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The two-dimensional Potts models were simulated with the use of a Monte Carlo method.

This study is unique in that we simulated the weighted percolation clusters first described by

Kasteleyn and Fortuin in 1969. %'e describe an auxiliary data structure which enables us to
determine the connectedness of large clusters very efficiently. Our simulation of the per-

colation problem was found not to be affected by a critical slowing down. Critical ex-

ponents were found by studying the size and shape of large clusters. Our results agree with

previous studies done on integer values of q, and with the conjecture of den Nijs.

I. INTRODUCTION

The Potts model' is defined as a lattice of spins
that can take on q different values o; =1,2, . . . , q
and interacting by the Hamiltonian

H= rC g S—... (1.1)
&ij)

5 is the Kronecker delta and (ij ) denotes summa-

tion over nearest neighbors. The constant K in-

cludes a factor of 1/kqT. The two-dimensional
Potts model undergoes a phase transition which is
still not completely understood.

More than a decade ago, Fortuin and Kasteleyn
showed that the Potts model is equivalent to a
weighted percolation problem. Their construction
allows the Potts model to be generalized to nonin-

tegral values of q. Temperley and Lieb used the re-

sult of Fortuin and Kasteleyn to prove the
equivalence of the Potts model to the six-vertex or
square-ice model, with staggered polarizations.
Baxter, Kelland, and Wu4 (BKW) have since found
a very elegant derivation of the result of Temperley
and Lieb. They use a construction hereafter known
as the BK% construction which makes many exact
results obvious, including the critical temperature,
self-duality, and energy at criticality of the Potts
model.

Baxter used the equivalence to the six-vertex
model to show that the Potts model has a first-order
phase transition for q ~ 4, and he also computed the
latent heat.

The weighted percolation problem is a two-
dimensional square-lattice-bond percolation problem
with weight functions

{1.2)

where r is the number of connected regions, A, is
e ', and b is the number of bonds connecting
nearest-neighbor pairs.

This is a difficult problem to simulate, because,
with each proposed change, connectedness must be
determined. If large regions must be traced out,
then huge amounts of central processing unit (CPU)
time will be consumed. We have implemented an al-
gorithm which determines connectedness quickly us-

ing an auxiliary data structure. This data structure
turns out to be based upon the BK% construction.
Although the data structure appears at first to be re-
latively complicated, the Amdahl 470 V/7 at the
University of Chicago can effect a change in less
than 50 ps when simulating a heat bath. This algo-
rithm would be useful in the study of "lattice an-
imals. " '

%e measured the exponents FH and FT, where

FH is the magnetic exponent and FT is the tempera-
ture exponent.

II. THE METROPOLIS METHOD

The METROPOLIS method is a simulation of the
manner in which a solid-state experimentalist would
study a real system. If he wanted to study a fer-
romagnetic at temperature T, then he would put a
sample in an oven held at temperature T. %'hile in
the oven, the ferromagnet would exchange energy
with the surroundings. As the surroundings are
presumed to follow a Boltzmann distribution, the re-
lative probability of our system'gaining a quantity E
of energy in a single interaction is proportional to
exp{—E/ka T).

In the case of graph configurations, the single in-
teractions are taken to be the changing of a single
link. Our simulation proceeds as follows.
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AAA$

C,) I
Il

I „n
~II' RI4

I gl E
'I

I) $ «)(~ )ir
1 I

ll~l I~ ~lj t

'nI
I

I

I I
I I

( r
I I

I a

I
1

I
~ I

I

I

I
I

t I

I g'\

I'n'
I

I

I
IIV,

J
I
I

(g ~1
{

r

V I

Point in the lattice L

Point in the duol lottice L

Bond in L or L

--- Boundor~ used in Boxter's construction

FIG. 1. Baxter's construction and the Euler equation.
In this instance of a 3)&3 lattice: I=4, b=7, v=3,
N =9. The Euler equation, b +2r =N +/, holds.
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Step 1: %'e pick a link and propose changing it.
Step 2: Find out by what factor 58', the weight

function, changes if we change the link variable.
Looking at Eq. (1.2) we see that 5W =qs'A, with 5b
the change in the total number of bonds. If the link
originally has s bond, then b= —1. Otherwise
b =+1. Similarly, Sr is the change in the number
of connected regions.

