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Magnetic and quadrupolar phase transitions in cubic rare-earth intermetallic compounds
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A new analytical approach of the problem of magnetic and quadrupolar phase transitions
in rare-earth intermetallic compounds is presented, in terms of single-ion susceptibilities
and within the Landau theory: The coefficients of the free-energy expansion are simply re-

lated to several magnetic, strain, and quadrupolar crystal-field susceptibilities, the expres-
sion of which is given for any multilevel system. The analysis of sign and relative magni-
tude of these susceptibilities leads to the different possible phase diagrams. Several exam-

ples are taken among the cubic rare-earth intermetallic compounds.

I. INTRODUCTION

The existence of quadrupolar interactions has
been established in several cubic rare-earth interme-
tallic compounds for the last few years. ' The most
obvious evidence is the possibility of a quadrupolar
phase transition, as observed for example in TmCd
(Ref. 3} and TmZn (Ref. 4): At a critical tempera-
ture T~—the quadrupolar ordering temperature-
the 4f quadrupoles order through a first-order tran-
sition, without any magnetic dipolar ordering
( T~ =3.16 K for TmCd}. According to the strength
of magnetic bilinear interactions, the magnetic 4f
dipoles (the usual tnagnetic moments} may possibly
order at a lower temperature TD—the magnetic (di-
polar) ordering temperature —as is the case for
TmZn ( T~ ——8.55 K, TD =8. 12 K).

In the case of bilinear interactions large enough
with regard to quadrupolar interactions —the most
frequent case—only one magnetic phase transition
occurs at TD and T& ——TD, since the quadrupoles
necessarily follow the dipoles at the magnetic dipo-
lar ordering. Nevertheless, the quadrupolar interac-
tions may act on the nature of the magnetic phase
transition: They may change a second-order transi-
tion into a first-order one, as observed for example
in DySb, TmCu, or TbP, or vice versa, as in

PrMg2.
Numerous theoretical works have been carried out

concerning the existence of dipolar and quadrupolar
phase transitions, in particular in systems with an
effective spin S=l, S=—,,

' or S=2." In the
presence of bilinear and quadrupolar interactions
these systems are characterized by two order
parameters, namely M=gjptt(J, ) and Q
=(3J,—J(J+1)), the temperature variations of
which are derived within the molecular-field ap-
proximation (MFA). According to the Landau

theory, an expansion of the free energy is made as a
function of M and Q in the vicinity of the critical
temperatures.

In this paper we want to show how a perturbation
theory in the nonordered phase may allow one to
analytically obtain the first terms in this free-energy
expansion relative to a classical Landau theory
without fluctuations, in multilevel systems where
the precise splitting of the 4f ground multiplet by
the crystalline electric field (CEF) is fully taken into
account. The coefficients of this expansion are
found related to several single-ion susceptibilities;
within the MFA, effects of symmetry breaking will
not be considered here (Sec. II). The analysis of
these susceptibilities may allow one to reach con-
clusions about the existence and the nature of mag-
netic and/or quadrupolar phase transitions: The
case where the quadrupolar interactions transform a
second-order magnetic dipolar transition into a
first-order one will be particularly emphasized. In
order to illustrate the discussion, examples will be
given among the cubic rare-earth intermetallic com-
pounds (Sec. III). The conclusion will be given in
Sec. IV. The present work constitutes a new analyti-
cal approach of the problem of magnetic and qua-
drupolar phase transitions in rare-earth intermetallic
compounds, in terms of single-ion CEF susceptibili-
ties.

II. THEORY

A. The Hamiltonian

The Hamiltonian used for describing the magnetic
properties of the 4f shell in cubic symmetry has
been extensively described in the recent past. ' It is
developed by using the operator-equivalent method,
and the MFA for the two-ion bilinear and quadru-
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P z= —gJpaHJ (3)

represents the Zeeman coupling where the magnetic
field H is assumed, in this paper, to be aligned with
the z axis.

D gJI PHD Jz (4)

is the Heisenberg-type bilinear interaction Hamil-
tonian written in the MFA as a function of the ex-
change field HD acting on a given ion:

HD =&M =ngJpg(J, ) . (5)

Note that n will always be taken as positive here; for
an antiferromagnet, only one sublattice has to be
considered.

A g
———Hg020

is the quadrupolar Hamiltonian restricted to the
tetragonal symmetry where H& is the quadrupolar
field acting on a given ion,

Hg ——Gig =Gi(Op) =Gi(3J, —J(J+1)) .

