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A formalism for self-consistently calculating the response of electrons and positrons to
atomic defects in solids is presented. The formalism can be used with either the Green’s-
function or supercell method for calculating defect characteristics, and is of general applica-
bility. With the use of this formalism and the self-consistent pseudopotential scheme within
a supercell, the electronic structure and positron states and annihilation characteristics asso-
ciated with the monovacancy and divacancy in aluminum have been studied. The sensitivity
of the calculated monovacancy electronic structure and formation energy to the type of ion-
ic pseudopotential used is also examined. Finally, the possibilities for using positron-
annihilation spectroscopy to study the electronic structure of vacancylike defects are con-

sidered.

I. INTRODUCTION

The study of the electronic structure of atomic de-
fects in solids, besides being interesting and chal-
lenging in its own right, is important to the estab-
lishment of a fundamental understanding of the
defect-related characteristics of solids. A consider-
able amount of theoretical and experimental effort
has, therefore, been expended in trying to under-
stand the structure of defects, both qualitatively and
quantitatively. Realistic electronic structure calcu-
lations of atomic defects have recently become pos-
sible because of the advent of the supercell'™* and
the Green’s-function®~7 methods. Such calculations
can yield detailed information about atomic defects,
which in conjunction with experimental studies can
provide valuable spectroscopic information about
the nature of the defect state. In metals, few experi-
mental techniques are available for detailed spectros-
copy of defects, and only positron-annihilation spec-
troscopy (PAS) is generally applicable as a sensitive
localized probe of vacancylike defect structures.®’
It is therefore desirable to complement PAS experi-
mental studies with theoretically calculated
positron-annihilation characteristics of specific de-
fects, in order to allow for the possibility to obtain
quantitative detailed information about the nature of
such defect states in metals from PAS. In most oth-
er experimental techniques, a single number (e.g.,
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the defect formation energy in an investigation of
vacancy formation) is essentially all that becomes
available for comparison with theory. This is an un-
desirable situation, first of all because of the depen-
dence on a single number, and furthermore because
it is extremely difficult to calculate such defect
parameters as the formation energy from first prin-
ciples with sufficient accuracy,>* and the results
may not necessarily be a sensitive measure of the na-
ture of the defect in any event.

The positron-annihilation characteristics of a de-
fect cannot be directly deduced from its calculated
electronic structure in the absence of the positron,
because the positron perturbs its electronic environ-
ment. Calculations of the electronic structure of de-
fects, therefore, have to be complemented by
separate calculations of their positron-annihilation
characteristics, including electron-positron correla-
tion effects, in order to be able to make complete use
of the experimental information that can be made
available regarding defects. A generalized self-
consistency scheme for calculating positron-
annihilation characteristics has been developed re-
cently,’® based on a two-component density-
functional formalism; the scheme is of general appli-
cability and can be incorporated into any electronic
structure calculation method: for example, either
the supercell or Green’s-function method. In this
paper the application of this formalism to atomic
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defects is discussed.

Results of a supercell, self-consistent pseudopo-
tential calculation of the electronic structure and
positron-annihilation characteristics of a monova-
cancy and a divacancy in aluminum are presented in
this work. A brief report of the electronic structure
work has been presented previously.* In Sec. II, the
electronic structure calculations are discussed, their
applicability to other systems is also considered, and
the results of these calculations on aluminum are
presented. In Sec. III, the formalism for calculating
positron-annihilation characteristics of defects, in-
cluding electron-positron correlation effects, is
presented. In Sec. IV, this formalism is applied to
the two specific defects. The results are then
analyzed in terms of being able to obtain detailed
electronic structure information regarding defects
from positron-annihilation experiments.

II. ELECTRONIC STRUCTURE

The environment of the vacancy defects in alumi-
num was simulated by a 27-atom-site face-centered-
cubic supercell,? and a self-consistent pseudopoten-
tial scheme was applied to this superlattice in order
to obtain the electronic structure.>* The supercell
approach was chosen here in preference to the
Green’s-function method, because, in a metal, true
self-consistency is difficult to achieve with the
Green’s-function scheme.!! The electronic structure
of a monovacancy in aluminum had been calculated
previously using an empirical ionic pseudopotential.’
In the present work an ab initio, norm-conserving,
ionic pseudopotential* has been used, since the ab in-
itio pseudopotential is better suited for doing self-
consistent calculations.’> Comparison of the results
of the two calculations yields valuable information

about the sensitivity of the calculated properties to
the potential.

A. Bulk properties

Before embarking on the defect electronic struc-
ture calculations with the ab initio potential, the
bulk properties of aluminum were calculated using
each of the potentials. The results of the calcula-
tions are compared in Table I. It is seen that the ab
initio potential yields results in much better agree-
ment with experimental observations than does the
empirical potential. A plane-wave basis set, with
~50 plane waves per atom, was used for both calcu-
lations; an additional ~ 50 plane waves were includ-
ed via the Léwdin perturbation scheme.’ The total-
energy calculation is described in detail in Ref. 3
and more briefly in Sec. IIB. The Brillouin-zone
samplling was done using 89 k points in the irreduci-
ble ;th of the zone. The tolerance criterion used
for the self-consistency scheme was 10~ Ry. These
conditions were essential for obtaining well-
converged results for the bulk properties. It is ex-
pected that to obtain the same type of accuracy in
total-energy calculations in the supercell, similar
conditions would have to be maintained. This is,
however, near impossible because of computing-time
restrictions. For a 26-atom supercell ~ 1300 plane
waves (i.e., 50 plane waves per atom) would be need-
ed to expand the wave functions, which would imply
diagonalizing a matrix of that order, a formidable
task. This basis-function restriction is a major ob-
stacle of the supercell method with regard to total-
energy calculations. However, it is apparent that the
electronic structure can be calculated accurately
with less stringent requirements.

TABLE I. Calculated bulk properties of aluminum at 0 K compared to experiment (extra-
polated to 0 K) and results of other theoretical calculations. In Ref. 13 an ab initio potential
similar to the one used here was used, but more stringent convergence requirements were im-

posed.
Lattice constant Bulk modulus
(A) (102 dyncm™?)
Ab initio pseudopotential
(i) Present calculation 4.047 0.99
(i) Reference 13 4.010 0.715
Empirical pseudopotential
Present work 3.870 1.20
Full potential
Reference 14 4.015 0.80
Experiment
Reference 15
(a) 4.031 0.722
()] 4.045

()

0.88
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FIG. 1. Spherical averages of the components of the
monovacancy potential Vg experienced by the electrons.
The screening potentials are denoted by V. and the Al
ionic potentials by V;,,. The results of the ab initio nonlo-
cal pseudopotential calculation (a), showing the s and p
components separately, are compared to those of the
empirical potential calculation (b). Ve, represents the
empirical starting potential used in both of the calcula-
tions.

