to be formed. By assuming that

E~ E~ one finds

2

(E& EcT )a,+= (a—,++2+a,+ 2)—, (2.43a)
2H ' 2

E; =Ecr cosk;+O(r'/H —),H
(2.44)

(1) DAD+A DADA,

(2) DAD+A D+A DA,

(3) DADAD+A DA,

similar to molecular excitons. ' In fact, for a strong-

ly dimerized chain, the Frenkel excitons would
reduce to molecular excitons.

In Eqs. (2.43), terms of order r /Ecr were ig-
nored since EcT-1 eV and H -0.1 eV. The result-

ing equations can be solved by plane waves and the
eigenvalues are

7-2

(Ex ECT)a = (aj—+2+aj 2) .—(2.43b)E cT j —
2H J + k; =(2m. /N)i, i =1, . . . , N/2 (2.45)
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both for the
I
j)+ and the

I
j) excitation.

In the ionic phase the eigenvalues are

2

E;=ECT — cosk;+O(r /I H
I

) .

Es-4J
I p———,

I

—J . (2.47)

If we fix H and increase r, then p= —, when r ~ J/2,
I

(2A6)

If we now fix H and increase r, then the perturba-
tion breaks down. This can be understood as fol-
lows. The binding energy Es of the bound state is
the difference in energy of a free particle-hole pair
and an exciton:

and E~ becomes negative. The bound state is lying
above the band edge. The radius of the exciton will

become large compared to a lattice constant. The
bound state, now similar to a %annier exciton,
should be constructed from extended Hartree-Fock
states. ' The wave function of a particle with

momentum k& in the upper band and a hole k2 in

the lower band is

I
ki, k2 & =4,4, 11jlHF & . (2.48)

To find the particle-hole excitation energy E~ we

diagonalize H in the subspace
I
ki, k2). We will

find that Ez is close to the band gap if J«v and

we can ignore mixing with the ground state. Thus
we need to solve

EKE(ki, k2)= g (ki, k2 IH Ik„k2)it1K(k, ,k2)
k), k2

[EHF+E+(k1 ) —E (k2)]/K(k„k, )

[(1—uk+Uk+, uk uk, }
k), k2

k ) +k2 ——k)+k2
+2 +2 2—cos(k, —k2)(u~~ —vk+, )(uk2 —Uk, )16K(k', ,k2 )

(2A9)

(2.50)

with E—+(k) and uk
—+,uk-+given in Eqs. (2.30)

(2.32). For small H and r &J/2, u;+-= 1 and U;-+=0
so

m =A' ( IH
I
+2J

I p I
)/4r p a

(2.54}

k), k2

k) +k2 ——k)+k2

[ 1 —cos(ki —k2)]

X1(K(k'i, k2 )

EK PK(kl ~k2 } [EHF+E (kl } E (k2)]0K(k1 ~k2 }

with p given by Eq. (2.34).
This is the effective-mass equation for a Wannier

exciton with a short-range interaction. Separating
out the center of mass motion, one finds a
Schrodinger equation for a particle with reduced
mass m/2. There is a bound state with binding en-

«gy

(2.51)

and the strongest attraction occurs if ki —k2-m. . If
we define

ki ———+ki,
2

(2.52a)

4ma J

and wave function
1/2

P(xF —xs )= J2ma

(2.55)

7T
k2 ————+k2,

2
(2.52b) 2m Jax exp —,I xF —xa

I

with k~ and k2 small, then the effective Hamiltoni-
an is (2.56)

Heff EHF+ 2
I
H

I
+4J

I p ——,

I iri k 1 1 flak 2+— +— —2Ja5(xF —xs ),
2 ma 2 ma

The charge-transfer excitation energy is

EcT=(
I
H

I
+2JI p , I

)[2—(J/rp}'] .——

(2.57}

(2.53) The charge-transfer excitation spectrum is shown in
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chloranil it could occur for other mixed-stack com-
pounds. The localized charge-transfer states, dis-
cussed in this section, will mix into the ground state

1
and further reduce the order parameter

~ p ——,
~

.