Step 3: Generate a pseudorandom number X uni-

formly distributed from 0 to 1. Change the link if
X ((5W')/(5$'+1).

Step 4: Return to step 1 unless the experimenter
has decided that the system is sufficiently equilibri-
ated.

Step 2 is nontrivial, as connectedness, a nonlocal

property, must be determined with every iteration.
The straightforward way to determine the connect-

edness of two points is to start at the first point and

enumerate all points connected to it until either the
second point is reached, or an entire connected re-

gion has been enumerated. This is adequate if the
clusters are small (tens of points), but if large clus-

ters are involved then thc CPU time requirements

can grow unreasonable. A method to quickly deter-

mine the connectedness of large two-dimensional
clusters is described next.

IH. THE FAST ALGORITHM

The fast algorithm is based upon the BK% con-
struction. They consider a lattice L, with X points,
together with its dual lattice L*. If a bond is
present on L, then its dual bond L~ is absent, and
vice versa. The boundaries between graphs on L and
their dual graphs on L~ will form s collection of
closed loops, as shown in Fig. 1. One then has the
Euler relation,

FIG. 2. (a) Addition of a bond to a 3X3 lattice with

the destruction of a connected region and a loop is

demonstrated. (b) Addition of a bond with no change in

the number of connected regions, and the creation of a

loop.

which relates the number of regions and bonds to
the number of loops /. Baxter, Kelland, and %'u use
the Euler relation ss part of their demonstration of
thc equivslencc of the Potts model and the six-
vertex model. By representing thc loops in a com-
puter, one transforms the problem of detcrming con-
nectedness to the problem of determining if two
loop segments are part of the same loop. Figures
2(a) and 2(b) illustrate the addition of a bond with
and without thc destruction of a region.

The boundaries are represented in the computer as
a chain of pointers. A pointer is a memory location
containing the address of an object, in this case the
address of the next pointer in the chain. The con-
cept of "express pointers" is used to traverse out
loops morc quickly than one step at s time.

Figure 3 shows a graph on a lattice with pointers,
represented by arrows. Pointer A points to pointer
8, 8 points to C, ctc. In this manner the loops are
represented by chains of pointers. Because of the
Euler relation, [Eq. (3.1)], we can determine 5r if we
can determine 5I, the change in the number of loops.
Link L j illustrates the case in which removing the
bond will divide a loop into two loops, while line L2
illustrates the case in which two loops will be joined
if the bond is removed. In every case, two cuts must
be made in our chains snd the four ends rejoined if
we are to change a link. In thc case of L~, the
A~8 snd the E~I' connections must be severed
and we need to set A~F and E~B. Finally, wc
note that in order to determine the case of L &, it suf-
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FIG. 3. 3X3 lattice with chains of pointers, as dis-

cussed in the text. A ~B, E~F, but when bond L l is re-

moved then A ~F, and E~B and one loop is split into
two. Removal of L2 changes R~S and T~U to R~U
and T~S. In this case two loops are joined into one.

fices to have determined that A and E are in the
same chain. In summary, pointers in chains can be
used to represent the boundaries used by the BKW
construction, and such data structure can be used to
find 5W needed for our Monte Carlo simulation

provided we can do two things: (l) determine if two

given pointers belong to the same chain, and (2) be

able to cut and then rejoin our chains of pointers.
The concept of express pointers enables us to
traverse our pointer chains very quickly. After
describing the general nature of express pointers, we

will present the actual data structure used to simu-

late the weighted percolation problem.
Look at Fig. 4(a) and consider the problem of

traversing the chain of pointers from A to B. If the
chain has N links, then the time required to traverse
the chain at level 1 grows linearly with N. If every
fourth pointer is associated with an "express"
pointer, analogous to the express stations in a transit

system, then the time to traverse at level 2 grows

only as N/4. We can traverse level 2 four times as

fast as level 1. Of course we must first traverse

along at level 1 until we reach an express station, but

this is usually only a few stops. Similarly, we can
add a third level and traverse long chains 16 times
as fast. Ultimately, if enough levels are added, then
the time to traverse a chain becomes dominated by
time spent at lower levels trying to reach the next
express stop. The time to traverse a chain then
grows only as log(N).