Note that

(&) )'
61 —

p p +E1
C11 C12

is the total quadrupolar parameter associated with

the tetragonal symmetry; it consists of a magneto-
elastic contribution plus a two-ion quadrupolar con-
tribution EC1', the two corresponding terms appear to

I

polar interactions. For one 4f ion it is written as

4 =A caF+P z+A D+4 g+(ED+Eg), (1)

where

Wx W(1 —ix i )
cEF F 4+ F 6 '

4 6

Equation (2) is the usual cubic CEF Hamiltonian ex-
pressed in the fourfold axes system. '

be isomorphous within the MFA after minimization
of the free energy relative to the tetragonal strain
(see Ref. 14). ED , n——M—and Eg ,——G—~Q are

corrective energy terms for, respectively, the dipolar
and quadrupolar two-ion interactions originating in

the MFA.

B. Perturbation theory

The magnetic properties associated with the above
Hamiltonian may be derived from the thermo-
dynamical analysis of the generalized Gibbs free en-

ergy F=—kTlnZ, where Z=Trexp( —A /kT) is
the partition function. " According to the Landau
theory, F(T,H, M, Q) may be expanded in ascending
powers of the two order parameters M and Q in the
vicinity of the transition temperature. As explained
in Ref. 15, F(T,H, M, Q) coincides with the equili-
brium Gibbs free energy G(T,H) only when M and

Q equal the equilibrium values of, respectively, the
magnetization M and the quadrupolar moment Q.
These thermal equilibrium values are obtained by
minimizing the generalized free energy F,

aF aF
&M Mg &Q ~g

However, it should be noted that M and Q are not
fully independent order parameters; indeed, if a
solution M =0, Q&0 is possible, the solution M&0,
Q =0 is obviously meaningless (except a possible ac-
cidental cancellation of Q). When the magnetic or-
dering occurs, Q, as all the higher rank of multipo-
lar moments, is driven to be ordered, M remaining
the principal order parameter.

The coefficients of the generalized free-energy ex-
pansion may be obtained (see the Appendix) by ap-
plying a perturbation theory to the zeroth-order
Hamiltonian 4 CEF, up to the fourth order for H
and M, and up to the third order for Q (the g term
will be used only in Sec. IIIA). The expression of
the generalized free energy F is then given by

F(T H, M, Q) =FcpF — Xp(H +nM) — Ip (H +nM) — X (G&g) — X (G&g)

—X', 'G, Q (H +nM)2+ , nM2+ , G, Q~, ——
where five single-ion susceptibilities are defined: Jp
is the usual first-order paramagnetic susceptibility;
Xp

' is the third-order paramagnetic susceptibility
which is related to the initial curvature of the mag-
netization curves'; X, is the strain susceptibility oc-
curring in the elastic-constant analysis'; X,' ' is the
second-order strain susceptibility; 72 ' is the quadru-
polar field susceptibility which is involved in the

l

parastriction. ' A11 these single-ion susceptibilities
may be calculated at every temperature starting
from the actual cubic CEF level scheme; they de-

pend on the energy spacing and on the matrix ele-
ments of J, and 02 between all the CEF levels (see
the Appendix). FCEF is the free energy correspond-
ing to A cEF alone.

The formalism developed above has been written
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IIL DIPOLAR AND QUADRUPOLAR
PHASE TRANSITIONS

assuming the z axis to be parallel to the [001] direc-
tion (tetragonal symmetry). However, it could be
easily transposed to the trigonal symmetry (z axis
parallel to [111]). The bilinear interactions being
isotropic, n is unchanged in the new system; howev-
er, G~ has to be replaced by —„G2, G2 being the trig- Investigating the possible spontaneous phase tran-
onal quadrupolar parameter. The expression of the sitions associated with the two order parameters M
single-ion CEF susceptibilities remains the same, al- and Q requires one to analyze the behavior of the
though their values differ (Xo excepted) due to the generalized free energy F in zero field:

I

F(T,H =O, M, Q}=FcEF+ i n (1 nXo)M—' , n X—o"—M + , G, (1——G,X, )Q' ——, G', X,"'Q' nG—,X2 'QM

(9)

According to the Landau theory, two critical tem-
peratures tD and tie may be defined from Eq. (9) by
canceling the coefficient of the M and Q terms,
respectively (t(2 can be defined only if Gi is posi-
tive}:

1 —nXO(tp )=0

1 —Gig, (tg) =0 .

(10)

The actual phase diagram as well as the nature of
the different transitions will then be determined by
the relative magnitudes of tD and t&, and by the
signs and relative magnitudes of the other coeffi-
cients of Eq. (9}.

which is a second-order transition.