III. INTERACTION BETWEEN PLANES
AND THE DEVIL'8 STAIRCASE

FIG. 3. Charge-transfer excitation spectrum. The
lower band E (k) is filled; the upper band E+(k) is emp-
ty. The lowest-lying charge-transfer excitation creates an
exciton with binding energy E& indicated by the dotted
line.

N N

4 =H g S(n) Jg—S(n)S(n+1) . (3.1)

In the limit where ~ is small compared to J the
mixing terin in (2.10}plays no role except for reduc-
ing slightly the value of

~
(S, )

~

in the ionic and
neutral phases. The model reduces to an antifer-
romagnetic Ising model in a field. For simplicity
we introduce ferromagnetic spins

S,(n)~(—1)"S(n):

n=1 n=1

Fig. 3. For r»2J the effective mass becomes
small and the bound state lies just below the empty
band. The size of the bound state now becomes
very large. However, when this happens, one really
should use the Coulomb interaction. Then, there
will be an infinite series of bound states just below
the empty band.

Finally, when r is fixed and H goes to zero, we

approach the neutral-ionic transition and the per-
turbation series for the bound-state energy [Eq.
(2.46}] again breaks down. At H=O, the charge-
transfer excitation energy is given by the exact solu-

tion, Eq. (2.12). So EcT goes through a minimum
at H=O. The charge-transfer excitation for J»r
now corresponds to changing a string of m D-A

molecules from neutral to ionic. The excitation en-

ergy

Now S(n}=—, is the ionic state, S(n)= ——, is the
neutral state, and the energy per site for these states

A =HS —JS', S=+—, . (3.2)

It has been argued by Hubbard and Torrances that
the interactions between stacks within a-c planes are
attractive whereas the interactions between a-c
planes are repulsive (Fig. 1), and a-c planes should
always be completely ionized or completely neutral.
The energy per spin in the absence of interplane in-

teraction will again be on the form (3.1} where the
summation includes interactions between stacks,
and the energy per spin is given by (3.2).

The energy of a system of planes is

~= gHS, + , g J(i —j)(S;—+—,)(S,+ —,),

ECT J+2~H
~

m (2.58) (3.3)

is independent of m at the transition. So just as the
case for r &J/2, the size of the bound state diverges
as H goes to zero.

So far we considered only neutral excitations.
The energy cost of adding a single charge to the
system is E+(k) [Eq. (2.32)). Since E+(n./2) is

1
zero for p= —,, we find that for r &J/2 and H =0,
the mixed stack must become metallic at the transi-
tion. Although this does not happen for TTF

I

where J(i —j) is the Coulomb interaction between

planes i and j. This is exactly the Ising Hamiltoni-
an investigated by Torrance and Hubbard, and also
by Safran' in a study of staging in intercalation
compounds.

To estimate J(i —j) let us calculate the Coulomb
interaction energy between a mixed stack of alter-
nating ions with period a /2, and a charge e located
at a distance r from the stack

J(i —j}=e g-=2 1 1

[r +(na) ]' Ir +[(n+ —,)a) )'

=2e g J dn[1+( —1) +']
2 2,~2

— g [1+.( —1) +']Ko 2irm-
[r +(na) ]'~ a

(3.4)
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8e rJ(i —j)— Xo 2m. —' Q

8e 2

(a /4r ) exp —2m.—1/2

a a
(3.5)

Since r-a for nearest-neighbor stacks, and E0 de-

cays exponentially, it is sufficient to include only
the first term in the expansion (3.4) and represent
the interaction with a given plane with the interac-
tion with the nearest stack within the plane:

2q=—

4
q =

3q=—

Iq=-
l5

(rl = 4,5; r2= 9; r&=I3, l4. ---)

tlltlltl lltll
"I 3' 2

= 6,7 r&= 9,IO r4=13--. )

~ ~ ~ ~

(rl= I 2 r2= 2 3 r)= 4-. . - )

~ ~ ~ ~

(rl=ls r2 3O . . )

The nearest-neighbor interaction J(1)-0.005e /r
and is thus very small compared with the in-plane
interaction J.

