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Effective field theory for interface delocalization transitions
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Semi-infinite systems are considered which give rise to a delocalization transition of the inter-

face between two coexisting phases. Since the interface position becomes a zero mode at the
transition, interface fluctuations invalidate mean-field theory for space dimension d + 3. An ef-
fective field-theoretic model for this zero mode is obtained via the collective-coordinate method.
Results for a simplified version of this model in d -2 and in d -3 are reported.

Recently, it has been found that interesting delo-
calization transitions can occur in semi-infinite sys-
tems with two coexisting phases. ' ' At these transi-
tions, the distance from the surface to the interface
separating the coexisting phases diverges. Such
behavior was first investigated in Ising-like systems'
and has been observed in several binary fluids. ' '"
These transitions are usually referred to as wetting or
pinning transitions. More recently, it was predicted'
that such behavior can also occur when an ordered
and a disordered phase coexist. In this case, there
are additional critical surface phenomena' ' which
apparently have been observed in the binary alloy
Cu3Au. ' ' These transitions are referred to as sur-
face induced disordering (SID) transitions.

Both wetting and SID have been investigated using
various methods. First, they have been discussed in
the framework of Landau or mean-field (MF)
theory' ' ' where the mean interface position
was found to diverge logarithmically. Secondly, they
have been investigated for space dimension d = 2 by
using solid-on-solid (SOS) models for the interface
coordinate. ' '" Here, a power-law divergence for
the mean interface position was found. In addition, a
d-dimensional field-theoretic SOS model has been
treated by renormalization-group methods. '

In this Communication, we show how one can
derive effective interface models starting from an ap-
propriate Ginzburg-Landau free-energy functional.
MF theory is obtained as a saddle-point or "zero-
loop" approximation. Expanding around the MF
solution, we observe that a zero mode emerges at the
delocalization transition. This zero mode is treated by
the collective-coordinate method and an effective in-
terface model is obtained. A simplified version of
this model is analyzed using transfer-matrix methods
for d = 2 and a variational method for d = 3. These
results are discussed for SID. However, it is argued
that they also apply to the wetting transition if an ap-
propriate identification of the various scaling fields is
made.

Consider a d-dimensional semi-infinite system
described by the Ginzburg-Landau free-energy func-

tional
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for the scalar field $(p,z). z is the coordinate per-
pendicular to the (d —1)-dimensional surface and
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The MF theory for this model has been discussed
previously. " ' For a -a'=2b'/(9c), hi=0, and

ai ~Ja', critical surface phenomena occur. tt There
are two different types of transitions, namely, (02)
for ai )Ja" and (s) for ai- Ja'. At both (Oq)
and (s), the MF order-parameter profile M(z )- ($(p,z ) ), has an interface at z = I. For (a,hi)- (a', 0), this interface is delocalized since I -~.
The way in which l goes to infinity is intimately relat-
ed to the way in which the surface order parameter
Mi =M(z -0) tends to zero, since asymptotically

I -— ln(Mt/Ms )a' (2)

I/&t, i=
(3a)

(3b)(s) .
i

MF theory neglects fluctuations in the local posi-
tion of the interface. In order to get some insight
into the effect of these configurational fluctutations,
one may expand around the MF profile:

$(p,z) =M(z)+q(p, z) (4)

where Mq is the MF bulk order parameter for a -a'.
One has to distinguish two cases. Firstly, consider

hi 0 and infinitesimal Sa —a —a' & 0. In this case,

Mi ~ ~sa ~

' with pi- —, at (Oq) and pi- T~ at (s).'
Secondly, consider Sa

~
=0 and infinitesimal positive

hi. Then, Might ', with
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The Gaussian fluctuations are obtained if (4) is in-
serted into (1) and the resulting functional is expand-
ed up to second order in q. As a consequence, one
is lead to consider the Schrodinger-type equation

d2 +p'+Q(z) g„(z) = (p'+E„)g„(z), (5)
dz

1

In terms of ((p), the local interface position is given
by

l(p) =i+~(p),
where l is the MF interface position [compare (2)].
If (10) is inserted into (1), a straightforward calcula-
tion yields

where p is a (d —1)-dimensional vector and

Q(z) =f"(M) = M (z)/M(z) (sa)