Figure 4(b) illustrates the actual data structure
used in our implementation. Pointers are assembled

A B

( b)

Sqrnbo I s:
A Iong Pointe r

Up Pointer

FIG. 4. (a) Illustration of an express pointer. (b) Data
structure used by our program. The up pointers allow one
to trace from level 1 to Name. The along pointers allow

one to follow the loop and are used in updating the up
pointers.

into pairs, one part of each pair is called the along
pointer and is analogous to the pointers in Fig. 2(a)
discussed previously. The other part of each pair is
called the up pointer. This pointer points to the pre-
vious express station at the next highest level. The
top-level up pointers contain a unique name which
identifies each different loop.

The data structure of Fig. 4(b) allows us to easily
find out if any two given level-1 pointers belong to
the same loop. One simply traces the up pointers
until the name is reached, then compares names.

When loops are cut and rejoined as described ear-
lier, then the names are updated differently depend-

ing on whether two loops are being joined, or wheth-

er a loop is being split, but otherwise the problem is
simply that we must join cut-end A, whose along
pointers contain wrong values, to cut-end B, whose

up pointers contain the wrong values. Figure 5(a) il-

lustrates this. There is an X in each pointer which
has the wrong value. In order to update the data
structure in this case, one must do the following.
First, load the along pointers on end A with the
proper values. Figure 5(b) shows our data structure
after this has been done. Next, the up pointers on
end B. This starts at B and continues until an ex-

press station is encountered on the B end. Usually
only a few up pointers need to be changed. Lastly,
if two loops are being joined, then the names on end
B must be made to be the same as the names on end
A. If a loop is being split, then a new name must be
made up and this name applied to one of the two
new loops. When two loops are to be joined and
each has a different number of levels, then the situa-
tion is slightly more complex but can still be han-
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FIG. 5. Illustration of the joining of two chains. (a)
End A is to be joined to end 8, nothing has yet been done,
so the along pointers of end A and the up pointers of end
8 contain improper values. (b) The along pointers of end
A have been filled. (c) The fully updated chain.

died in a straightforward manner.
Figure 6 shows the relation of the stations to the

lattice L. There are four level-1 pointers for each
lattice point. Each level-1 pointers for each lattice
point. Each level-1 pointer lies between a lattice
point and a dual-lattice point. In this way, every
boundary between a lattice cluster, and the dual-

lattice points, such as the loops of Fig. 1, is natural-

ly associated with a closed chain of pointers at level

1. One in four level-1 pointers is associated with a
level-2 pointer. In this case, only the highest level

pointer is explicitly shown in Fig. 6. Similarly,
every fourth level-2 pointer is associated with a
level-3 pointer, etc. In our simulations we used a
256X256 lattice with 9 levels of pointers. In order
to save memory, however, the level-1 pointers were
not stored and a subroutine traced along the graph
until a level-2 pointer was encountered.

This entire procedure was programmed in assem-
bly language and run on the Amdahl 470 V/7 at the
University of Chicago. When the weighted percola-
tion problem is simulated, it takes less than 50 ps to
compare the names of the two loops and, if needed,
make two cuts and rejoin the four ends. All of our
work, other than debugging, was done using a
256)(256 lattice.

X- Point on dual lattice~ Point on Lottice L

Level 1 Pointer

Level 2 Pointer and Level 3 Pointer

Level 3 Pointe r, Level p, and Level 1 Pointer s

4 Level 4 Pointer, Level 3, Level g, and Level)
Pointers.

FIG. 6. Location of pointers on the lattice L.