The ground state of (3.3) for a given (S;) was
studied by Hubbard. ' The ground states are quasi-
periodic arrangements of spins. The fraction of
"up" spins (or ionized planes} may assume any ra-
tional value, m /n. Figure 4 shows some configura-
tions. Let X; denote the position of the ith up spin,
and let X denote the nearest-neighbor distance to
the following up spin, X =X;+&—X;. Similarly,
X~ is the pth-nearest-neighbor distance

p 0 0X~=Xg+p —X; .
For a given value of q it can be shown that

X; =r& or r&+1,1

(3.6)

X~=r& or rz+1,
where r& and r&+1 are the two integers nearest to
np/m. For np/m integer, Xt'= np/m

The sum of all pth-nearest-neighbor distances

FIG. 4. Ground-state configurations for (3.3). The
fraction of ionized planes is given by q.

must necessarily fulfill the relation

(3.7)

where N is the total number of spins (planes). This
is all we need to know to exactly calculate the sta-
bility intervals for all possible rational periods.

Consider the situation where the chain is de-
formed into a loop of length N, and q =m/n This.
phase is stable as long as it costs energy to flip one
up spin, or to flip one down spin. We calculate first
the energy cost of flipping one down spin (i.e., ion-
izing one more plane). In the new configuration
(3.6} and (3.7) still hold. Hence rz pth-nearest-
neighbor distances rz+ 1 will be replaced by rz+ 1

pth-nearest-neighbor distances r& in order to keep
Eq. (3.7) constant, and the total change in energy
will be

U(l —+ T)= H+(ri+1)J(ri) —ri J(ri+1)+(r2+1)J(r2)—r2J(r2+1)+ .

+nJ(n —1)—(n —1)J(n)+(r +i+1)J(r +, ) r+iJ(r +i+—1)+
+2nJ(2n —1)—(2n —1)J(2n)+ (3.8a)

where r~ =n, r2~ 2n, . . . ha——s been inserted. Similarly the energy cost of flipping one spin from up to down
ls

U(3 ~1)= H (ri+1)J(r&)—+r,—J(r, +1)—(r, +1)J(r2)+r2J(r, +1)+ . -.
+nJ(n+1) —(n+1)J(n) (ran+i+1)J(—r~ ~i)+r~ ~iJ(r~+i+I)+
+2nJ(2n +1)—(2n +1)J(2n)+ (3.8b)

The value of H, Hi (m /n), for which U( t~ t ) becomes zero defines the upper limit of the stability interval
for the phase q =m/n. Similarly, the value H2(m /n), where U( t ~ l) becomes zero gives the lower limit of
stability. The number r„can be calculated in a trivial way, so (3.8a) and (3.8b) allow us to calculate the stabi-
ilty of all possible phases. The stability interval of the configuration with q =m/n is



27 NEUTRAL-IONIC TRANSITIONS IN ORGANIC MIXED-STACK. . . 465

—H2 ———nJ(n + 1)+nJ(n —1)—2nJ(n)
n n n

+2nJ(2n +1)+2nJ(2n —1)—4nJ(2n)+

+pnJ(pn +1)+pnJ(pn —1)—2pn J(pn)+ ~ ~ ~ (3.9)

~(m /n) is positive and finite for all values of m

and n Note. that this width is independent of the

numerator m. We have thus explicitly shown that

q(H) form a complete devil's staircase and we

have calculated the stability intervals of all phases.
The neutral phase is stable for H & 0; the complete-

ly ionized phase is stable for

H( —J(I=——g J(i) .

Figure 5 shows the resulting ionicity versus H. An

interaction J(i)=e ' was chosen. Only phases that
are stable in an interval bH/J (1)& 10 are shown.