B. Monovacancy

The details of the defect electronic structure cal-
culations are also described in Ref. 3. The same
number of basis functions (~ 500 plane waves) were
used here for the ab initio pseudopotential calcula-
tion as were used in the previous calculations, and
the same convergence criteria were also retained.
Furthermore, the identical empirical starting poten-
tial for the vacancy [V.m, in Fig. 1(b)] was used in
each of the calculations. The resulting spherical
averages of the monovacancy potentials, the differ-
ence in potential between the supercell containing a
monovacancy and a defect-free supercell, for the
empirical and ab initio potentials are shown in Fig.

1. The ab initio potential is nonlocal (i.e., angular
momentum dependent). The screening parts of the
two defect potentials are seen to be very similar.
The essential difference between the two sets is the
nonlocality. The local ionic potential is seen to be
close to, although not exactly, an appropriately
weighted average of the s- and p-ionic ab initio po-
tentials. Some long-range oscillations are observed
in Fig. 1, though the perturbing potentials are essen-
tially short ranged. This long-range oscillatory
behavior could lead to some defect-potential overlap
in the supercell near the third-nearest neighbors (at
r=5.0 A). The overlap is not large enough to affect
the resulting electronic structure significantly, but
could introduce an appreciable error into the calcu-
lation of the formation energy. The electron density
around the monovacancy, calculated using the ab in-
itio potential, is shown in Fig. 2 and compared to re-
sults of the empirical-potential calculation.> The re-
sults for the electron density in the monovacancy are
slightly different for the two potentials. The value
of the electron density at the center of the monova-
cancy, 2.93% 10~2 a.u. (the average electron density
in Al is 2.68X 1072 a.u.), is higher for the ab initio
potential than the empirical-potential result of
2.48% 1073 a.u. The other noticeable difference be-
tween the results of the two calculations is the varia-
tion in electron density from an atomic site to an in-
terstitial site, which is smaller for the ab initio po-
tential than for the empirical potential. The
electron-density contours near an atom are also
more spherical (atomlike) for the ab initio pseudopo-
tential calculation. These differences do not seem to
be appreciable in terms of the electronic structure
but, as will be shown later, they lead to a significant
difference (~0.4 eV) in the calculated vacancy-
formation energy.

The reciprocal-space formulation of the total en-
ergy leads to the following expression® for the total
energy E,:

=21
max

occ — —
Eq=3e&—7 3 VeoulGn(G)
k G £0

=)
Gmu

— 3 V. (Gn(G)
G

= (1)
max

+ 3 €(GnG)+aZ+Eppaa. (1
g

Here, the €, are the calculated eigenvalues, Vc°u1(§)
are the G components of the Coulomb term, V,.(G)
are the components of the exchange-correlation po-
tential, the €,(G) are the components of the
exchange-correlation energy, and n(G) is the elec-
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tron pseudodensity. The term aZ is a correction
due to the pseudonature of the potential,> which
measures its repulsiveness, and Eg,,q is the Ewald
core-core interaction energy.'® The determination of

the summation limit éﬁ,l;, is described in Ref. 3;
about 1600 G components were included in the sum-
mation for the vacancy. The calculated values for
the various components of the total energy for the
two potentials are compared in Table II. The value
for the monovacancy formation energy calculated
with the ab initio potential, 1.5 eV, is seen to be
smaller than that calculated previously with the
empirical potential,’ 1.9 eV, but, nevertheless, still
too large compared to the experimental value of 0.66

FIG. 2. Valence-electron pseudodensity (times the supercell volume) around a vacancy (¥) in [(a),(c)] the (100) plane and
[(),(d)] the (110) plane of the supercell. Results for the ab initio pseudopotential calculation [(a),(b)] are compared to those

obtained from the empirical potential calculation [(c),(d)] in Ref. 3. The atomic positions are denoted by + .

eV.!"1® There could be two major reasons for this
discrepancy between theory and experiment: (i) lat-
tice relaxation effects and (ii) difficulties associated
with the supercell method.

Atomic relaxations can, in principle, be calculated
in the self-consistent pseudopotential scheme by cal-
culating the forces on the nearest-neighbor atoms by
the Hellmann-Feynman method and then minimiz-
ing these forces.® For the empirical potential, the
first-neighbor relaxations around the monovacancy
were calculated to be ~2% radially inward dis-
placements, a relatively small effect. The relaxation
energy would, therefore, not be expected to be large
enough to account for the difference between theory
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TABLE II. Components of the total energy per atom of a 27-atom-site supercell with and
without a vacancy. The results from the present ab initio calculation are compared to the pre-
vious empirical potential results (Ref. 3). The formation energy is obtained by taking the
difference in total energy per atom and multiplying by 26. The prime on the summation indi-

cates that the G=0 term is excluded.

Ab initio pseudopotential

Empirical pseudopotential®

(@=4.047 A) (@=4.045 A)
Vacancy Bulk Vacancy Bulk
Total-energy components (Ry) (Ry)
S e —0.6890 —0.6665 —0.6269 —0.6026
k
72 Veou(Gn (G) 0.0576 0.0051 0.0582 0.0070
Se:(G)—V,o(G)]n(G) 0.4851 0.4829 0.4851 0.4829
aZ 1.3515 1.3515 1.2755 1.2755
Egyaa —5.3169 —5.3938 —5.3109 —5.3898
E —4.2269 —4.2311 —4.2355 —4.2409
Ef, 0.11(1.5¢V) 0.14(1.9¢V)

2Reference 3.

and experiment. However, there is a significant un-
certainty present in the calculated relaxation param-
eters. The cumulative supercell effects would ap-
pear to be the dominant source of errors. One of
these is the effect of spurious vacancy-vacancy over-
laps introduced by the supercell. Such overlaps
could, in principle, be reduced by increasing the size
of the supercell. However, this would require a
basis set which is too large to be handled within
reasonable computational resources. The larger the
supercell, therefore, the more drastic is the effect of
the basis-set restriction, since the number of basis
functions per atom has to be reduced to stay within
reasonable computational costs. Even with the
present 27-atom-site supercell, basis-set inadequacies
appear to have negatively affected the resulting
vacancy-formation energy (cf. Sec. IIA). This prob-
lem could be solved partially by using a mixed basis
set,!® but this is not expected to improve the situa-
tion for a metal like aluminum. Even for transition
metals, and using a mixed basis set, the basis set
needed for an adequate formation-energy calculation
is expected to be too large to be handled numerical-
ly. We seem to be arriving at the conclusion, there-
fore, that the supercell method is not suitable for ac-
curate formation-energy calculations within present
computational limitations. Similar computational
limitations, but with regard to self-consistency diffi-
culties and not overlap, are also present in the
Green’s-function method. Formation-energy calcu-
lations are thus probably more efficiently ap-
proached from a density-matrix-type method,?°
which does not yield detailed spectroscopic informa-
tion, but which is apparently well suited for energet-
ic calculations.