IV. A COMPARISON OF METHODOLOGIES

The Potts model has been studied extensively

by numerical simulation. Monte Carlo
renormalization-group (MCRG) calculations have
yielded accurate values for critical exponents. These
simulations can only work when q is an integer.
They are also plagued by a critical slowing down
when close to criticality. Although updating a con-
ventional Monte Carlo simulation or a MCRG
simulation is simple and fast, the critical slowing
down makes the process more CPU intensive than
the percolation method whenever the correlation
length exceeds —10 lattice lengths. At the time this
work was being performed, Nightingale and Blote'
studied the Potts model with noninteger q by calcu-
lating the transfer matrix for lattices of various
widths. They obtained results that are essentially
exact for the n)(ao lattice, but the work involved
grows in a nonpolynomial fashion with increasing n,
so that calculations with n & 10 become prohibitive-

ly expensive. Nonetheless, extrapolation in n (by
Pade approximates and other methods) has yielded
results for Y~ and YT which appear to be accurate
to 0.1%%uo and agree with the conjectures of den Nijs,
of Pearson, and of Nienhuis et al. "' This study
used the loop data structures based upon the BKW
construction. An alternative would have been to use
a straightforward tracing procedure. Tracing out
even a small cluster is generally no faster than fol-
lowing its boundary, so the loop data structure im-
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poses no overhead in CPU time. In practice, howev-
er, the overhead in memory usage is large, and the
added complication of the data structure makes pro-
gramming and debugging more difficult. The CPU
savings are greatest for configurations close to criti-
cality.

The mean cluster size (weighted by size) was
found to be roughly 5000 spins. Thus to check con-
nectedness by tracing requires thousands of itera-
tions. The loop method requires roughly (4+ l)
Xlog(5000)=30 iterations to perform an update.
Therefore, it is up to 2 orders of magnitude faster.
In practice, a tracing alogrithm which is optimized
is faster than this would indicate but the loop data
structure still gains an order of magnitude in speed.
As with the conventional simulations, there is no
longer an advantage of the loop data structure once
the correlation length is & 10 lattice lengths.

V. ADVANTAGES OF METHOD

A. No critical slowing down

When q &4 the graph configuration equilibrates
very quickly. A 256 lattice has no observables with
a correlation time greater than one pass through the
lattice. Thus, after 10 to 20 passes, the system has
lost all memory of the starting configuration and
can be said to be completely equilibrated.

In contrast, when the Potts model is simulated
conventionally changing the state of one spin at a
time, then the slowest moving observables have a
correlation time which increases as a power of the
lattice size. For q =2, this power has been deter-
mined to be approximately 2, Swendson et al. '

have to equilibrate their system with tens of
thousands of passes through the lattice before they
start to collect data. The block spins used in his
MCRG studies are relatively slow moving, so that
he must make 16 passes through the lattice between
measurements. Sixteen steps is still not enough to
remove a relatively strong time correlation between
samples for the largest block spins. They have typi-
cally used a 96 by 128 lattice. Thus, the simulation
of weighted clusters could even be useful for gen-
erating configurations for a Monte Carlo study of
the Potts model, if one wants to perform many de-
cimations.

B. Clusters are interesting

The weighted percolation clusters are interesting
in themselves. They are not accessible by other
methods.

C. q need not be an integer

From the point of view of simulating the graph
configurations, q is simply a real number. Obvious-

ly, the Potts model does not even make sense, unless

q is an integer. At this time there are two reasons to
be especially interested in noninteger values of q.

At this time, there are conjectures for both the
heat exponent YT,

" and the magnetic exponent
YH. ' The first is due to den Nijs; the second has
been formulated independently by both Nienhuis
et al. and by Pesrson. These conjectures are in
agreement with what is known about the Potts
model with integer q. The work of Nightingale,
Blote, and Derrida' is the only other work to study
noninteger q. Their work agrees with the conjec-
tures.

