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We study the critical behavior of the m-anisotropic n-vector model with n and m both as con-

tinuous variables [0~ n, m ( 4 —0 (e), e 4 —d, d dimensionality of space] to first order in ~.

The limit n 0, m )0 of the model is of interest as a model of self-avoiding rings and of poly-

merization. For n ~ m, n, m integers, the critical behavior of the model is known to be that of
the iostropic m-vector model, i.e., the O(m) model. Here we prove that the critical behavior

of the anisotropic model is always identical with that of the O(m) model for real n, m regardless

of whether n ~ m or n & m. In particular, we prove that a single self-avoiding ring and a single

self-avoiding walk belong to the same universality class of the O(0) model, while polymeriza-

tion belongs to the universality class of the O(m ) model, m & 0.

Recently, the m-anisotropic n-vector model in the
formal limit n 0, keeping m fixed, has been used to
describe self-avoiding rings (SAR's) and polymeriza-
tion. ' The analogy is established in rwo steps: (i)
First, the analytic continuation in n for a fixed value
of rrt is performed and the limit n 0 is taken. (ii)
Then m is treated as a continuous variable and an ana-
lytic continuation in m is performed. The variable m

is identified with the activity for a SAR. Such analyt-
ic continuations invariably violate convexity condi-
tions, ' but it is easily seen that they do not produce
any anomalies for SAR's or for polymerization.
Moreover, we will restrict ourselves to the high-
temperature phase (T ~ T, ) where the above formal
analogy can be demonstrated.

Since the above unphysical mapping (m ) n 0)
defines two physically realizable models, ' it is impor-
tant to understand the critical behvaior of the aniso-
tropic model in this limit. For the physical situation
of integer n and m, n ~ m, the critical behavior is
determined by the isotropic m vector, i.e., the 0 (m )
model. Following renormalization-group calculations
to first order in ~-4—d, we show here that the criti-
cal behavior of the m-anisotropic n-vector model is
identical with that of the 0 (m ) model, regardless of
the value of n. Our result agrees with the conjecture
of Pfeuty and Wheeler for n 0 and 0 (m & 1, but
disagrees with their conjecture for m ) n ~ 1. Our
results also establish that a single self-avoiding walk

and a single self-avoiding ring belong to the same
universality class of the 0(0) model. However, the
polymerization problem belongs to the universality
class of the 0(m) model. Finally, we correct the er-
ror present in the derivations given in Ref. 1.

Let us consider the following m-anisotropic n-
vector model on a lattice of N sites:
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with z -1—H'/2. Here 1' represents some config-
uration with r self-avoiding rings (SAR's) and p self-
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FIG. 1. Various possible disconnected parts of 1". (a) A

SAR of length l ) 2 with weight m (K/z)'; (b) A SAR
between two nearest-neighbor sites of length l =2, but with

weight ( 2 )m (K/z); (c) A SAW of nonzero length l
i

weight (H /z)(K/z); (d) A SAW of zero length with

weight H2/z.

where Kl is an n -component (n ~ rit ) classical spin
of length Jn located at the site i The .sum over (ij )
is over all distinct nearest-neighbor pairs of sites and
the sum over i is over all sites. A factor of —1jkT is
absorbed in the definition of X„,K is ferromag-
netic in nature, and K is a magnetic field along the
e -1 direction.

Following the derivation of the n 0 limit given in
Ref. 4, we evaluate the n 0 limit Zc" (K,H) of
the partition function for the Hamiltonian X„' ' with

fixed integer m. We have (see Fig. 1)
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avoiding walks (SAW's), and the sum over I' is over
all such configurations. There are r out of r SAR's
that represent loops of length two between two nearest-
neighbor sites (see Fig. 1) and come from (E~/2)
x (S,.' lS,")z in the expansion of exp(ES, ' 'S, ).
There are m such loops for o. =1,2, . . . , m that
remain even in the limit n 0. These contributions
have not been taken into account in the derivations
given in Ref. 1. The weight of any of these r SAR's
is ttt (E'/2z~). The weight of any of the remaining
r-r SAR's of length A, is, on the other hand,
m(K/z)". Thus we observe that each of the r SAR's
contributes an extra factor of ( —,) which appears in

Eq. (2). The presence of such SAR's of length two
is a deficiency of the above correspondence for two
reasons: (i) The activity for any one of these is
(m /2)( E/z)' and not m(E/z)', and (ii) there are
rio such polymer rings of length two that are allowed

in the corresponding partition function for SAR's or
for polymerization. The origin of such SAR's is
identical to that of single-site filled circles as ex-
plained in Ref. 4(a). Because of the extra factor of

&, such SAR's cannot be truly regarded as SAR's

with K/z as the bond activity. There does not spear
to be any way to get rid of these unwanted SAR's as
was possible with filled circle sites in Ref. 4(a).
However, it is expected that the presence of such
SAR's is not going to modify the critical behavior of
the model, and our main interest here is to study the
critical behavior. Thus we will not attempt to make
any distinction between the two kinds of SAR's
present in Eq. (2).