C. Divacancy

The self-consistent pseudopotential supercell
method, with either a plane-wave or a mixed basis
set is, nevertheless, extremely useful for obtaining
detailed information about the local electronic struc-
ture of defects, the type of information that may be
obtained from positron-annihilation spectroscopy
experiments. With this view in mind, the ab initio
pseudopotential method was further applied to the
calculation of the electronic structure of a divacancy
in aluminum, and then also to calculations of the
positron-annihilation characteristics of the monova-
cancy and divacancy in aluminum. The environ-
ment of the divacancy was again simulated by a 27-
atom-site supercell, with the divacancies oriented
along one of the (110) directions. In this configu-
ration, nearest-neighbor divacancies share some
common first-nearest-neighbor atoms. The overlap
between divacancies is, therefore, expected to be of
greater consequence in the electronic structure cal-
culation than was the monovacancy-monovacancy
overlap. However, for the purpose of calculating the
positron-annihilation spectra, the errors introduced
by these overlaps are expected to be small, since the
positron localization in these deeper traps is rather
strong. These errors become only really significant
in the context of formation-energy calculations,
which were shunned for this case. The convergence
requirements imposed on the divacancy calculations
were much less stringent than those used for the
monovacancy formation energy and electronic struc-
ture calculations. The basis set included ~300
plane waves here, compared to ~500 plane waves
for the monovacancy, which allowed the eigenvalues
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FIG. 3. Valence-electron pseudodensity (times the supercell volume) around a divacancy (V-¥) in (a) a (100) plane and
(b) a (110) plane of the supercell containing the divacancy. The atomic positions are denoted by + .

to be converged to 102 Ry (compared to 10~ Ry
in the monovacancy case). The tolerance criterion
for self-consistency was at least 107> Ry (~0.01 V)
for all components of the screening potential. The
10 special—k-point scheme® was used for sampling
the Brillouin zone. The number of Fourier com-
ponents included in the charge-density calculation
was ~ 1000.

The calculated electron density around the diva-
cancy is shown in Fig. 3 for the (100) and (110)
planes containing the two vacancies. It can be clear-
ly seen that there is significant perturbation of the
electronic structure in the vicinity of the common
nearest-neighbor atom sites, along the major axis of
the divacancy. But again, this is important only in
the context of formation-energy calculations, and
can be essentially neglected for positron-annihilation
studies, since, as will be seen later, the positron is
very well localized within a divacancy. The value of
the electron density at the center of either of the va-
cancies forming the divacancy is considerably lower,
2.2X1073 a.u., than the value at the center of a
monovacancy (2.93X 10~ a.u.). The electron densi-
ty at the center of mass of the divacancy is, howev-
er, considerably higher, 3.76 X 10~% a.u. A plot of
the difference in valence-electron density between a
supercell containing no defects and one containing a
divacancy is shown in Fig. 4 for a (100) plane con-
taining the divacancy. It is seen that the perturba-
tion is predominantly short ranged, and that the
overlap of the electrons with the positrons can be ex-
pected to go to zero quite rapidly away from the di-
vacancy. This will be demonstrated later on in the
paper. It should be noted that this difference plot

does not represent the actual situation very precisely,
because the perfect-lattice electron density was cal-
culated with convergence criteria identical to those
for the monovacancy calculation, but quite different
from those for the divacancy calculation. This can
introduce quite a bit of noise in the difference spec-
trum, as seen in Fig. 4. The rest of the paper is de-
voted to the formalism and results of the positron-
annihilation studies.

ITII. POSITRON ANNIHILATION:
THEORETICAL FORMALISM

Calculations of the positron-annihilation charac-
teristics of defects in real solids have previously suf-
fered from the inability to include electron-positron
correlation effects properly, although the correlation
effects have been studied carefully in jellium
models.”! A formalism for carrying out realistic
calculations of the positron-annihilation characteris-
tics of defects is presented in this section. The
salient features of such a calculation are (i) accurate
treatment of the host electronic structure, (i) self-
consistent determination of the electron and positron
densities and potentials, allowing for electronic
screening of both the defect and the positron, and
(iii) inclusion of the structural relaxations around
the defect in the presence of the trapped positron.
The first requirement is satisfied by both the super-
cell and the Green’s-function methods. For the
second condition to be satisfied, a generalization of
the self-consistency scheme used in electronic struc-
ture calculations is needed. Such a scheme, obtained
from a generalized density-functional approach, has
been developed recently and applied to defect-free
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aluminum.!® In this section a description of the
scheme as applied to defect studies using the super-
cell method is presented. Structural relaxations can
also be treated within this scheme, in principle, but
at present the numerical accuracies of such esti-
mates attainable within reasonable computational
times (costs) are insufficiently reliable to give quan-
titative information about the relaxed structure.
Some qualitative information, however, can be ob-
tained from calculating Hellmann-Feynman forces.’
These results will be discussed for the case of the
monovacancy in aluminum.

A. Self-consistency scheme

The derivation of the self-consistency scheme has
been described briefly in Ref. 10. A detailed deriva-
tion, analogous to the spin-density-functional theory
derivation?? is presented in the Appendix. After
making the necessary approximation for a single
positron being present in the system (cf. Ref. 10 and
the Appendix), the self-consistency equations can be
written as

Y (D=¢ ¢ (T),

2
‘—VT-i-Ve_ff(?)

2
— v + V:f'f(?)

2 PpHD) =€ty (1),

VD)=V (T)+ VeoulT)
+prn=(P)n (D)),

VAR = VHE) — VoD +eatn =), @

xclpsp')=p € (p)/Op+e€xc(p)
+p' et (p)/3p ,

nm(M=3 [¢7 (D)2,

nt (D)= 9T .

Here, V—(T) [V ()] are the external potentials (in
a solid, the superposition of the ionic potentials) felt
by the electron (positron), ¥y (T) is the electrostat-
ic potential due to the electrons, €.t (n ~(T)) is the
electron-positron correlation energy of a homogene-
ous electron gas of density n~(T), and
Hee(n=(F),nT(T)) is the combined exchange-
correlation potential felt by the electrons. The set of
equations given in Eq. (2) constitute the self-
consistency scheme. It can be used to determine the
electron and positron densities in any system, with a
given geometry and external potentials.

In the supercell approach to the defect problem,
periodicity is retained and the solutions of Eq. (2)
are Bloch waves; hence solving Eq. (2) reduces to a

band-structure problem with two eigenvalue prob-
lems to be solved at each self-consistency step. The
positron external potential ¥V *(T) is normally the
negative of the electron external potential ¥V~ (T),
which is given by

V(D)= 3 Vini( TR, (3)

where Vion,i(f'—ﬁ,-) is the ionic potential at T from
the ion at the site R; of the superlattice. For a
monovacancy, the ionic potential at one of the 27
supercell sites is zero. In the present work, the ionic
potentials are replaced by ab initio pseudopotentials
for the electrons, and a Kubica-Stott?*—type pseudo-
potential for the positron. In this case, ¥ *(T) is no
longer simply the negative of V(7). The positron
pseudopotential scheme will be described in Sec. IV.

