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The dynamical structure factor of electrons in disordered systems is found to consist of
two parts: One part is a disorder-induced elastic contribution with some form factor S,(q);
the other one is related to the density relaxation spectrum. We evaluate S,(q) in perturba-
tion theory and the density relaxation within the self-consistent current relaxation theory for
two- and three-dimensional systems. For short-range potential fluctuations we find a peak

in the static structure factor S(q) at g =2k¢.

I. INTRODUCTION

The dynamical structure factor S(q,w) of elec-
trons with wave vector q and frequency o (Ref. 1)
can be measured, for instance, by x-ray or light
scattering. These techniques have been applied to
investigate a great variety of physical phenomena
(for a review see, e.g., Ref. 2). In particular,
Coulomb-interaction effects in good conductors
have been studied and a peak structure in the static
structure factor S(q), which is the frequency in-
tegral of S(q,w), for ¢ about twice the Fermi
momentum kg, has been found.>

In this paper we show that in disordered systems,
characterized by a random potential, S(q) has a
nontrivial structure even for noninteracting elec-
trons. In particular, there is an elastic contribution
to S(q,w) with form factor S,(q). Interpreting
S(q,w) as a scattering cross section,? this elastic
peak reflects the indirect coupling of the radiation to
the random potential via the conduction electrons.
The elastic peak describes the analog of the scatter-
ing from static lattice distortions due to crystal im-
perfections.* A similar impurity-induced elastic
peak was discussed in connection with magnetic
scattering by Sacchetti.’ In addition to this peak
there is the usual contribution given by Kubo’s den-
sity  relaxation function ®"(q,w) via the
fluctuation-dissipation theorem.® To calculate
®"(q,w) approximately we use the self-consistent
current relaxation theory (SCCR).” To study the in-
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fluence of the elastic peak on S(q) we apply a
lowest-order calculation for S,(q). In this way a
disorder-induced peak in S(q) at g =2k is found.

The shortcomings of the perturbation theory for
S.(q) can be overcome by applying the coherent-
potential approximation®® (CPA) to this quantity.
The resulting formulas, which yield the correct
weak- and strong-coupling results for an Anderson
Hamiltonian of disordered conductors'® are given in
the Appendix.

II. THE ELECTRONIC STRUCTURE FACTOR

Let us consider a d-dimensional zero-temperature
gas of noninteracting, spinless electrons of density n.
The density operator for wave vector q is given by

)=Sab -
pPA)=2ay_5,0¢ 5.
K

where @ and a' are the usual annihilation and
creation operators for momentum eigenstates. The
dynamical structure factor is given by’

S(@e)= [ dte™{p"(@,0p(@) la/n . (1)

Here the angular brackets denote the quantum-
mechanical expectation value and the notation [ 1,,
denotes ensemble averaging. We decompose the
density operator into its mean value and fluctua-
tions:

p(@)={p(q)) +8p(q) .
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Application of the fluctuation-dissipation theorem
yields

S(q,0)=278(»)S,(q)+(2/n)wb(w)?"(q,0) ,
(2a)

where :
Se(@)=[{p"(@){p(@)) /n]y (2b)

and ®"(q,w) denotes the absorptive part of Kubo’s
density relaxation function.®

For explicit calculations we choose the Edwards
model'!  for electrons with Fermi energy
€x=#’k}/2m in a random potential U(q), specified
by the Hamiltonian

H=3[e(K)—erlaplap+ T UGK(G), B
v T

where
e(kK)=#k%/2m

with the effective electron mass m. Without loss of
generality the random potential can be assumed to
have a zero mean value: [U(q)],,=0. Applying
standard perturbation theory then yields for S,(q)
in the Born approximation, for g0,

S.(@)=[| U(@) | lavg5(q)/n
=¢;Si(q) | u(q) | %g5(q)/n . @)

Here ¢; is the impurity concentration, S;(q) is the
impurity structure factor, and u(q) is the impurity
electron pseudopotential. go(g) is the wave-
number-dependent compressibility of the free-
electron gas; for d =3 gy(g) is the Lindhard func-
tion, while for d =2 it has been reported by Stern.!?
The preceding result is completely analogous to the
corresponding formulas worked out before in con-
nection with the lattice-distortion problem.'

