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We prove the equivalence between the dynamic mean-field theory of the Ising spin-glass and
the statistical-mechanical theory of Thouless, Anderson, and Palmer (TAP). Individual low-
free-energy TAP solutions describe short-time properties, whereas thermodynamic equilibrium
corresponds to averaging over all such solutions. The square of the staggered magnetization as-
sociated with the largest eigenvalue of the interaction matrix scales as N> (N is the number of
spins). Results are confirmed by Monte Carlo simulation and numerical solution of the TAP

equations.

A recent theory! of the dynamics of the Sherring-
ton-Kirkpatrick (SK) model? of the infinite-range Is-
ing spin-glass (SG) showed that the time evolution in
the SG phase involves a hierarchy of macroscopically
long relaxation times. This has raised an important
question, namely, whether the usually accepted er-
godic hypothesis about the equivalence between
statistical-mechanical averages and long-time proper-
ties breaks down in SG’s and perhaps in other amor-
phous systems. Closely related issues concern the
nature of the metastable SG states and the properties
of the corresponding free-energy barriers which give
rise to the long relaxation times. The mean-field
theory of Thouless, Anderson, and Palmer (TAP),?
in which the random site magnetizations {m;} are
used to describe the SG state, provides a natural
framework for studying these issues. Unfortunately,
despite considerable effort,*> many questions about
the TAP equations remain unanswered. It is not
known whether the TAP approach is consistent with
dynamic and replica® theories. It has been shown*
that the TAP equations have a very large number of
solutions; but it is not clear whether these solutions
describe short-time or equilibrium properties. Also,
the basic nature of the random SG ordering remains
controversial. The natural order parameters in the
TAP framework are the staggered magnetizations as-
sociated with the eigenvectors of the random interac-
tion matrix J. Originally, TAP assumed that the stag-
gered magnetization associated with the largest eigen-
value is macroscopic, i.e., O(~/N ), where N is the
number of spins, whereas in a more recent work,”’ it
was argued that all the staggered magnetizations are
of O(1).

In this paper, we first show analytically that the
statistical-mechanical description of TAP is complete-

2

ly consistent with the dynamic theory. Individual
low-free-energy TAP solutions describe the short-
time properties of the system, whereas averaging the
random magnetizations over TAP solutions lying
within a certain range in phase space is equivalent to
relaxation in a certain time scale. We also show that
the distribution of staggered magnetizations is sharply
peaked at the largest eigenvalues of Jfor all T <T,.
The square of the staggered magnetization associated
with the largest eigenvalue scales as N*6. We then
present results of a Monte Carlo (MC) simulation
and numerical solution of the TAP equations, which
confirm these predictions.

The SK Hamiltonian for a system of N Ising spins
0’,‘( =1 ) is

=—%EJU0',0', , (1)

iZj
where the J;;’s are independent Gaussian random
variables with variance J/~/N. When written
in terms of the staggered magnetizations
M= 3, m;(i|\), where (i|\) is the ith element of
the eigenvector of J with eigenvalue J,, the TAP
equations take the form

M, =3, (ilx) tanh| 3[4 (J,) M, +Bh,1Cilv) [, (2)

where A (J)‘) =BJ)‘—szz(1 - qEA)a qdEA is the
Edwards-Anderson’ order parameter, and A)’s are
staggered fields. For N — oo, the eigenvalue density
obeys the semicircular law

1
2

p(J)) = 1.2(4.72—J£)1/2, Ihl=27 . @)

In a previous work,’ it was shown that in the N — o
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limit, the right-hand side of Eq. (2) can be written as
Mx=m,‘+X0[A(JA)MA+th] » (4)

where m,, the contribution to M, from all other
magnetizations, depends on A only through (i|\)

and, in particular, the configuration average

(m}) = Qis independent of A\. The coefficient X is
equal to (1 — gg,) if linear-response theory holds

(i.e., in the SK solution). Allowing for Xo— (1 —gga)
= Ao #0 yields® the Sommers’s solution.® In this work,
we show that the introduction of a nonzero Ay leads to
other solutions as well.