In the Green’s-function scheme, Eq. (2) would
first have to be solved for the perfect lattice to ob-
tain both an electron and a positron Green’s func-
tion.® The electron and positron states in the pres-
ence of a defect could then be expressed in terms of
these Green’s functions and the defect potentials
U~ (T) [U*(1)] for the electron (positron).® The de-
fect potentials are defined as the differences between
V(T) and V}(T) for a solid with a defect and
those for the perfect lattice. These potentials, there-
fore, have the same form as the V 4(T) of Eq. (2)
and can be determined self-consistently. At each
iteration step, U~(T) and U™*(T) are recalculated
from the values of n ~(T) and n *(T) obtained from
the previous iteration. The difference here from a
purely electronic calculation is the necessity to
determine two sets of densities and potentials at
each self-consistency step.

B. Angular correlation spectra
and positron lifetimes

In positron-annihilation experiments, information
regarding the electron momenta and density over-
lapped by the positron can be obtained through mea-
surements of the angular correlation of the
positron-electron annihilation y rays and positron
lifetime, respectively. To calculate these quantities,
the electron-positron pair momentum distribution
R (P) has to be calculated. The expression for R (P)
is

R(B)= [ dTdtexp[ip-(F—7")]
x (o me+trne-T(Me-(r)) .
@)

Here, ®* and &~ are the positron and electron field
operators, respectively, and the angular brackets
denote the ground-state expectation value. Express-
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ing the field operators in terms of the wave func-
tions ¥; and ¥ of Eq. (2) and the creation (des-
truction) operators c,-)r (c;) and d(T, (dy) for ¢; and
¥, respectively, Eq. (4) can be written as

R(§)= 2 <d2-) doC,'TCj)
ihj

x [fdf’df”exp[if)’-(f’—f”)]
X Y (EWHE W (O (E) | .

(5)

In order to determine R (P), the ground-state aver-
age (d 3d0c,~Tc ;) has to be calculated. The procedure
for evaluating this function within the local-density
approximation in an inhomogeneous system is given
in the Appendix. The resulting expression for R (P)
is

- — 2
R(B)= SN(e)| [ dre=TTy+mwrm]

(6)
N(e)= [ dTN%en=(TNn*(T).

In this equation, N%e,n~(T)) is the electron-
positron pair momentum distribution function in a
homogeneous electron gas of density n~(T), ex-
pressed as a function of the energy e=p%/2m. The
function N%e,n ~(T)) is known from many-body
calculations in an electron gas.*?® Thus the
momentum distribution and, hence the angular
correlation spectra can be calculated from a
knowledge of the energies and wave functions calcu-
lated using Eq. (2). The reciprocal of the positron
lifetime 7~!=A is an integral of R(P) over all
and can be determined from

A= [dFn*(PMT),
MT)= 3 N(e) |97 ()] 2.

)]

If N(e) is replaced by the Fermi distribution func-
tion, A(T) reduces to n —(T), and we recover the
independent-particle model result for the lifetime.
In a Brandt-Reinheimer formulation for calculating
the electron-density enhancement,?! A(T) is replaced
by A%n (7)), the positron lifetime in a homogene-
ous electron gas of density n —(T).

C. Core contribution

The preceding discussion of the formalism for
calculating positron-annihilation characteristics was
tacitly restricted to a consideration of the valence
electrons. The contribution from core electrons,
especially for positrons trapped in defects, is a small,

but non-negligible, fraction of the valence-electron
contribution. The momentum distribution from
core electrons, R“™(P), can also be calculated from
Eq. (6); however, with ¢; (T) replaced by ¢{°(T), a
core-electron wave function, the function N(¢;) re-
placed by N;°, the enhancement for a particular
core state, and the summation running over all core
states. In analogy to the derivation of N (e), N
can be written as

Noe= [ dfn*(FINp,p(D)) . (8)

Here, p is the momentum of a core state and p(T) is
the core-electron density. Other formulations for
calculating the core enhancement exist in the litera-
ture.?® The one presented here is the one most close-
ly analogous to the valence formulation. A different
approximation might be obtained by replacing
N%p,p(T)) by an average enhancement factor
(N%p(T)) ), for p <pr, the Fermi momentum, and
zero otherwise, as suggested in Ref. 26. It has been
shown that the two approximations yield signifi-
cantly different results for defect-free aluminum,'®
but the net resulting uncertainties for defect applica-
tions are small. The core-electron contribution to
the positron lifetime can be obtained in a manner
analogous to the calculation of the valence-electron
contribution. In the next section we describe the re-
sults of the application of the theoretical method
described here to calculating the positron-
annihilation characteristics of monovacancies and
divacancies in aluminum.

IV. POSITRON ANNIHILATION
FROM VACANCIES IN Al

To calculate the positron-annihilation characteris-
tics, a supercell identical to that used in the vacancy
defect electronic structure calculations was em-
ployed and the same ab initio norm-conserving ionic
pseudopotential was used for ¥ ~(T) in Eq. (2). The
positron pseudopotential method of Kubica and
Stott>® was utilized to replace ¥ *(T) by a pseudopo-
tential. In this method the positron wave function
Y7 (T) is written as a product of a pseudo-wave-
function ¢+(T) and a Wigner-Seitz (WS) type of
function U*(T); thus ¢ (T)=¢H(F)UT(T), where
U *(T) satisfies the boundary conditions

Ut(D)=UJ (), |T| <Rws
UHT)=UF(Rws), |T|>Rws

dU*(7)

dr =0.

r=Rysg

Here, Rws is the radius of a sphere inscribed in the
Wigner-Seitz cell. The solution Ug (T) satisfies the
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following Schrédinger equation:
2
Y VD

: U (|T)=EUd(|T]),

9

where Vys(T) must be similar to the actual potential
within Rysg, but is arbitrary otherwise. The equa-
tion for the pseudo-wave-function is [cf. Eq. (2)],

V2

-5+ V it eudo(F) — Veou(T)

+ €on (n (D)) | F(T)=€ep (D),

(10
V eudol )=V H(T)— Vys(T)+Ey
d N P
— E;IHUJ(I') v,
where ¥ f..4,(T) is the ionic pseudopotential for the

positron. In our calculations the gradient term in
Eq. (10) was neglected, which eliminated the wave-
function dependence of the pseudopotential. There-
fore, a convenient form of ¥ ju40(T) could be
chosen for the self-consistent calculations, and
Vws(T) then obtained from Eq. (10). Since the term
E, causes only a shift of the energy zero, this pro-
cedure is possible. The procedure used here is dif-
ferent from that employed in Ref. 24, in which a
form for Vys(T) was chosen first and then Eq. (10)
was used to determine Vfeq(T). In the present
work, the ionic potential for aluminum was first cal-
culated using a self-consistent Dirac-Slater scheme.
This potential was then fitted to an Appelbaum-
Hamann?’ form of pseudopotential, such that the
pseudopotential V;seudo(f') was matched smoothly to
the ionic potential at the inscribed sphere radius.
The pseudo-wave-function was determined self-
consistently and Ug (| T|) was calculated once us-
ing Eq. (9). In the following we will denote the posi-
tron pseudodensity by n*(F)=|¢*(¥)|% and the
actual density by p*(T)= | ¢+ (7) | %

A. Positron properties in vacancies

The present calculations were carried out for the
0-K lattice constant of aluminum, 4.0469 A, and for
two other larger lattice constants. Here, we will pri-
marily discuss the 0-K results, and bring in the re-
sults from the other calculations only for compar-
ison purposes. The results for the larger lattice con-
stants, representative of higher temperatures, are be-
ing presented elsewhere.?® Preliminary reports of
some of the 0-K results have appeared previously.?’