If the random potential is so strong that the sys-
tem undergoes an Anderson transition to an insula-
tor,!° the density relaxation spectrum ®"(q,w) exhi-
bits a zero-frequency peak due to the nonergodicity
of the density fluctuations.” However, this feature
of the Anderson insulator has no direct effect on the
dynamical structure factor, as can be seen from Eq.
(2a). The elastic peak in S(q,w) appears no matter
whether the system is a conductor or an insulator.
In contrast to the usual Bragg peaks in crystals the
form factor S,(q) of this disorder-induced elastic
peak is a continuous function of momentum. By
coupling to the random potential the electrons can
transfer momentum without transferring energy.
Thus a test field, probing S(q,w), can transfer
momentum without changing energy. A test parti-

cle can be scattered elastically by the static electron-
ic density fluctuations created by the impurities.

ITII. RESULTS

According to Eq. (2a) the static structure factor
consists of two parts:

S(G)=5.(q)+Si(q) (5a)
with
Sin(@)= f0°° dor '0®"(g,0)/n . (5b)

We characterize the random potential by a strength
parameter U and a momentum cutoff g:

[U@) [ lay=U(2m)%d /(S198)10(g0—q) ,
(6)

where S; is the surface of the d-dimensional unit
sphere. To calculate S(q) we use the SCCR. For
given U and £=2kr/q,, ®"(q,w) can be calculated
by solving a transcendental equation.” %5

For a result shown in Fig. 1 we have chosen
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FIG. 1. Static structure factor in d =2 and d =3 for

£=0.5 and U/U,=0.8. The dotted lines are the free-

electron results and the dashed, dashed-dotted, and solid
curves represent S;,(q), S.(q), and S(q), respectively.
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£=0.5 and U/U,=0.8 where U, is the critical cou-
pling for the metal-insulator transition. Since U is
to be interpreted as a pseudopotential, it is reason-
able still to rely on the lowest-order result for S,(q)
for the coupling chosen.

For free electrons interference effects cause the
structure factor to exhibit a nonanalytic small
wave-number dependence

Sin(q)=sq/kp

with s =2/7 and s=% for d =2 and d =3, respec-
tively. Owing to momentum relaxation the excita-
tion spectrum ®"(q,w) differs drastically from the

one for free electrons. For small wave vectors a
Green-Kubo identity

@"(q,0)=—pr/[0+¢*K(0)]

holds, where pf is the density of states at the Fermi
level, pr=go(qg =0), and —iK(w) is the frequency-
dependent diffusiveness. For U < U, one gets

K(o—0)=iD
with diffusiveness D, while for U> U, one finds

D =0 and K(0—0) xw.” Hence S;,(q) approaches
zero with horizontal slope:

Q
Sin(g—0)=(pp/mn)q? Dln{[1+(Q/q2D)2]l/2}+(1/pp)[fo do o '[K"(w)—pFD]

Here Q>0 is an arbitrary auxiliary frequency; for
U>U, one can choose 2=0. According to the
SCCR S;,(q) is smaller than the corresponding
free-electron expression for all values of ¢g. S.(q)
provides a broad background for g <2kp dropping
to zero for g > 2ky, and this leads to a peak in S(q)
at g=2kr. This peak is more pronounced for d =2
than for d =3 due to the different behavior of g,(q).
The small oscillation in S;,(q =2kf) is an artifact of
the approximations since it stems from the
nonanalyticity of go(q) used in the SCCR. For
g—0 the structure factor is given by S,(q) alone;
this leads to a nonzero value of S(g—0).

The anomalies shown in Fig. 1 are of comparable
size to the ones discussed for interaction effects.’
Therefore we consider it worthwhile to measure
S(q) for disturbed conductors. The model and the

+ fﬂwdwa)_lK"(a))” . (7

parameter value chosen to get the figure appear
reasonable, since rather delicate conductivity mea-
surements have been analyzed successfully on their
basis.!®

If the parameter £ was chosen to be greater than
unity, the peak in S(q) would occur at g=go. In
this case the peak strength strongly depends on the
model potential, and the peak will be absent if there
is no sharp cutoff in [ | U(q) | *],.-

ACKNOWLEDGMENTS

The author would like to thank Dr. G. Abstreiter,
Dr. W. Gasser, and Professor F. Schwabl for discus-
sions. This work was supported in part by the
Deutsche Forschungsgemeinschaft.