The four-state Potts model is of great interest to
theorists largely due to the logarithmic corrections
to scaling which occur largely due to the logarith-
mic corrections to scaling which occur there. ' The
four-state Potts model is not well understood, and
the study of models with q near to four could give
insight into the behavior of these systems.

D. Clusters are more useful

A single conventional Potts-model configuration
can be obtained from a graph configuration by
choosing a random number from 1 through q for
each cluster and assigning each spin in the cluster
the random number as its value. Thus, for one

graph configuration, one can obtain q' different
Potts-model configurations. For a 256X256 lattice
r, the number of clusters is generally several
thousand. Thus one graph corresponds to a very

large number of Potts configurations. Anything
which is measured directly from the graph
represents an average over all of the spin configura-
tions which could be obtained from the graph.

Consider the case of measuring the two-point
correlation function. If one looks at spin configura-
tions, then one counts how often two spins a given
distance apart take on the same value. In the case of
random spin configurations, two spins will take on
the same value one time in q. Thus counts obtained
once for every q measurement do not represent an
effect of the physics, but are just a background
which is theoretically uninteresting. From the point
of view of measuring the two-point correlation func-
tion, these "accidental" counts are a background of
random noise which must be subtracted out. In the
case in which the real correlations are smaller than
—,, then the measurement will be very difficult. In

contrast, if one looks at graph configurations, then

one simply counts how often two spins a given dis-
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FIG. 7. This is a large cluster corresponding to q =3
and E =E,.

tance apart are in the same cluster. The case of a
random spin configuration corresponds to the graph
with each point in its own cluster; there is no back-
ground to be subtracted out. Furthermore, by
studying one cluster at a time, one can spend com-
puter time counting spin pairs which are correlated,
rather than grinding through the many spin pairs
which are in different clusters.

VI. RESULTS OF THE SIMULATION

When the simulator was programmed in assembly
language and run on the Amdahl 470 V/7 at the
University of Chicago, the time needed to examine
and change, if needed, one link was found to be less
than 50 ps. This is far longer than an Ising simula-
tor, but it is fast enough to make the simulation of
large lattices practical. When the lack of critical
slowing down is taken into account, then it com-
pares well with the more conventional simulation of
spin systems.

For q &4, we obtained large clusters after only
10—20 Monte Carlo steps per link even when the
starting configuration contained no links. Figure 7
is a cluster obtained in the case of q =3. Thus
long-range correlations build up very quickly, in
contrast to the dynamics of a conventional simula-
tion. Also, the relaxation time for the total dumber
of bonds was found to be only about one Monte Car-
lo step per link.

This simulation produces percolation configura-
tions which are expected to exhibit scaling, as does
simple percolation. At criticality, n (s), the number

VII. FRACTAL DIMENSION-
THE MEASUREMENT OF YH

Fractal is a word coined by Mandelbrot' to
denote objects of fractional dimension. He uses the
Hausdorff-Besicovitch definition of dimension.
This definition tells us to cover the object with
spheres of radius r. If at least V, spheres are needed

!0

10
n(s)

J0

IO
I

IO

I

I00
I

l000
I

t04

FIG. 8. Graph of n (s) vs s for the Ising model.

of clusters of size s is expected to be a power of s.
Figure 8 is a log-log plot of n (s) vs s for the Ising
model (q =2). The very linear behavior over 4 or-
ders of magnitude indicates that we have fully
equilibrated our configuration and that scaling is oc-
curring.

With q =4, the relaxation time for the total num-
ber of links was found to be very long, at least hun-
dreds of steps per link. For q &4, the transition is
first order, so one would expect to find that a graph
that began with no bonds would evolve into one
with a number of bonds corresponding to the upper
energy state of the system. When we tried q =5,
however, we found that the total number of bonds
changed very slowly and in 100 steps per link, never
reached the neighborhood of the high-energy state.

