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Liquid *He and strong Pauli paramagnets
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We analytically derive the first-order magnetic field dependences of the magnetization M and
of the coefficient y of the specific heat, in a nearly magnetic paramagnet, at low temperature.

The contribution of spin fluctuations, ‘‘paramag-
nons,”’ to the temperature dependence of the spin
susceptibility of a nearly magnetic Fermi liquid was
calculated long ago,! for a parabolic band, with no ad-
justable parameter, in terms of the Stoner enhance-
ment S given by experiments. The agreement with
the data on normal liquid *He was very good for all
available values of S. An extension was recently
made? to account for a more general band structure.
Polarized liquid *He as well as strongly exchange-
enhanced metallic paramagnets, involving strong
spin-spin interaction / among fermions, have re-
ceived renewed interest due to recent measurements
in high magnetic fields®: deviations of the magnetiza-
tion M (T,H) from linearity with the field H,H
dependence of the coefficient of the specific heat
(y=[C(T,H)/T)1=0). As recalled in Ref. 3, due to
quantum effects,* the critical exponents at the fer-
romagnetic transition at 0 K, should assume their
mean-field values. The critical spin fluctuations will
not affect the T =0 powers of the Stoner enhance-
ment S. It was thus expected’ that the H dependence
of M would qualitatively be the same at 0 K, as that
of the Stoner-type result.” But at finite T, paramag-
nons modify by one power of S the zero-field T
dependence of the susceptibility,! compared to the
Stoner result.

It is the purpose of the present paper to provide
1

analytical formulas, at finite H and T, for M (T,H)
and y(H), taking paramagnons into account. We
give the result for a parabolic band but it could be
generalized for a given band structure. Other au-
thors® recently computed such field dependences, but
their results were given under the form of complicat-
ed integrals difficult to compare with our present
results; we note though that in Ref. 6 H always ap-
pears through the combination SH while here it rath-
er involves S¥2 H. This last combination, we believe,
ought to be the correct one due to the above-
mentioned quantum effects imposing the critical ex-
ponent in H ~ M?® to assume its mean-field value
5=3.

We start with the same paramagnon formalism as
that in Ref. 1 (hereafter referred to as BMMF) with
the same notations, although M is used for the total
magnetization, and to simplify we suppose that the
number of particles per unit volume N/V =1, which
does not affect the final result:

F(T,M)=G(T,B)+1(1-M*)/4+AF(T,B)—MB .

m
B is defined by (9F/9B ) =0; besides, H
=90F/dM. These two equations yield
M = [~ XpauiB + (3AF/3B) | _guapi+ims2 - ()

AF is given by the same diagrams as in BMMF:

AF=(T/2) 3, (In(1—1%"**X"7) + IO +In(1 = IX** ) + IXM* ~+In(1 - IX>" ) +Ix"Y 3)

T.e

in terms of the dynamic susceptibilities in the absence of interactions,

X0 B=— S(fS —fE ) [o+e%— 5 s +insen(h 5 —€5)])
¥

a, B are spin indices, the f’s are the Fermi functions expressed in terms of the fermions energies in atomic units
g‘%’-”= p%/2—p+ (a, B)B, n is the chemical potential, B is in units of energy. All that is reproduced from

BMMF. Now straightforward algebra gives
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h —h_ he+ -
Rex™ =N (Ef) M_.._l_(hg_xg)ln.f_ﬁ_L(hg_y,g)lnm i
q 8q hy—x+ 87 h-—y+
Rex* *(@,h) =Rex"*~(—w,h) =Rex™* (@, —h) , &)

X4=x*h/23, y,=y th/27 .
N (EF) is the density of states per spin at the Fermi level, kr the Fermi momentum. In the region of interest,
where Imx%# is linear with @, one has

Imx%f =N (Er) (w/8) (@/@)r¢ , \EE=0(h% —y))o(hz—x) , A*F=0(hk-yi)e(hl—x1) . (6)