A generalized version of Eq. (2) in which SAR and
SAW bonds have separate activities can be obtained
from the following Hamiltonian defined for 2n-
component spins S ({S {

= J2n ):

I n+m
% g'(rg)$'(rg) +~' ~ g r(a)g t(a) +0 ~g r(i)

i j l
(y) zg-i a n+i l

with n, m integers and n ~ m. For fixed m, as n 0,
the corresponding partition function is given by

Here l, denotes the number of SAR bonds and l~ the
number of SAW bonds. For E=E', X„' ' and
X&„' become "identical" in the limit n 0 in that
any quantity calculated from them in this limit, for
example, Za '(K,H) and Zo (E,K,H), become
identical. The correspondence between Zo (E,H )
and polymerization has been clearly expressed in Ref.
1(a). This model of polymerization is different from
other models of polymerization obtained through
n 0 trick but which do not contain SAR's. In
what follows, we will not consider Xo' ' and its
consequences any further, but instead focus our at-
tention on Xot ' given in Eq. (1).

Let us consider a SAR of length I and let gtt
denote a measure of its linear dimension. As l

we expect $tt to behave like $R —I ". The linear
dimension g of a SAW of length l in the same limit

behaves as g w —l . The exponent v w is given by
the 0 (0} model. From the topological constraint
that the two points of a SAR must be identical, we
expect physically that (~ ~ ( w. Thus, heuristically,
we expect the following inequality to be obeyed:

vz ~vw (3)

From Eq. (2), we observe that a single SAR, or more
precisely, a dilute solution of SAR's, is obtained in
the following limit: H =0, K K, (E, is the critical
value of K), and m 0+ (m cannot be set identical-

I

ly equal to zero because this would mean that there is
no SAR in Za '). This limit implies I ~. Thus va
should be identified with the correlation length ex-
ponent of X() ' as m 0+. As we will show here,
the critical behavior of the theory is that of the
0 (m ) model regardless of the value of n. This will

imply that vR = v(m}, m 0+, the correlation length
exponent for the O(m } model. Thus we conclude
that' va = v(m 0+}= v„, thereby satisfying the
above equality in (3}. This is also confirmed by
direct renormalization-group calculations. It should
also be evident from above that a single SAW and a
single SAR belong to the same universality class of
the O(0) model.

To study the effect of the anisotropy, it is con-
venient to study the following related Hamiltonian
for small g:

X„' '(g) =X„+X(g),
X„-E XSt SJ,

&v&

X(g) = [(n —m)Sit. .S~t. —mSr S~r]
2n (g

Here

StL= {S, {a=1,2, . . . , m)

and

Sir {S/ {P=m+1,m+2, . . . , n)

The above choice of X(g) ensures that it is orthogo-
nal to X„.~ The perturbation X(g) shows that the
critical behavior of X„t '(g) is described by that of
the 0 (m) model for g & 0 and that of the O(n —m )
model for g &0. For g =0, the behavior is that of the
0 (n ) model as expected. The corresponding contin-
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uum version of X„' '(g) is described by

X„(g) = —,[(BSt,)'+ (BSr)'+ rLSL+ rrSr]
t

+ —[u (St )'+ 2vSt, Sr+ w (Sr)']
4f

with rL=rp —(n —m)g/n and rr=rp+mg/n Fr. om
now on, we will restrict ourselves to the case of
g & 0. The results for g ( 0 are easily obtained by
the transformation m (n —m) and g —g.