From the study of our clusters, we were able to
measure the exponents YH and Yz-. The details of
the methods will be discussed later. The accuracy
was just over 0.3% in the case of YH, and just over
3% in the case of Y~. In comparison, the MCRG
study' of Swendson et al. obtained 1% accuracy
for Y~ and 2% for Yz. Our measurements of YH
were based on only 30 configurations for each q
value and those of Yz on only a total of roughly 70
configurations for each q value. We can generate
and study roughly five configurations per minute
using the Amdahl 470 V/7. To determine a set of
exponents, Swendson et al. , with the use of MCRG,
typically used 50000 passes through a lattice that
was about —, the size of ours and an algorithm that
is unlikely to be more than ten times faster.
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TABLE I. Measured values of YH.

0.5
1.0

1.5
2.0
2.5
3.0

3.5
4.0

Method
1

1.918
1.900

1.880
1.882
1.875
1.877

1.870
1.90

Method
2

1.868
1.827

1.820
1.800
1.782
1.808

1.750

Method
3

1.894
1.878

1.869
1.857
1.844
1.853

1.840

Theory

1.924
1.898

1.892
1.875
1.877
1.870

1.868

Other

1.895

1.875

1.8666
1.870+0.1%
1

1.83
1.875

Other method

YH ——2f(1+1/5),
5=18 from
Table II in

Ref. 7

Exact (Onsager solution)

Exact'9 Hard hexagon model (Ref. 18)
MCRG (Sw'endson, Ref. 13)

MCGR (Ref. 13)
exact' (Ref. 19)

'These models are believed to be in the same universality class. Theory is conjecture of Nienhuis et al. and Pearson:

II=(2—FH)/( Yr), P= —,z
(I+2u jm ), cos(u)= —~q. I used my measured value of Fr from Table II in computing I'H

from these formulas. Methods 2 and 3 were not used for q =4 as they were used with open boundary conditions and there

were no large 2-4 clusters with open boundary conditions.

and if V„~r, then d is said to be the dimension of
the object. %e expect that d = YH. To implement
this definition exactly is difficult, so an effective
fractal dimension was measured. Three different de-
finitions of effective fractal dimension were tried.
The first is very close to the Hausdorff-Besicovitch
definition, the other two are an adaptation of the
Kadanoff-Migdal recursion relations used in the
study of scaling of spin systems. ' Only the first
method gave values of YH in agreement with other
work. In his review article Stauffer gives nine dif-
ferent ways to measure fractal dimensions of per-
colation clusters, stating that different methods gen-

erally give different results. The seemingly simple
concept of fractal dimension involves subtleties
which are not yet fully understood. I will return to
this after describing the methods and results.

A. Method 1

Method 1 is very simple. One picks at random a
single point of the large cluster under study and
draws a square of side r about the point. Next, one
counts the number of points belonging to the cluster
that are also within the square. Lastly, one picks
more points and does more counting until an accu-
rate average, denoted D„ is obtained for the number
of points belonging to the cluster which fall within a
square of side r and centered about an element of the
cluster. If D, -r+", then we say that the cluster has
dimension d according to method 1. A quick look
at Table I, where the results of this method are list-
ed together with the values of YH known through
other methods, will show that this method works
weH.

Figure 9 is a log-log plot of D„/r vs r for q =2.
Twelve different r values ranging from 3 through
155 and forming an approximately geometric pro-

Method 1 is based on the assumption that if the
number of spheres of radius r needed to cover a
cluster behaves as r ", then the number of points
within a sphere of radius r behaves as r . The de-
tailed shape of the "sphere" should not rnatter, so I
used squares of side r. If one were trying to cover a
cluster with a minimum covering, then one mould
not place spheres so that only a few spins near the
circumference were included in the sphere. There is
reason to suspect that the failure of methods 2 and 3
is due to a boundary effect. %'ith this in mind, I
formulated method 1 to use only squares whose
center is also an element of the cluster being studied
(to do this, r, the side of my squares, was always
odd).