F [r) = Jl d'-'p[-,' a(~r)'+ V(&) + IV(~, ~&)l,
(12)

with the surface tension
The primes and the dots denote derivatives with
respect to M and z, respectively. The eigenstates
g„(z) have to fulfill the boundary condition

and

le M~
o =

J dm [2f(m) —2f(Ms)]'
Mi

(12a)

ISa I ln(ISa I), d =3
d&3 (8)

for hi =0 both at (Oq) and at (s). For I Sa I =0, one
finds

lht ln(hi), d =3
lhx(d —t)/2 d & 3

with x =1+1/Si, i both at (02) and at (s). These
estimates of the "one-loop" contribution should be
compared with the MF or zero-loop contribution
6'' ' ~ I Sa I ln(18a I ) for h i = 0 and f, ' ~ h f for
ISa I =0. Thus, for d & 3, the Gaussian fluctuations
invalidate the results of Landau theory while d = 3 is
obviously a boundary case.

From the above discussion, it follows that the
dominant fluctuations are due to the emerging zero
mode. In a different context, a zero mode has been
handled via the collective-coordinate method. ' As a
result, the drumhead model has been obtained. ' '
Here, we follow a similar strategy: We introduce the
collective coordinate g(p) via the ansatz

4 (p,z) =M(z —f(p)) (10)

—g.(z) I, 0 =ft' (Mi)g, (0)
dz

For infinitesimal ISa I or hi, the potential Q (z) is al-
most flat apart from a well around z = l. For l
the ground state go(z) becomes proportional to
M(z) and the corresponding energy Eo tends to zero.
Thus, a zero mode emerges in this limit. Since the en-
ergies of the excited states are separated from Eo by a
finite gap,

"the leading contribution to the surface
free energy f, from the Gaussian fluctuations is

ln(p +ED)(2n)e '

Eo lil(EO), d = 3

d&3 (7)

A simple estimate of (7) may be obtained via a varia-
tional upper bound for Eo. This leads to

M~
V(() =

Jl dm [2f(m) —2f(Ms)]t '

+fi(M( ())— (12b)

—Ch ie ' '+D ISa I
Ja'I (13)

with A, B,C,D )0. The effective free-energy func-
tional thus reduces to

E Il] = Jt d' 'p[ '(»)'+ V-(~--'i'i) ], (14)

where V(x) is given by (13) and a factor (r'i' has
been absorbed in the field variable l for convenience.
It should not be forgotten that, in principle, we still
have a restriction l & 0 in (14). This is due to the
semi-infinite geometry of the original model (1)
(z & 0). However, since the potential V(l) is very
repulsive for negative I, it appears permissible to ig-
nore this restriction.

IV(k, &[)=--, (&~)'
pM(- $)

x& dm [2f (m ) —2f (Ms) ]'
1

(12c)

where Mq is the MF value for the bulk order param-
eter. In this Communication, we focus attention on
the nongradient interaction term V((). There is no
a priori justification for ignoring the last term in (12)
since naive power counting indicates that the
gradient-interaction term IV((, 'vr() is a marginal
operator (for d =3). However, the essential physics
obtained from the MF analysis of (1) is contained in
V(g) (see below). The influence of the term
IV($, Vf) will be discussed elsewhere.

We are particularly interested in the form of V(g)
near the transitions (Oi) and (s), where I Sa I

=0
and hi =0. Therefore we expand V(() in powers of
I Sa I and hi, respectively. In the leading term of this
expansion, we transform from g( p) to the interface
position l(p) = I + $(p) and insert the asymptotic
form (2) for l. In this way, we obtain

V(l) =Pe '~'+Z(at Ja )e 2M—al
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First, we apply MF theory to model (14) and deter-
mine (I ) from 8 V/Bl I 0&

= 0. It turns out that at
both (Oq) and at (s) all critical properties, which
have been obtained in the MF theory for the original
model (1),'~ ' are recovered. This feature provides
some justification for the fact that we retained only
the leading terms of the expansion for V.(I) in

powers of I8a I and ht.
Next, consider d —1=1. In this case, the field-

theoretic model defined by (13) and (14) is one-
dimensional and can be easily treated by transfer-
matrix methods. ' '" For hi=0, the delocalization
transition occurs at I8a I