For J(i) given by (3.5) even fewer phases will be

visible. The total width of the mixed phase is

~-0.005e /a-0. 005 eV. Since a variation of
b, T=200 K corresponds to LH-0. 1 eV for TTF
chloranilP the width of the mixed phase in tempera-

ture space is —10 K. This is in fair agreement with

the observed smearing. The problem lies in the

shape of q(T). The theoretical curve is steep near

the boundaries to the completely ionic and to the

I

I-

I—
I

I

I

I
0--

05--

I ON I C

I

I

I

I

I

Jo

NEUTRAL

FIG. 5. Charge transfer vs effective field for ~=0 and

repulsive interaction between planes. The fraction of ion-

ized planes q exhibits a complete devil's staircase, locking

into all possible rational values. Only the phases which

are stable in an interval ~/J (1)& 10 are shown.

Note that ~ is independent of the numerator m.
If we make the ansatz that the interaction J is of in-

finite range and convex,

J(i+1)+J(i —1)—2J(i) &0,

I

completely neutral phases, and locks into the phase

q = —, over a substantial interval. Experimentally,

the curve has the opposite shape: It is rounded near

the boundaries, steep in the middle. This looks

more like the impurity smearing that often obscures

first-order transitions. It might well be that the

small repulsive Coulomb interaction is overcome by

other attractive forces; in this case we would expect

a sharp first-order transition for the ideal system.

IV. CONCLUSION

~e may summarize the results of the previous

sections as follows. Three parameters are needed to
describe neutral to ionic transitions.

(i) The chemical potential difference H between a
neutral donor-acceptor pair and an ionic pair. It
measures how close we are to the transition.

(ii) The Coulomb interaction J between ionic

pairs. It is a measure of the "collective" nature of
the transition.

(iii) The overlap integral r between the wave

function of a neutral pair and that of an ionic pair.
It is a measure of the importance of quantum fluc-

tuations.
In Sec. II we studied single stacks of donor and

acceptors and we found that for 2r less than J a
first-order transition occurs at H=O with a discon-

tinuous change in the degree of charge transfer p.
The appropriate order parameter is p ——,. For 2~

larger than J, the transition is continuous while at
H =0 the stack becomes metallic. The lowest-lying

electronic excitation is always a bound charge-

transfer state. For 2~ larger than J, the bound state

becomes mobile and extended near H =0. In Sec.
III we included, for &=0, the long-range interstack
Coulomb interaction and found a sequence of par-

tially ionized phases between H=0 and
H= —g, J(i)

This description has some limitations. We have

ignored the spin degree of freedom. In the neutral

phase every donor has two electrons with paired

spins in its highest occupied orbital. In the ionic

phase both donor and acceptor have a single elec-

tron in their highest occupied orbital. Neighboring
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spins are correlated antiferromagnetically with an
exchange constant of order r /EcT. From this we
expect a substantial increase in magnetic suscepti-
bility in the ionic phase. This was not observed,
possibly due to donor-acceptor dimerization. We
also ignored double charge-transfer excitations, re-

lying on strong on-site Coulomb repulsion.
One may further question to what extent the

one-dimensional description of Sec. II is valid.
From the polarization of the infrared absorption it
is known that the charge-transfer only occurs along
stacks. Coulomb interaction, however, gives rise to
interstack interaction and its effect was discussed in
Sec. III for v=0. For r ~ 2J, the Coulomb interac-
tion will cause the metallic phase at H=0 to disap-
pear at sufficiently low temperatures. 2'

Beside Coulomb interaction there is also the pos-
sibility of hydrogen bonding. This would coun-
teract the Coulomb repulsion between a-c planes
and perhaps remove the partially ionized phases.
The magnitude of the hydrogen bonding interaction
is not known.

In comparing our results with experiment, care
must be taken that no charged impurities are
present. A computer simulation of their effect
showed that they locally polarize the stack and
thereby smear out the phase transition. They also
gave rise to a large increase in the dielectric con-
stant near H=O.