09

O.7
2

0.6

0.55—
I I l l

&9 27 Be 5577 )09155

FIG. 9. log-log plot of D, fr (relative "area") vs r
from method 1 of measuring fractal dimension.
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FIG. 10. An example of method 2 for the measure of
fractal dimension —a block-spin decimation.

gression were used. Only clusters larger than 10
points were used. The relatively large fluctuations
for large values of r are statistical. One can fit this
data to straight lines with roughly 5% accuracy.
Because the slope is YH —2 and YH is close to 2, we
find YH to within 0.3%. The results of these mea-
surernents are included in Table I. Although the
agreement is never far from 0.3% there may be
some systematic error, as the measured values of YH
are slightly higher than expected for the integer q
values. This is believed to be caused by the finite
size of the clusters studied. Our method should only
work when the size of the squares is small compared
to the size of the cluster being studied. In the future
we hope to be able to correct for this effect. The
agreement with previous determinations of YH for
the integer q values gives us confidence that this
method is reliable at the 0.5% level. The data avail-
able at this time is consistent with the conjecture of
Nienhius et al. and of Pearson.

B. Methods 2 and 3

Methods 2 and 3 are very similar and will be
described together. Both are based on a decimation
scheme similar to the real-space renormalization-
group methods used to study spin systems. We as-
sume that we have a cluster Co on an N)(N lattice
L& and that there are Vo points in the cluster. Form
the N/2&N/2 lattice Li by assigning one block
spin in L 1, to every four spins of Lo as illustrated in
Fig. 10. In the case of method 2, form the cluster
C i on the lattice L ~ by assigning a point of L

&
to C i

if at least one point of Lo is in Co. Method 3 differs
from method 2 only in that we require that at least
two of the points in Lo corresponding to the point
of L& be in Co before assigning the point in L& to
C~. C2 is to be constructed out of C& and put on the
N/4XN/4 lattice L2 in the same manner in which

Ci was constructed from Co. When we have
constructed C~, C2, C3, . . . , and measured

V), V2, V3, . . . , then if Vk ——2, one says d is the
effective fractal dimension of the cluster. Figures
11(a}and 11(b}are log-log plots of data obtained us-

ing these methods, again, as d is known to be close
to 2, we show not VI, directly but Vk/2 . The re-
sults of these two methods are included in Table I.
As one can see, the values of YH are much too low,
and method 2 is worse than method 3. YH too low
means that the volume Vk is not decreasing fast
enough with successive decimations. This is evi-

dently caused by the boundary. After k decima-
tions, a 2")(2 square, which barely touches the
cluster, will end up being included, so that our de-
cimated cluster will not be a coarse-grained version
of the original, but rather a coarse-grained version
of the original plus all points within 2 lattice spac-
ings of the original. This would not be a problem if,
as is the case for normal sets such as a large disk,
the number of boundary points were small compared
to the number of interior points. Percolation clus-
ters have just as many points on the boundary as on
the interior. ' Method 3 is better than method 2, be-
cause the stricter criteria used keeps the decimated
clusters from spreading as fast.

In conclusion, we have a method, method 1, of
measuring the fractal dimension of clusters, which is
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FIG. 11. (a) and (b) Representative data for methods 2
and 3 for the measure of fractal dimension, respectively.
In each case q =2 and the relative "volume" has been
multiplied by r (=4 ) with k as the number of decima-
tions. Thus the slope of the line measures the difference
of FH from 2.
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FIG. 12. Measured values of F(x) (log]0 scale) vs the
dimensionless variable Z with q =2 and K/E,
=0.8,0.9,0.97.

VIII. MEASURE OF YT

YT is the temperature exponent which describes
the scaling behavior, or dimensionality of energy.

reliable. On the other hand, the examples of two un-
reliable methods, which intuitively appear to be
correct, demonstrate that fractal objects can behave
counter to our intuition, so that one must be very
careful. At this time the failure of methods 2 and 3
is believed to be due to a boundary effect, an effect
which in large is due to the demonstrated fact that
percolation clusters have as many boundary points
as interior points.