= 0. For I8a I =0, it occurs
at a finite surface field h 1'. As a result, one obtains
for the surface free energy,

small surface tension (r & r, ), since

t

—ln(ht), r & r„h& 0
(I) m

(r, —r) ',r~ r,
—0, h)&0

(22)

(23)

1+1/51
1hi '', T &T„hi 0,

fs~ lconstl(r T) exp
c T

(24)

7 T, —0, hi&0 .

(25)

whereas (I) = ~ for r ~ r, T.hus an interface with a

large surface tension is pinned by a finite surface
field hi, while an interface with a small surface ten-
sion is delocalized even in the presence of a finite h i.
The surface free energy is found to behave as

I8al ', h, =o,
1+1/51 1", 18al=o,

(15)

(16)

Note that an essential singularity similar to (25) has
been obtained previously. The surface exponent in

(24) is

with a, = —,, 1/8t ~=1, and 8ht —= ht —ht'. For the
4

mean distance (I ) of the interface from the surface,
one finds

(17)

1+1/8t )=

T221—
4m

3 372—1—
8m

(s) .

I8a I
=0, (18)

with P, = —
3

and 1/8, t = —1. Note that only two of1

the four surface exponents defined above are in-

dependent. This follows from general scaling con-
siderations discussed previously. "

Finally, we discuss (14) for d —1 = 2 using a varia-
tional method. This method has been applied previ-
ously to the roughening transition' and to multilayer
adsorption. ' In this method, one introduces two
variational parameters L and p, via the Gaussian
functional

FOII}= J d 'p[ —,('7I)'+ —,p, '(I —L)'] . (19)

L and p, are determined self-consistently in such a

way that the difference between the free energy of
model (14) and the free energy of (19) becomes
minimal. As a result, we find

(I) =L ~ —ln(I8a I)

f.~ —18a I »(18a I),
(20)

(21)

for ht=0 both at (Oq) and at (s). Thus the MF
results are recovered in this case. In contrast, for
I8a I

= 0 and h ~ & 0, an additional phase boundary
not present in MF theory is found. This new phase
boundary is given by a critical value T, of the param-
eter r = (a'/cr)'~', where cr is the surface tension
(12a). At (Oq), r, = 2Jm, whereas r, = 2(2m/3) 'I' at
(s).'- As a consequence, the interface behaves dif-
ferently for large surface tension (r & r, ) and for

The variational approach just described is equi-
valent to the leading term of a cumulant expansion
for the generating functional 1' I(I ) } of vertex func-
tions. A full treatment of the problem requires an
investigation of the higher-order terms in the cumu-
lant expansion. This may be done using a field-
theoretic renormalization procedure similar to that
used in Ref. 7. Work in this direction is in prog-
ress.

At this point, it is appropriate to discuss the rela-
tionship of SID and wetting. It is shown in a
separate publication' that both types of transitions
are closely related: (Oq) is related to the critical wet-

ting transition (CW), whereas (s) is related to the
wetting tricritical point. This relationship is most
clearly discussed in terms of the relevant scaling
fields. For instance, consider (Oq) and CW. At
both transitions, there are two relevant scaling fields:
At (Oq) one has the linear fields u~ m I8a I and uq

~ 8ht. t3 At CW, one has vt ~
I T —Ts I and vz ~ K

where T~ is the wetting transition temperature and 8
is the bulk magnetic field. It can be shown" that
both transitions exhibit the same scaling behavior if
one makes the identification u1 —v2 and u2 —v1. As
a consequence, one may translate all critical proper-
ties of (O~) into critical properties of CW and vice
versa. For example, the results (16) and (18) imply

f, ~
I T —Ts I' and (I ) ~

I T —T~ I
', which are just

the exact results of Abraham. In the present con-
text, the correspondence between SID and wetting
implies that the effective interface model (14) also
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applies for wetting provided one makes the above-
mentioned identification of the scaling fields.

Note added in proof. After the completion of this
work, we received a report of work prior to publica-
tion, by E. Brezin, B. Halperin, and S. Leibler, on
this subject restricted to ~ga ~

-0.
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