The effective potential ¥ %(T), experienced by the
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FIG. 5. Components of the effective potential ¥ & ex-
perienced by the positron in the presence of (a) a monova-
cancy and (b) a divacancy. The screening potential is
denoted by V£, and the ionic pseudopotential by ¥ feuo-
In order to give some idea about the average depth and
range of the trapping potentials, spherical averages are
presented; the magnitudes beyond the limits of the defects
are, therefore, not indicative of those at any particular lat-
tice or interstitial site. The centers of mass of the mono-
vacancy and divacancy are at the origins.

positron, and its various components centered at a
monovacancy and a divacancy are shown in Fig. 5.
The spherical averages are shown to give a general
idea of the depth and extent of the trapping poten-
tials. As is to be expected, there is considerable an-
isotropy of the trapping potentials, especially for the
divacancy; these anisotropies are evident from the
calculated distributions of the defect-trapped posi-
trons (Fig. 6). Bound states of the positron exist for
both the monovacancy and divacancy. The calculat-
ed positron binding energies for the two defects are
shown as a function of lattice constant in Table III,
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FIG. 6. Position density p*(T) (times the supercell
volume ) in the (100) plane around (a) a monovacancy
(V) and [(b),(c)] a divacancy (V-¥), shown in perspective.
Two perspectives of p*(T)Q for the divacancy are shown
to clarify the full asymmetries involved.

and compared to the results of other theoretical cal-
culations. The only previous band-structure calcula-
tion of the binding energy of a positron in a
monovacancy was a non-self-consistent augmented-
plane-wave (APW) calculation in a supercell.? The
work of Nieminen and Puska® emphasized solving
for the positron wave function accurately for a given
positron potential; the electron density was obtained
from superposition of atomic charge densities, but
no electronic rearrangement was taken into account.
The other results®' shown in Table III were based on
a jellium model. These are taken as representative,
although a number of additional such calculations
exist.?! The binding energies are seen to be rather
sensitive to the calculation scheme.

The calculated positron densities p*(T) in the va-
cancy defects are shown in Fig. 6 as perspective rep-
resentations on the (100) plane. The positron is seen
to be extremely well localized int both the monova-
cancy and divacancy. Since the positron exists in
bound states in these defects, it is interesting to look
at the positron density of states. The positron densi-
ties of states in the presence of a monovacancy have
been calculated and are shown in Fig. 7. The signa-
ture of a bound state is a sharp peak whose intensity
diminishes on going away from the vacant site, a
behavior shown by the local densities of states well
below the bottom of the band. The densities of
states were calculated wusing the tetrahedron
scheme,? but using only four tetrahedra in the Bril-
louin zone. This introduces considerable noise into
the spectrum, even though the Brillouin zone is 27 X
smaller for the supercell than for the one-atom cell;
this noise was reduced by means of a smoothing
function in Fig. 7. The bound-state characteristic is,
however, little affected by this approximation, be-
cause there is hardly any dispersion of this state.
There is a feature at about 0.15 Ry that looks like a
resonance, but this could be an artifact of the calcu-
lation. In contrast to the positron density of states,
the electron density of states in the absence of the
positron did not show any signs of a bound electron
state.’ In the present work, furthermore, the elec-
tron density of states was seen to be quite insensitive
to the presence of the positron. At present, there are
no experimental observations of the positron density
of states in the presence of defects. However, the
positron experiments probing surfaces could benefit
from a knowledge of the calculated local positron
density of states near a surface.

B. Annihilation characteristics

For the calculations in aluminum, the functions
€ (n=(T)) and N%e,n~(T)) were obtained from
Ref. 24. Since periodicity is retained in a supercell,
the calculation of R (P) is conveniently carried out
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TABLE III. The calculated positron binding energies to a monovacancy and a divacancy
compared to results of other theoretical calculations. The lattice constant a used in each of the

calculations is specified.

Binding energy (eV)

Monovacancy Divacancy

Present calculatign

(i) a=4.0469 A 2.17 2.98

(i) @=4.1200 A 2.05

(i) a=4.1323 A 2.85
Nieminen and°Puska (Ref. 30) 2.31 3.30

(@a=4.0469 A)
McMullen et al. (Ref. 31) 1.56 3.19*

(@=4.0412 A) 2.60°
APW calculation (Ref. 2) 3.36

(@=4.0483 A)

#Spherical divacancy.
®Elliptical divacancy.

in reciprocal space, and
R(P)= 3 Nleg,) |4y, (G P8(F-k-G),
| ome o (11)
A7, (G)= [ dFexp[—i(k+G)T]
Xpz, (DY),

where G are the reciprocal-lattice vectors, and kn
denotes a Bloch state of wave vector k and band in-
dex n. Since the Brillouin zone is small in a super-
cell, a large number of G vectors are needed to
determine R (P) accurately. Because of computer
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FIG. 7. Total (——) and local positron density of states
in the presence of a monovacancy. The local density of
states at the vacancy site (—), and the first- (---) and
second- (—-—) nearest-neighbor sites are shown. The
curves have been magnified by a factor of 10 in the energy
region above 0.05 Ry, as indicated by the vertical line and
right-hand scale. The band edge is at 0.16 Ry.

limitations we could use only ~ 500 G vectors in the
summation, which could have given rise to some
noise in R (P).

It is clear from the electronic structure informa-
tion inherent in R (P) that positron-annihilation ex-
periments are capable of yielding detailed informa-
tion regarding the electronic structure of defects in
which positrons can be trapped. However, since the
trapped positron probes only that region which it
overlaps, and invariably perturbs, self-consistent
theoretical calculations of the positron-electron
overlap and the resulting positron-annihilation
characteristics are necessary to facilitate the re-
trieval of the defect-specific information available
from positron lifetime and momentum (e.g., angular
correlation) experiments. Positron-lifetime measure-
ments yield only rather integral information regard-
ing the average electron density sampled by the posi-
tron in this overlap region. Although the positron
lifetime is not very sensitive to the structure of the
overlap, angular correlation spectra are much more
sensitive to the details of the positron-electron over-
lap, and therefore inherently contain more defect-
specific details. In Fig. 8, the overlap of A(T) and
p*(T), the integral over which determines A [cf. Eq.
(7], is shown on the (100) plane for both the mono-
vacancy and divacancy. On comparing these to the
positron-density plots of Fig. 6, it is seen that the
overlap shows more structure within the defects.
The range of the overlap is predominantly deter-
mined by the range of the positron density. In the
independent-particle model, the lifetime would be
given by an integral over all space of the overlap be-
tween n ~(T) and p*(T). This overlap shows essen-
tially the same structure as A(T)p*(T) even though
the magnitude is not the same. In contrast, the
overlap of A%#n (7)) and p*(T), which determines
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TABLE IV. The positron lifetimes (r=A~") in the monovacancy-trapped and divacancy-
trapped states compared to other theoretical results and experiment (for the monovacancy).
The valence (A,) and core (A,) contributions are also presented separately.