To see this, we note that the TAP equations are
expected to have many solutions.* Thus the M,’s in
Eq. (2) refer, strictly speaking, to the magnetizations
in a particular solution. In any particular stable solu-
tion, linear-response theory must hold. Therefore A,
is associated with transitions between different solu-
tions. This implies that for Ay #0, Eq. (4) is ill de-
fined since Ay is not a property of a particular solu-
tion, whereas M, is. Instead, Ay should couple to the
magnetization averaged over the solutions which are
involved in the transitions giving rise to a finite Aq.
The result of this averaging clearly depends upon the
correlations between different solutions. In the ther-
modynamic limit, only the solutions with the lowest
free energy per spin are relevant. In order to
describe the correlations among these solutions, we
make, in analogy with the dynamic theory,! the fol-
lowing ansatz: The correlations between different
solutions are characterized by a suitably defined ‘‘dis-
tance’’ in phase space separating them. It is reason-
able to assume that in a large system, there is a broad
distribution of distances. We order the different
scales of distance by a parameter x € [0,1]. The end
x =1 corresponds to solutions which are highly corre-
lated, so that averaging over these solutions does not
modify the properties of a single solution. On the
other hand, x =0 corresponds to solutions which are
farthest apart from each other, and therefore, least
correlated.” We denote by m;(x) and M,(x) the
values of the local or staggered magnetization calcu-
lated by averaging over all solutions which are within
distance x. Similarly, Xo(x) =1 — gga +Ao(x) is the
“‘susceptibility’” which includes contributions from
transitions among solutions within distance x. Ac-
cordingly, — Ag(x) =—dAy(x)/dx represents the
contribution to Ap from transitions between solutions
which are at a distance x from one another. We can
then write Eq. (4) in the following modified form:

— 4G [ A M) s)

Here, we have put 7, =0, and assumed that
gea=1/N 3, m*(1) is the same in all solutions of in-
terest. Averaging Eq. (5) over all solutions within
distance x [upon averaging, m,(1) —=m,(x),

M, (1) =M, (x), M\(u) = M,(x) for u =x, and
M,(u), u < x remains unchanged], and using the
results' Ag(1) =0 and M,(0) =0, we obtain

M(x) =m,(x) +A(J,) foxxo(u)M;(u)du . (®)

Differentiating Eq. (6) with respect to x, we get

my (x)

I—XO(X)A(J)‘) (7)

M (x)=
Defining
25 (x) = (IM5 () 1?) =%([Mx(x)]2)

(Ref. 10) and using Eq. (7), we get
@, (x) =0 (x)/[1 =xo(x)A(JD]? ,
Q'(x)=([m(0]?) . ®

The staggered susceptibility X,(x), which describes
the response of M,(x) to a staggered field that cou-
ples to transitions among solutions within distance x,
can be calculated by including such a field in Eq. (6).
We find

X\ (x)=B8/Ixg"'(x) —4(J)] . 9
Defining

q'(x)Efq{(x)p(Jx) dl,
and

x(x) = [ (x)p(0) dIy

and using the probability distribution p(J,) given in
Eq. (3), we obtain

X\(x)=[r(x)+E\], E,=2J-J, ,

r(x)=x1G)1=JIx(x)]1? , 10
and

gl (x) =q¢' () [xUx) =T . 1)

Extending previous calculations of ¢ and X [Eqs.
(11)—(15) of Ref. 5] by defining a local noise as a
sum over x Gaussian variables, it is straightforward
to derive the self-consistent equations for g (x) and
X(x), which are identical to those found in the
dynamic theory.! This proves the equivalence of the
TAP approach with the dynamic theory.