6—
C

I

Thus z =S(K —K, ) is dimensionless.
(YH/YT) .

If scaling works, then

N(S,K) ~ S 'F(z),
K~K
S~ to

(8.&)

where ~ =1+2/Yz, S is the cluster size, K is the in-

teraction strength, and z =S(K —K, )

N (S,K) is the mean number of clusters containing S
spins (per unit area).

Figure 12 compares F(z) as measured with Q =2
and K/K, =0.8, 0.9, and 0.97. The error bars are
statistical. The large errors for large Z and K close
to K, result because one must count large ( —10
spin) clusters to measure these points and such clus-
ters occur infrequently.

-In (&:~)

FIG. 13. Illustration of the slope of the exponential tail
of G(z) vs ln[(K, —K)/K, ] for K/K, =0.8, 0.9, and 0.97.

TABLE II. Measured values of YT.

0.5
1.0

1.5
2.0
2.5
3.0

3.5
4.0

Values of P/P, compared

0.8, 0.7
0.93, 0.87, 0.8

0.97, 0.9, 0.8
0.97, 0.9, 0.8
0.97, 0.9, 0.8
0.97, 0.9, 0.8

0.99, 0.97, 0.9, 0.8
0.99, 0.97, 0.9, 0.8

This work

0.52
0.73

0.86
0.99
1.04
1.17

1.29
1.41

Theory

0.561
0.75

0.8867
1

1.102
1.20

1.305
1 ' 5

Other

0.733+0.008
0.75

1.21 —1.22
1.20

1.34
1.50

Other method

MCRG (Ref. 20)
MCRG (Ref.
23) site percola-
tion on a trian-

gle lattice

exact (Onsager)

MCRG (Ref. 13)
exact?' Hard
hexagon model

MCRG (Refs. 13 and 21)
exact?' Triplet
Ising model
(Ref. 22)

'These models are believed to be in the same universality class. Theory —the conjecture of den Nijs:
Yr =—[2+m /(u vr )];cos(u) = —,~—q.
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Y~ can be determined by comparing the functions
G (S)=S'N (S,K) for different values of E.
log[6 (S)] was found to behave as
log[G(S)]= —as+b for large S. Figure 13 shows
the values of log(a) vs log(E E,—) obtained by a
Least-squares fit to the data of Fig. 12. The line

through the points corresponds to YT ——0.987. YT
was measured by matching the exponential tails of
the functions G(S). Although logarithtnic correc-
tions are expected to be present when Q =4, no
unusual behavior was observed. The value of YT is

3
much lower than the predicted —, when q =4 and

this may be the result of logarithmic corrections.
1

The q = —, case is special because K had to be far
from K, in order to make the clusters smaller than
the lattice. The measured value of YT may be dis-

torted by the need to work near K/K, =0.7.
Table II lists the measured values of YT together

with the values known from other measurements
and the values predicted by the conjecture of den

Nijs. Other than q =4, which is not a good test
case, there is good agreement both with other
methods and with the conjecture of den Nijs. As
with the measurement of YH, there appears to be a
systematic error, as the measured values are slightly
low. This may be caused by the use of a finite lat-

tice. Correction for these effects will allow for an

order of magnitude improvement in accuracy of the
measurement of the critical exponents. The pros-

pects for being able to make such corrections are
good.

IX. CONCLUSION AND FUTURE PROSPECTS

Simulation of the weighted percolation problem is
a practical way of equilibrating large Potts-model
configurations near criticality if our auxiliary data
structure is used to quickly determine connectedness
of percolation clusters. We demonstrated the utility
of this simulation by measuring the critical ex-

ponents of the Potts model and found the measure-

ments to be clean at the 1% level. The prospects for
improving the accuracy and order of magnitude are
good. However, in addition to simply using more
computer time to obtain better statistics, we need to
compensate for the effects of finite-lattice size. It is
hoped that our auxiliary data structure, based upon
closed chains of pointers, will find other applica-
tions in addition to the study of the Potts model.
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