A¥ is defined in a domain symmetric from the one of A* with respect to the g axis. The above-defined domains
played a key role in the further integrations over g and @. Note that in the (®,g) plan there are gaps for small 7
and w around the origin, for the transverse susceptibilities due to the presence of B. The ®=0,7 <1,and h < 1

expansions are useful:

=2 2
Rex**~(@=0) =Rex*(&=0) zN(EF)[I - _ A
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ReX***(5=0) +Rex*(&=0) zzN(EF)[l -L ——hg—(l +q)+ ] :

We found it more convenient to calculate [AF (B) — AF(0)] which makes immediately evident the finite terms

in B. We find

AF(T,B) —AF(T,0) = Xpauila(T,1) B2+ B(T,T)B*/(4EF) + - - - ] )

in appropriate units, where a and g are functions of T =T/Tr and of the dimensionless interaction T = IN (EF),
or the Stoner factor § = (1—171)!; in units of the square of the magnetic moment, Xp,y; is 2N (Er). Then (2)

and (8) yield

- 2
M(T.H) =xpaunH|——‘—"— H 1

1-T+al | EF 0—-T+al)*

] . ©

Expanding further, for low T << Ty, and low H << T«/~/S, with the spin fluctuation temperature

Ty=(1—T1)Tr (Tr the bare Fermi temperature), we obtain

2
M (T.H) =S XpouiH H

T?

|

On the other hand we find (for a parabolic band)

ﬁozé. ay=m’/6, B1=~23w%24’, H<<T,
(1)

Bo=+, ar=u4, B1=2Tn%/24>, T <<H .

Several remarks arise at that point:

(i) As recalled above and detailed in Ref. 4, the
fluctuations do not affect the T =0 behaviors:
B(T =0) =g, is the value computed in the Stoner-
Wohlfarth theory’; a(T =0) = aq is assumed to have
been incorporated in the definition of 7in (9) and is
extracted from experiments. In contrast, the T
dependences of a and B8 do diverge with S: The fluc-
tuations greatly enhance the finite temperature
dependence of M. For comparsion, the analog of

T2

2 2
1—a,s2%—30s3——+(;3,+4a,ﬁo)s2——s3i ] : 10)
F

T TP

(10) in the absence of fluctuations, as given in Ref.
5, would contain ST?/T? instead of S2T%/TZ.

(ii) (M/H) y-o must be compared to the result
X(T,0) in BMMF. The H << T limit of « in (11) is
m%/6=4m2/24 to be compared with the result in
BMMF, 3.2 #%/24=[4— (8/%?)17?%24. The extra
term 8/7? arose from less-important contributions in
the integrals that we have neglected here; neverthe-
less the coefficient in BMMF, 3.27%/24 = 1.3, was
more accurate than (although very close to) the one
we have here, 47%/24 =1.6.

(iii) The first term in (9) appeared with such a
form in the theory of Moriya and Kawabata.” As al-
ready pointed out elsewhere,® their formalism is
identical to the one derived earlier in BMMF that we
use here.
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(iv) As emphasized in Refs. 3, 8, and 9, one notes
the scaling in ST/TF and the one in S*2H/ Tk
=+/S H/ T which is in agreement with the relation,
at the ferromagnetic transition (T =0,/ =1),
H ~ M?®=3, where one replaces M by xH ~— SH.
Thus the results of Ref. 6, which do not contain the
same scaling, appear doubtful to us.