ACKNOWLEDGMENTS

This project would not have been possible
without the kind assistance from several colleagues.
We thank C. S. Jacobsen, J. J. Mayerle, G. Gruner,
and P. Horn for discussing and communicating
published and unpublished experimental results on
charge-transfer organic compounds. We further
thank V. Emery and A. Zangwill for useful discus-
sions and J. Kommandeur for suggesting this work.
This work was supported by The Division of Ma-
terials Sciences, U.S. Department of Energy under
Contract No. DE-AC02-76CH00016.

*Present address: IBM Thomas J. Watson Research
Center, Yorktown Heights, N.Y. 10590

Permanent address: H. C. Orsted Institute, Universi-
tetsparken 5, Copenhagen, Denmark.

For a review on charge-transfer molecular crystals, see
Z. G. Soos and D. J. Klein, in Treatise on Solid State
Chemistry, edited by N. B. Hannay (Plenum, New
York, 1976), Vol. 3.

J. B. Torrance, J. E. Vazques, J. J. Mayerle, and V. Y.
Lee, Phys. Rev. Lett. 46, 253 (1981).

J. B. Torrance, A. Girlando, J. J. Mayerle, J. I. Crowley,
V. Y. Lee, P. Batail, and S. J. LaPlaca, Phys. Rev.
Lett. 47, 1747 (1981).

4C. Ayache, Lagnier, and J. B.Torrance (unpublished).
5P. Batail, S. J. LaPlaca, J. J. Mayerle, and J. B. Tor-

rance, J. Am. Chem. Soc. 103, 951 (1981).
G. Gruner (private communication).

7H. M. McConnell, B. M. Hoffman, and R. M. Metzger,
Proc. Nat. Acad. Sci. USA 53, 46 (1955).

SJ. Hubbard and J. B. Torrance, Phys. Rev. Lett. 47,
1750 (1981).

9J. I. Krugler, C. G. Montgomery, and H. M. McConnell,
J. Chem. Phys. 41, 2421 (1964).
P. J. Strebel and Z. G. Soos, J. Chem. Phys. 53, 4077
(1970).

V. Y. Krivnov and A. A. Ovchinnikov, Fiz. Tverd.
Tela (Leningrad) 15, 172 (1973) [Sov. Phys. —So1id
State 15, 118 (1973)].

~2S. A. Safran, Phys. Rev. Lett. 44, 937 (1980).
' B. Mandelbrot, Fractals: Form, Change and Dimension

(Freeman, San Francisco, 1977).
J. Hubbard, Phys. Rev. B 17, 494 (1978). In Hubbard's
notation J= V~ —V2.
R. M. Metzger, J. Chem. Phys. 57, 1876 (1972).
L. R. Walker, Phys. Rev. 116, 1089 (1959); J. des
Cloizeaux and M. Gaudin, J. Math. Phys. 7, 1384
(1966); J. D. Johnson, S. Krinsky, and B. M. McCoy,
Phys. Rev. A 8, 2526 (1973).
This method was used for the Heisenberg antiferromag-
net by L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 43, 960
(1963) [Sov. Phys. —JETP 16, 685, (1963)].
See, for instance, P. EV. Anderson, Concepts in Solids
(Benjamin, New York, 1963), p. 132.

See, for instance, V. J. Emery, in Highly Conducting
One-Dimensional Solids, edited by J. T. DeVreese, R.
P. Evrard, and V. E. vanDoren (Plenum, New York,
1979).

For a discussion on the devil's staircase see, for in-
stance, P. Bak, Rep. Prog. Phys. 45, 587 (1982) and
references therein.
This was shown for the H=O spinless fermion Hamil-
tonian by R. A. Klemm and H. Gutfreund, Phys. Rev.
8 14, 1086 (1976).

2J. J. Mayerle, J. B. Torrance, and J. I. Crowley, Acta
Crystallogr. Sect. B 35, 2988 (1979).