Monovacancy Divacancy
T A, A, A T A, A, A
(ps) (ns™") (ns™") (ns™h) (ps) (ns™Y) (ms~Y) (ns—Y)
Present calculatign
(1) a=4.0469 An 250 3.873 0.129 4.002 285 3.391 0.116 3.507
(i1) a=4.1200 A., 248 3912 0.117 4.029
(iii) a=4.1323 A 279 3.486 0.103 3.589
Jellium calculation (Ref. 21) 237 4.22
Nieminen andoPuska (Ref. 30) 253 3.87 0.081 3.95 273 3.66
(@a=4.0469 A)
McMullen et gl. (Ref. 31) 227* 4.40 255° 3.92
(@=4.0412 A) 248¢
APW calculatioon (Ref. 2) 231 424 0.090 4.33
(@=4.0483 A)
Experiment (Ref. 17) 244

2A.=0.157A, was assumed.
bSpherical divacancy.
“Elliptical divacancy.

the lifetime in a Brandt-Reinheimer formulation,?!
shows much less structure, but has the same overall
magnitude.

The calculated positron lifetimes in the vacancy
defects are shown in Table IV, and compared to oth-
er theoretical results and the experimental value for
the positron lifetime in the monovacancy. In the
theoretical calculations other than the present ones,
the enhancement factors were estimated from the
Brandt-Reinheimer formula for the valence elec-
trons, while an average enhancement factor was
used for the core electrons.?! The core and valence
contributions are shown separately in Table IV. It is
seen that the lifetimes decrease with increasing lat-
tice constant, which is consistent with a decreasing
binding energy and, hence, with more leakage of the
positron into the interstitial regions, where the elec-
tron density is high. Based on the lifetime informa-
tion alone, it may be rather difficult to experimen-
tally distinguish between a monovacancy and a diva-
cancy. For actual defect spectroscopy, leading to a
quantitative separation of the signals from the con-
stituent defects in a vacancy ensemble, angular
correlation spectra have to be examined. Experi-
mentally, either one-dimensional or two-dimensional
angular correlation spectra can be obtained. In the
former, R (P) has been integrated over two momen-
tum components and contains much less informa-
tion per spectrum than the two-dimensional spectra,
which correspond to R(P) integrated over one
momentum direction. The present calculational
scheme has been used to compute one- and two-

dimensional angular correlation spectra, and the re-
sults have been used in conjunction with experiment
to examine the presence of divacancies in alumi-
num. 282

In the present work we would like to examine
what type of electronic structure information re-
garding the defects in which positrons trap might be
extracted from such experimental observations. The

N
-

Rel ®

'
N '
'

LS

e T
4 8
p(mrad)

FIG. 9. Electron-momentum distribution function
RYP) along a (100) direction for a perfect lattice
(dashed line) and a superlattice containing monovacancies
(solid line).
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FIG. 10. Distribution function R(P) along a (100)
direction for the monovacancy-trapped positron state.
The solid line is the result obtained with the actual form
of N(e) and the dashed line that obtained by substituting
the Fermi distribution function for N (¢).

function R (P) is like a momentum space density of
states. When the positron is localized in defects, it
can be seen from Eq. (5) that R (P) gives local elec-
tronic structure information. However, if the posi-
tron could exist in a delocalized state in the presence
of defects, R(P) would give global information
about the change in the host electron states caused
by the defect, which is not expected to be a large ef-
fect. The function R(P) for a perfect lattice and a
superlattice containing monovacancies is shown in
Fig. 9. This function was obtained from Eq. (6) by
taking N(e€) to be the Fermi distribution function
and the positron wave function to be a constant.
The differences are seen to be small, the dominant
effect being a broadening at the Fermi edge. The
function R (P) would yield local electronic structure
information directly, if N(e) were the Fermi distri-
bution function and if ¥+(T) did not have too much
structure. The second condition is close to the real
situation, as can be seen from Fig. 6. To demon-
strate the effect of N (€), two plots are shown in Fig.
10, one of R(P) with N(e) replaced by the Fermi
distribution function and the other of the actual
R(P). The functions in Fig. 10 show some noise,
arising from not having enough G components of
A+ ,(G) in evaluating R(P). It can nevertheless be
seen from this figure that qualitative information
can be obtained from R (P), but to obtain quantita-
tive information from experimental observations
some means of deconvoluting N (€) would have to be

found. Interpretation of experimental information
with regard to the detailed electronic structure of
defects will, therefore, have to rely on accurate
theoretical information about the positron-
annihilation characteristics in a given defect config-
uration.

Before such calculations can be used to extract
such quantitative detail from experiment, however,
it will be necessary to address the question of
structural relaxations around a defect in the pres-
ence of a trapped positron.’® These can, in princi-
ple, be handled by the present scheme. The forces
on the surrounding atoms can be calculated from
the Hellmann-Feynman theorem, once the self-
consistent electron and positron densities are
known.’ The next step would be to move the atoms
along the direction of the total force, recalculate the
forces, and repeat the process until equilibrium is
reached. However, the uncertainties in the calculat-
ed forces make it hard to obtain an accurate quanti-
tative result for the relaxed positions. Long-range
relaxations cannot be handled in a supercell of the
present size (cf. Sec. IIB). However, a qualitative
understanding can be obtained if the relaxations are
small. The forces on the nearest-neighbor atoms
around a monovacancy containing a trapped posi-
tron have been estimated in the present work and
were found to be directed radially outward, indicat-
ing that an outward relaxation of these atoms would
occur. Because of the previously mentioned uncer-
tainties associated with such a calculation, however,
the magnitude of these forces is not considered reli-
able and the calculation was not carried further. An
efficient method for calculating relaxations would
make the present calculational scheme even more
valuable. One approach worth investigating is a
parametrization of the forces in terms of the atomic
positions followed by an analytic minimization.
Such a scheme is being looked into at present.

V. CONCLUSION

The theoretical method presented here for calcu-
lating positron-annihilation characteristics is of gen-
eral applicability. It can be used with any calcula-
tional scheme for studying defects, surfaces, or per-
fect solids. There are two drawbacks to this scheme;
one is that it entails lengthy numerical calculations
and the other is its inability to handle structural re-
laxations efficiently. A simpler scheme would be
much more desirable. Nieminen and Puska® have
developed such a scheme, but it suffers from the
inability to incorporate electron-positron self-
consistency. But, as is mentioned in Ref. 30, the
positron lifetime is not very sensitive to self-
consistency effects and can be calculated reliably.
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However, if more detailed information regarding de-
fects is desired, there seems to be no present alterna-
tive to lengthy calculations, such as those presented
here.