Using the result! that Xx(0) =J~! for all T < T.=J,
we note that r(x) « [X(0) —x(x)]? and, in particu-
lar, r(0) =0 at all T < T,. Thus the smaller x is, the
sharper g, (x) is peaked at the band edge E,=0
(Jy=2J). In particular, the infinitesimally small ¢
which remains after averaging over almost all of the
solutions [i.e., g5 (0)] is, according to Eq. (11), com-
pletely concentrated at the edge:

ax(0) « 8(E)) . (12)
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As x is increased, more and more states are occupied.
Using the relation' x(0) — x(x) « ¢2(x), which is
valid for small ¢g(x), we have

q(x) q2
Q)‘(X)"".ro dqm , (13)
where a ~const as ¢ —0. This means that for all
x >0 and, in particular, for x =1 (i.e., for individual
solutions), the distribution of magnetizations
diverges at the edge as E;5/*. This result implies that
(IM,;(1)12) is not of order unity, but scales as some
power of N. To determine this power, we note that
4,7(0) « [ry(0)1772, where ry(0) is the small but
finite value of r(x=0) in a finite system of N spins.
Equation (12) implies that ¢,;(0) is of order N.
Thus we have ry(0) « N2, from which it follows
that

425(x) « [ry(0) 14 N6, x >0 . (14)

The N dependence of ry(0) also implies that at
T =T, the staggered susceptibility at the band edge
diverges as

Xpj N3 . (15)

In order to check the prediction of this theory, we
have carried out a MC simulation of the SK model.
For temperatures close to T, we found that the spin
averages go to zero within the measuring time (typi-
cally, 2000—4000 MC steps per spin), due to the
turning over of all the spins in the system. For this
reason, the spin averages were measured at tempera-
tures less than 0.8J. In all cases, we found that the
distribution of the staggered magnetization is sharply
peaked at J,=Jy, the largest eigenvalue of the in-
teraction matrix J. A typical distribution of
gr=(M}) for N=100 at T=0.5Jis shown in Fig. 1.

In order to determine whether this feature is also
present in solutions of the TAP equations, we then
obtained (for N =50 and N =100) self-consistent
solutions of these equations for the same bond con-
figurations as those used in the MC calculation by us-
ing the MC spin averages {m;} as the starting values
in a numerical search procedure. We found conver-
gence to a stable self-consistent solution in about
40% of the cases. The values of {m;} in each of these
solutions were found to be very close to those ob-
tained in the MC simulation. As shown in Fig. 1, the
distribution of M7 averaged over the TAP solutions
for N =100, T=0.5Jis almost identical to the MC
result. We thus conclude that the MC results corre-
spond to a particular solution of the TAP equations!!
and, hence, to x =1. The distributions shown in Fig.
1 are in good qualitative agreement with the form
predicted in Eq. (13). A comparison between the
distributions-for N =100 and N =50 clearly shows
that the peak at J, =J, becomes sharper with increas-
ing N, as expected.

In Fig. 2, we have shown the dependence of qs, 0N

A1

. — N=100 MC
! -+ N= 100 TAP

o8t : —-N= 50 TAP

oal-

0

1.0

N2
FIG. 1. Distribution of staggered magnetization at

T=0.5J. Error bars, estimated from sample to sample vari-
ations, are shown for the MC results for N =100.

N at two different temperatures on a log-log plot.
We have scaled 4, by the measured values of g in

order to take into account the small variations of g
with N. The data points are well represented b):
straight lines with slope 0.86 £0.10 for 7=0.7J, and
0.83 +0.08 for T=0.5J This is clearly consistent
with a power =, predicted in Eq. (14). Recently,
Young and Kirkpatrick!?2 have obtained similar results
from a study of the exact ground states of small sys-
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FIG. 2. Variation of ¢,  with N at T=0.7Jand T=0.5J.

The inset shows the N dependence of the staggered suscepti-
bility X Jo at T=J. The straight lines drawn through the data

points are the best fits.
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tems. In the inset of Fig. 2, we have shown the N
dependence of the MC results for X s, at T=J The

log-log plot is well described by a straight line with
slope 0.65 +0.07, in good agreement with Eq. (15).
The numerical results thus strongly support the
theoretical predictions about the short-time behavior.
A numerical verification of the predicted long-time
behavior resulting from transitions among distant
TAP solutions would require simulating large samples
for which many such solutions would be present.
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