APPENDIX: CPA EQUATIONS FOR S.(q)

For the quantity S.(q) given by Eq. (2b) there is an exact representation

eF -1 GF —1 ” "
nS,(q)= f_mdw,ﬂ' f_wda)z‘tr _Z [Gi'—a’/z,i'Jra’/z(‘"l)G"+—’/z,“'_—'/z(‘°2)]av- (8)
% P+4d/27-1

Here the G’ are anticommutator Green’s functions

Gt pl@=y [ dre(lagay")), oa

with the Hilbert-Stieltjes transform for complex fre-
quency z,

Gy 3= [ dor™'G% +(w)/(w—2) . (9b)

l
For knowledge of S.(q) it is sufficient to know the
function

Hy =(G52y,2,)

=[Gt _q,5-327Cs 327 +3, @)
(10)
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for all z,,z,, since

[GT('—'E]’/Z 'l‘(’+a’/2(21 )G$+—El»/2'i-_a’/2(22)]av

J

71.)/z(fa’—k;zl,zz) .

(11)

(K+T7-9)2(X+F+

For applying the CPA we use the Anderson Hamil-
tonian,'® given by Eq. (3), with the dispersion of
€(k) for a simple cubic lattice and

-

U@=01/M3e' T Fre, . (12)

Here n labels the N lattice sites I—i,, and the €, are
random site energies with a distribution function
P"(e) whose Hilbert-Stieltjes transform shall be
denoted by P(z).

The coherent-potential  approximation for
Hyp 2(4;21,2;) (Ref. 9) results in an integral equa-
tion

H?’3(6;21,22)=G(1—{—ﬁ/2,zl)G(f+?j/2,zz) 5;’,3+L(21,22)(1/N)ZHT,3(3;21,22) , (13)
1
where
G(K,2)=—[z—e(k)+2(2]", (142)
L(zy,23)=[t,(z1)t,(25) 1a /[ 1 + [ (21 )15 (25)7F (2 )7 F (25)]ay] » (14b)
t,(2)=[€,+2(2)]/{1+[€, +2(2)]mF(2)} , (140)
F(2)=(1/7N) 3, G(K,2) . (14d)
K
The self-energy 2(z) is to be determined from the CPA equation®
F(z2)=P(—1/mF(z)—Z2(2)) . (15)
The separable integral equation (13) can be easily solved to yield
Hy 5(g521,22)=83 3G(K—4/2,21)G(K+T/2,2)+ G(K—4/2,2/)G(K +§/2,2,)
X {(1/N)L(zy,25)/[1—L(z,,29)11(q;21,2,)]}
XG(P—1G/2,2,)G(P+G/2,z;) (16a)
with
1(;21,2,)=(1/N) 3 G(K=4/2,2)G(K+/2,2,) . (16b)
K

Substitution of Egs. (16) into Eq. (11) and evaluation
of the discontinuities across the real axis yields
S.(q) by Eq. (8). Similar CPA results have been ob-
tained before for magnetic scattering.> Unfortunate-
ly, we could not find a practical procedure to evalu-
ate the eight-dimensional integral entering Eq. (8).

Expanding the CPA equations up to the order
[|U(§)|*lay=(1/N)[€: ], yields again the lowest-
order result, Eq. (4), while in the limit of completely
localized electrons one gets the von Laue formula
for diffuse scattering in solid solutions,*

Se(d)=1—-nV, (17)

where V is the volume of the unit cell. So the CPA
provides us with the correct result for S,(q) in both
the weak- and strong-coupling limits.

We note in passing that Egs. (16) also determine
the generalized compressibility in CPA:

€
g(q)= f_:d“’"_l_z H%,.ﬁ(ﬁ;m,w). (18)
kK, P

In the weak-coupling limit at the lower band edge
the resulting expression for g(q) is identical to the
one given by de Gennes.!” We note further, that for
a semicircle distribution,

P"(e)=[(27[€],,)] (4[€*]y— €)' 2O(4[ €],y —€D)

the CPA reduces to the much simpler self-consistent
Born approximation. This holds for the one-particle
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propagator G(K,z) (Ref. 18) as well as for the two-
particle function

Hp 5(Qz1,22) -

The latter statement can be easily proven from our
Eq. (14b), which, for a semicircle distribution,

reduces to

L(ZI’ZZ):[GZ]M .
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