ACKNOWLEDGMENTS

We would like to thank W. E. Pickett for calcu-
lating the nonlocal ionic pseudopotential and for
many useful discussions. We would also like to
thank D. Koelling for his Dirac-Slater atomic struc-
ture code, used here to calculate the electron core
wave functions and the aluminum ionic potential.
This work was supported by the U.S. Department of
Energy.

APPENDIX: TWO-COMPONENT
DENSITY-FUNCTIONAL FORMALISM

A derivation of the self-consistent set of equations
[Eq. (2)] from a two-component density-functional
scheme is presented in this section. The formulation
of the density-functional scheme is closely analogous
to spin-density-functional theory.”> We consider a
system of N particles, electrons plus positrons, and
indicate the electron and positron densities by n ~(T)
and n T(T), respectively. The Hamiltonian for the
system is

H=T+ 3 V°(F)+V.,
‘ (A1)
A 0;0;
V=7 —L
L) !rl rjl

In this equation o is plus for a positron and minus
for an electron, so o; depends on whether an elec-
tron or a positron occupies the position T;. Here,
T is the kinetic energy operator, V, is the Coulomb
interaction, and V(7) is the external potential felt
by the electron (c=—) or positron (c=+). This
potential would be a simple function of ¢ for ionic
potentials, V(T)=0V,,,(T). For pseudopotentials,
however, this relation does not hold. A universal
function Q[n ~,n *] is defined as

Qln—,n*1=min{T+7,) . (A2)

The set of all N-particle antisymmetric functions
producing the electron and positron densities n?(T)
is searched to obtain the minimum expectation value
represented by Q[n~,n*]. The variational princi-
ple (H)>E, where E is the ground-state energy,
then implies that for any choice of the trial densities
n°(T) representing N particles,

Qln—n*1+ [dT S VDN (D)2E. (A3

The true ground-state densities are those that make
Eq. (A3) an equality. This is a generalized
Hohenberg-Kohn®* theorem. If the functional
dependence of Q[n~,n*] on n ~(F) and n *(T) were
known, Eq. (A3) could be used to calculate n —(T)
and n*(T). For this purpose, it is convenient to
break up Q[n ~,n *] into three parts:

Qn—n*1=T[n",n*]+U[n",n*]
+Ex[n",n*], (A4)

where T[n~,n*] is the noninteracting kinetic ener-
gy, U[n~,n*] is the direct Coulomb energy, and
E,.[n~,n*] is the exchange-correlation energy.
Next, we write the electron and positron densities in
terms of orthonormal orbitals ¥/%(T) and occupation
numbers g,

n(f)=3 f3|¢AUT) 2. (AS)
a
The kinetic energy is defined as?
T[n=n*]1=min | 3 fo(42] (=39 | ¥2)
a,o

(A6)
The next step is to minimize
E=T[n ",n*1+U[n",n*]+Ex[n~,n*]
+ [T vemmn @ (A7)
o
with respect to the orbitals ¥%(T), subject to the nor-

malization constraint of the orbitals. The Euler
equation for this is

s ~ - ,
E— Y €f% | dT|y2()|?|=0,
Py 2 9f% [ T vsD)|

(A8)

where €7 are Lagrange multipliers. This leads to a
set of one-particle self-consistent equations,

[— 3 V24 V(D IWUT) = €S9 T)
(A9)
dr'n?(t"’)

| T—1"

Va(D)=V(D)+3030 [
<

+ Exc[" —»n+] .

&n (1)

At this stage, an approximation has to be made for
E, [n—,n™], since the exact form is not known. In
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the local-density approximation, E,. can be written
as

E ln=n*1=3 [dtn°(T)
X €g(n ~(T),n H(T)),

(A10)

where €2.(n ~(T),n *(T)) is the exchange-correlation
energy per particle of a homogeneous system with
densities n ~(T) and n *(T). Thus

P =¢€,(n%1))+€.(n%(T))

€(n=(T),n

+eon(n?(T),n7(1)),  (All)

~(P)4+ fd*'—” (r’)

_ T’
Veg(T)=V —
|T—1"|

)

+————n"(P)e&(n~(P))+e(n~(F)]+n (D)

on —(T)

V:;f(?>=V+<?)—§f41;;f—ll+econ(n (™),

|T—1"

where €_,f(n~(T)) is the electron-positron correla-
tion energy obtained from the electron-gas calcula-
tions for the single positron. The self-consistent
equations presented in the text [Eq. (2)] can be ob-
tained by substituting Eq. (A12) into Eq. (A9).

The set of palr-dlstrlbutlon functions (d Odoc,TcJ)
have to be evaluated in the interacting ground state
in order to be able to calculate the momentum distri-
bution of the electron-positron pair. In the nonin-
teracting ground state, only the i =j functions sur-
vive. These are still the dominant terms in the actu-
al ground state, since higher-order processes, involv-
ing the excitation of an electron from a state j to a
state i, give rise to the nondiagonal (i#j) terms. In
the present work, only the diagonal distribution
functions have therefore been retained.

With the use of Feynman’s theorem, a diagonal
distribution function can be written as

SE;(B)
B  |g=o0 )

Here E;(B) is the ground-state energy of a modified
Hamiltonian

H(B)=H +Bdidyc]c; (A14)

where B is an arbitrary parameter. This type of pro-
cedure was used by Lam and Platzman to calculate
Compton scattering profiles.>> The 8 dependence of

(didocie;) = (A13)

where o’'s£0 in the third term. The first term is the
exchange term, the second is the correlation among
particles of the same type, and the last term is the
correlation energy among particles of opposite
charge. The electron-gas calculations of €, deal
with a system of one positron in an electron gas of
arbitrary density.2#?* The electron-positron correla-
tion energy in these calculations is obtained as the
change in ground-state energy of the electron system
when one positron is introduced, which includes the
change in the direct Coulomb energy of the system.
However, the electron-gas calculations give no infor-
mation about €. (n~(T),n*(T)) for an arbitrary
positron density. We therefore have to make a
single-positron approximation and write the effec-
tive potentials as

3 et (A12)
on —(7)

—
E;(B) arising from variations in n~(T) and n*(7)
can be neglected to first order, because of the sta-
tionary property of the ground-state energy. The
only other source of  dependence is the electron-
positron interaction energy. Making both the
single-positron and the local-density approxima-
tions, Eq. (A13) can be written as

deatP(n—(1))

9B

nt(T).

(dgdociTC,')= f d?