(v) From (10), it is clear that the deviations of M
from linearity with respect to H are less pronounced
when T increases. To observe the nonlinear

3/2
'Y(H)_'Y(O)‘—XPaulial H

[——- + 280

2(11

As pointed out in Ref. 3, the lowest field dependence
of y(H) —y(0), i.e., the first term in (12), follows
from the curvature of X(T,H =0) at T=0. Howev-
er, at higher fields, or strong enough values of
[81/(2a;) +2B,], the H* term in (12) being of oppo-
site sign, may counterbalance the first one. This
seems to be the case in TiBe, (Ref. 11) where, at
H=1T, y(H) <v(0), while x(T,H =0) first in-
creases with T: however, it was pointed out to us'?
that at 7 T, X(T,H) decreases rather than increases
when T increases. Therefore the predicted values
given in Ref. 3 for the relative variation of y(H) at
7 T was erroneous since it corresponded to the extra-
polation of the first term in (12) to a field value (7
T) where X(T,H) —x(0,H) does not have the same
sign that X(T,H =0) — x(0,H =0); in that case, the
2nd term in (12), but also higher-order ones (not
computed here), ought to be checked. In contrast,
for Pd, where M remains linear in H up to about 35
T (see Ref. 39 in Ref. 3), the H? term in (10) and
the H* term in y(H) must be very tiny and, from
x(T,0) increasing with T, one expected® a small in-
crease of y(H) with H;, some experiments (Ref. 34
of Ref. 3) found a strong decrease while others'? did
observe recently a small increase.

(vii) A discussion was given elsewhere® concerning
the T variation of the nuclear relaxation rate 77! in
strongly enhanced paramagnets, recovering the pro-
portionality to Tx(T) already proposed by Moriya
and Ueda'® but also pointing out a scaling in T/T
below and above T. If X(T,H) replaces X(7,0) in
the finite field dependence of T1!, then one can
write at low T << T and H << T/~/§, Ti!

« T[M(T,H)/H], with M (T,H) given by (10). This
is qualitatively analogous to the result derived in Ref.
15 but with different numerical coefficients. We note
however that Ref. 15 used a supposedly general ex-
pansion for small 7 and w/q for the transverse sus-
ceptibility x®=*, which appears incomplete to us; such
terms as h/g> [that we have in (5)] are missing, for

behavior, one would need higher fields at high tem-
peratures than at low 7. For a different band struc-
ture, when a;, By, and B8; would be all negative in-
stead of positive here, then M (T,H)/H would in-
crease with H (instead of decreasing here), but less
and less so when the temperature increases; this is in
qualitative agreement with what is found in TiBE,.!°

(vi) From the Maxwell relation’? 9M /8T
=9S/8H, we deduce 9?M/dT?*=dy/dH, which thus
yields with (10) (for a parabolic band)

S3/2H 2 DR
]

instance. The respective ratios of the four small
quantities g, ®/q, T, and h must be handled with spe-
cial care since the domain of integration in the (®,g)
plan is very tricky as can be seen from (6).

Our main result (10), with positive coefficients
(11) can apply to two physical cases: liquid *He,
where there is no band structure and (11) applies as
such, and UA1, which behaves the same way (Ref. 7
of Ref. 3), but whose band structure has not been
calculated so far. Recent experiments on this last
material'® exhibit a variation of M vs H in qualitative
agreement with our result: M deviates from linearity
with H around 15 T at low T but remains linear at
much higher fields at high T, for which we expect
that one would need higher fields to observe non-
linearity. A quantitative comparison is difficult
though, since our result only applies for T << T,
and for H << T/ (SBo) "2, conditions which are not
all fulfilled in the experiments. One remark: for this
compound where S ~4, (§8,)/2=1 so that the
characteristic field equal to T/ (SB8,) "2 is practically
equal to T but for higher values of S, for instance
in TiBe, (S ~ 65), the two values will be different.
For liquid *He, we expect deviations from linearity
for M vs H to be of order 2% at 100 kG at 15 mK, at
melting pressure where S ~ 20; but in confined
geometries, if S can be as large as 60,7 then the cor-
responding effects are expected to be larger, ~25%.
The characteristic field where nonlinearity is expected
to occur is estimated to be about 90 T at melting
pressure for the bulk, but may be reached below —18
T in confined geometry if an S value of ~60 can be
achieved.
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