Let us rewrite X„' '(g) as follows:
t

X„(g)= K — XS; S, + — XS L Sty.
(v) (v)

The analytic continuation in n should be defined so as
not to change the nature of the ferromagnetic in-

teraction. Thus K must be of the form
K = Kp+ mg/2n with Kp & 0 and independent of n

It is easily seen that as n 0, the above Hamiltonian
indeed gives rise to SAR's. This choice of K implies
that r p must be of the form r p= r p mg/n, wit—h r p in-

dependent of n. Therefore rL = r p
—g and r~ = r p and

that r~ & rL for g & 0. We identify r p with the tem-
perature variable: rp= [T—T, (0)]/nT, where T„(0) is

the critical temperature of the model for g =0 and
the factor of n in the denominator is included for
convenience so that the critical temperature remains
finite as n 0, as will be seen below.

For n ~ m, n, m integers, the behavior of X„(g)
or X„(g) has been studied extensively. p' We will

assume in the following that 0 ~ n, m ~ 4 —0 (p),
p = 4 —d, so that for g = 0, the isotropic 0 (n ) fixed
point is the only stable fixed point. " Also, since we
are interested in the renormalization-group (RG) cal-

culations, we will consider only X„' '(g) below. The
analytic continuation for X„' (g) is obtained in a

perturbation expansion. Since the RG recursion re-
lations ' are also derived in a perturbation expansion,
we will consider the analytic continuation of these
relations to define the continuation of the theory.

To be definite, let us consider the susceptibility
X.(t,g ) in zero field. It is described by

X(1g ) = At ~ "X(x), x = Bg/It l~,

t = [T T, (0)]/T, (0)—
where Q is the crossover exponent, y(n) is the sus-

ceptibility exponent for the 0 (n ) model, and A and

B are unimportant constants. The function X (x ) is

normalized so that X(0) = 1. Thus at g =0,
X(t, 0) —At "t"t as expected.

We will follow the scheme of Ref. 10 step by step
to carry out our RG calculations to first order in
~ for all real n, m in the above range. In this range of
n and m, the recursion relations of Ref. 10 remain
valid. We will set from the start u = v = ~ = u„',
where u„' is the isotropic O(n) fixed point:

u„' = p/(n + 8) + 0 (p ). The scheme is as follows.
Since rL(I ) & rr(I ) (the argument I will be used to
denote the value of a quantity after a rescaling by e'
and the initial value will be denoted by the symbol
without the argument), rr(I ) becomes of order unity
before rL(I) does:

rr(I ) = rp(I ) + (m/n )g (I ) = 1 (4)

We cut off the renormalizations at this stage. The Sq
fields are integrated out of the problem for fixed
values of SL which may still be close to criticality.
The criticality of SL is determined by the zero of
rt(l), which is the effective temperature for the SL
field":

rL(I) =rp(I) —[(n —m)/n]g(I) =0

For Eqs. (4) and (5) to be consistent, I should be
chosen so that g(I) =1. At this I, rp(I)
= (n —m)/n By .defining rp(I) = t(I)/n, so that the
limit n 0 can be taken conveniently (compare with

the initial value correspondence rp= t/n ), we find
that t(I ) = (n —m ). For n & m, t(I) & 0 and SL be-
come critical at T, (g) & T, (0). For t(I) & 0, t must
be chosen positive. For n & m, t(I ) & 0 and St, be-
come critical at T, (g) & T,(0). For t(I) & 0, t must
be negative. It should be evident from this discus-
sion that SL can always be close to criticality, regard-
less of whether n & m or n ( m.

From g (I ) = I and t (I ) = n —m, it is easily seen
that t, = (n —m )g' p, where t, = [ T, (g ) —T,(0) ]/
T, (g) and qh

= 1+pn/2(n + 8) + 0 (p2). The zero of
X(x) is determined by the zero of rL(I ): X(x)
—[rL (I ) ] ~' ', where y(m ) is the susceptibility ex-
ponent for the 0 (m ) model. It should now be evi-
dent from above that the critical behavior of the
theory is that of the O(m ) model, regardless of
whether n & m or n & m, with T, (g) A T, (0). For
n = m, T, (g ) = T, (0). This should not be surprising
as for n = m, the anisotropy parameter g is meaning-
less, and the behavior of the theory must be that of
the O(n) model.

Thus we have shown, to first order in e, that the
critical behavior of the m-anisotropic n-vector model
is that of the 0 (m ) model for all n, where 0 ~ n, m

~4 —O(p)." Therefore a single self-avoiding ring

(n O, m 0+) belongs to the same universality
class as that of a single self-avoiding walk: They are
both governed by the 0 (0) symmetry. On the other
hand, the problem of polymerization belongs to a dif-
ferent universality class which is determined by the
0 (m ) symmetry, for a given m.
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