(A15)
+

Here, €5+P(n—(¥)) is the correlation energy in a
homogeneous electron gas, where the Hamiltonian
has undergone the transformation specified by Eq.
(A14), and hence is implicitly dependent on i. In an
electron gas, the states i are momentum eigenstates
and the term within large parentheses in Eq. (A15)
is the electron-positron pair momentum distribution
function in an electron gas [cf. Eq. (5)]. Thus the
distribution function in the homogeneous system
can be written as

N(Gi)E<d(TﬂoCiTCi)
= [dFN%e,n (P * (D), (A16)

where N%e,n—(T)) denotes the electron-gas pair
momentum distribution function, expressed as a
function of the energy e=p?/2m.



4552 BULBUL CHAKRABORTY AND R. W. SIEGEL 27

*Present address: NORDITA Blegdamsvej 17, DK-2100
Kobenhavn @, Denmark.

1S, G. Louie, M. Schliiter, J. R. Chelikowsky, and M. L.
Cohen, Phys. Rev. B 13, 1654 (1976).

2R. P. Gupta and R. W. Siegel, Phys. Rev. Lett. 39, 1212
(1977); Phys. Rev. B 22, 4572 (1980).

3B. Chakraborty, R. W. Siegel, and W. E. Pickett, Phys.
Rev. B 24, 5445 (1981).

4B. Chakraborty and R. W. Siegel, in Proceedings of the
Yamada Conference V on Point Defects and Defect In-
teractions in Metals, Kyoto, 1981, edited by J. Takamu-
ra et al. (University of Tokyo Press, Tokyo, 1982), p.
93.

5G. A. Baraff and M. Schliter, Phys. Rev. Lett. 41, 892
(1978); Phys. Rev. B 19, 4965 (1979).

6J. Bernholc, N. O. Lipari, and S. T. Pantelides, Phys.
Rev. Lett. 41, 895 (1978); Phys. Rev. B 21, 3545 (1980).

7R. Zeller and P. H. Dederichs, Phys. Rev. Lett. 42, 1713
(1979); R. Podloucky, R. Zeller, and P. H. Dederichs,
Phys. Rev. B 22, 5777 (1980).

8R. W. Siegel, in Advanced Techniques for Characterizing
Microstructures, edited by F. W. Wiffen and J. A.
Spitznagel (The Metallurgical Society of AIME, War-
rendale, 1982), p. 413.

SR. W. Siegel, in Proceedings of the Sixth International
Conference on Positron Annihilation, Fort Worth, 1982,
edited by P. G. Coleman et al. (North-Holland, Am-
sterdam, 1982), p. 351.

10B. Chakraborty, Phys. Rev. B 24, 7423 (1981); in
Proceedings of the Second National Symposium on
Positron Annihilation, Madras, 1982, edited by V. De-
vanathan and K. P. Gopinathan (South Asian, New
Delhi, in press); in Proceedings of the Sixth Internation-
al Conference on Positron Annihilation, Fort Worth,
1982, edited by P. G. Coleman et al. (North-Holland,
Amsterdam, 1982), p 207.

HR. Zeller, P. J. Braspenning, J. Deutz, R. Podloucky,
and P. H. Dederichs, in Proceedings of the Yamada
Conference V on Point Defects and Defect Interactions
in Metals, Kyoto, 1981, edited by J. Takamura et al.
(University of Tokyo Press, Tokyo, 1982), p. 97.

12D, R. Hamann, M. Schliiter, and C. Chiang, Phys. Rev.
Lett. 43, 1494 (1979).

13p, K. Lam and M. L. Cohen, Phys. Rev. B 24, 4224
(1981).

143 F. Janak, V. L. Moruzzi, and A. R. Williams, Phys.
Rev. B 12, 1257 (1975).

15The lattice constant at O K was obtained by a linear ex-
trapolation to ®p/3=131 K of the room-temperature
results: (a) K. A. Gschneidner, Jr., in Solid State Phys-
ics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull
(Academic, New York, 1964), Vol. 16, p. 276 and (b)
American Institute of Physics Handbook, 3rd ed., edited
by D. E. Grey (McGraw-Hill, New York, 1972); see
Table 9a-2. This was taken to be the value of g at 0 K.

The temperature coefficient was obtained from N. W.
Ashcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart and Winston, New York, 1976), p. 496. (c)
Physical Acoustics, edited by W. P. Mason (Academic,
New York, 1965), Vol. III B, p. 84, and Ref. 30 of Ref.
3.

16R. A. Coldwell-Horsefall and A. A. Maradudin, J.
Math. Phys. 1, 395 (1960).

17M. J. Fluss, L. C. Smedskjaer, M. K. Chason, D. G.
Legnini, and R. W. Siegel, Phys. Rev. B 17, 3444
(1978).

184, S. Berger, S. T. Ockers, and R. W. Siegel, J. Nucl.
Mater. 69-70, 734 (1978).

19§, G. Louie, K. M. Ho, and M. L. Cohen, Phys. Rev. B
19, 1774 (1979).

20R. Benedek (private communication); M. C. Lega and S.
C. Ying, Solid State Commun. 40, 37 (1981).

21R. M. Nieminen and M. J. Manninen, in Positrons in
Solids, edited by P. Hautojarvi (Springer, Berlin, 1981),
p. 145.

22J, P. Perdew and A. Zunger, Phys. Rev. B 23, 5048
(1981).

23p, Kubica and M. J. Stott, J. Phys. F 4, 1969 (1974).

243, Arponen and E. Pajanne, Ann. Phys. (N.Y.) 121, 343
(1979); J. Phys. C 12, L161 (1979).

25D. Neilson, in Proceedings of the Sixth International
Conference on Positron Annihilation, Fort Worth, 1982,
edited by P. G. Coleman et al. (North-Holland, Am-
sterdam, 1982), p. 192.

26E. Bonderup, J. U. Andersen, and D. N. Lowy, Phys.
Rev. B 20, 883 (1979).

273. A. Appelbaum and D. R. Hamann, Phys. Rev. B §,
1777 (1973).

28M. J. Fluss, S. Berko, B. Chakraborty, K. Hoffmann, P.
Lippel, and R. W. Siegel (unpublished).

29B. Chakraborty, S. Berko, M. J. Fluss, K. Hoffmann, P.
Lippel, and R. W. Siegel, in Proceedings of the Second
National Symposium on Positron Annihilation, Ma-
dras, 1982, Ref. 10; M. J. Fluss, S. Berko, B. Chakra-
borty, K. Hoffman, P. Lippel, and R. W. Siegel, in
Proceedings of the Sixth International Conference on
Positron Annihilation, Forth Worth, 1982, Ref. 10, p.
454,

30M. J. Puska and R. M. Nieminen, J. Phys. F 13, 333
(1983).

3IT, McMullen, R. J. Douglas, N. Etherington, B. T. A.
McKee, A. T. Stewart, and A. Zaremba, J. Phys. F 11,
1435 (1981).

32G. Lehmann and M. Taut, Phys. Status Solidi 54, 469
(1972).

335, W. Tam and R. W. Siegel, J. Phys. F 7, 877 (1977).

34p. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

35L. Lam and P. M. Platzman, Phys. Rev. B 9, 5122
(1974).