A. Quadrupolar phase transition (ttt & to )

First we consider the case where G& is positive
and large enough relative to n for having t~ &tz.
At T = t~ the free energy F is reduced to

F(tg, O, O, Q}=FcEF——,GiXg 'Q (12)

Because of the odd Q term, the quadrupolar transi-
tion is generally a first-order transition with a posi-
tive (negative) value of the order parameter Q when
the susceptibility X,' ' is positive (negative). The ac-
tual quadrupolar transition temperature T& is slight-

ly higher than tti (see Fig. 1):

Ta=tQ &tQ
+

which is a first-order transition.
Note that the quadrupolar transition may be of

second order if g,' '=0 and if the next term
——,GiX,' 'Q in the Q expansion of the free energy
is positive, (X,' ' ~0). This occurs for instance for an
isolated I 3 ground state"' or for any isolated Kra-
mers level as ground state. ' In these cases the
Curie-type contribution, only remaining in the ex-
pression of 7,' ' (see the Appendix), indeed vanishes.
The quadrupolar ordering temperature is then

1. Application: TmCd

A good example for illustrating the case of a qua-
drupolar phase transition is TmCd. In this com-
pound a first-order quadrupolar phase transition oc-
curs at T~ ——3.16 K and there is no magnetic dipo-
lar transition below this temperature. ' Various
experiments have been performed in the nonordered
phase (T & T& },giving fully consistent results: elas-
tic constants, &o parastriction, ' first- and third-order
paramagnetic susceptibility. 3 14 They have shown
that the magnetic bilinear interactions are zero in
TmCd (n =0), while the tetragonal quadrupolar
parameters reach G& ——13 mK. Starting from these
values, and from the cubic crystal-field parameters
8'=0.95 K, x= —0.34, we deduce t~-3 K. At
this temperature X,' ' is positive; therefore, the qua-
drupolar phase transition is expected to be of first
order with a positive value of Q, as observed experi-
mentally.

B. Dipolar phase transition (t~ & tg )

1. Firstcase: Gq=o

We now consider the case where n is large enough
for giving tD & t~. Let us first analyze the behavior
of the system in the absence of quadrupolar interac-
tion (G, =0). At T =to the free energy F is re-

(x(2)&p)5

0
FIG. 1. Variation of the free energy at t~ (dashed line)

and Ttt (solid line) as a function of the order parameter Q,
with+, '&0.



27 MAGNETIC AND QUADRUPOLAR PHASE TRANSITIONS IN 4415

duced to

F(tD, O, M, O)=FcEF ,—n—XoM (13}

Usually Xp
' is negative; this leads to a second-order

dipolar phase transition which occurs at (inset of
Fig. 2)

TD —~D

J
~e] - W=-5.8K

C) x= 68
iO0~]

0
40-

C4
C5

C3

which is a second-order transition. However, in the
presence of CEF, the third-order magnetic suscepti-
bility Xp

' may become positive at low temperature,
according to the characteristics of the low-lying
CEF levels, as for instance with a j. 3 doublet as
ground state" ' (Fig. 3). Therefore, the dipolar
phase transition becomes of first order and occurs at
a temperature slightly higher than tD (Fig. 2),

TD ——tD &tD+

which is a first-order transition. To our knowledge,
there is no unquestionable experimental example of
such a situation in the literature; however, the
present susceptibility formalism closely agrees with
the calculations of Blume about the I ~-I 5 system.
Note that the limit between these two situations
(namely Xp

' ——0) corresponds to the tricritical point
C in the phase diagram (Fig. 3).

2. Second case: Gg+0

Let us now develop the case where G&&0. The
free energy F is written as

F(tD, O,M, Q) =FcEF nXo 'M—

~!5
p~ 30

C
20

0 0

'10-

0 20
TEMPERATURE(K)

FIG. 3. Upper part: temperature variation of go
' cal-

culated for J=4 with the CEF parameters W = —5.8 K,
x =0.68 within the tetragonal symmetry (level scheme in-

dicated on the right). Lower part: deduced magnetic
phase diagram n(T~); the solid (dashed) line represents
first- (second-) order transition; the tricritical point C
occurs when go vanishes; the semidotted line corresponds
to n (tD).

40

However, as said above, Q is no longer an actual in-
dependent order parameter and must be related to M
as soon as M is different from zero. This can be
done by taking the limit of Q (H}l[M(H)] when H
goes to zero. Starting from Eq. (8) we deduce the
following two expressions (see Ref. 14):

+ —,G)(1—G)X, )Q

—n GX''QM (14)

XpM= H + 0 ~ ~

1 —ngp

y(2)
2 H+. . .

(1—nXp) (1—GiX, )

(15)

(16)

F (3) I&0 I0 I
I

I
/

0

F

) 0
a

I

I

I

I

I

I

whence we derive the following ratio between Q and
M, valid for small values of M and Q:

g(2)
(17)M' (Xo)'(1—G,X, )

Keeping this relation valid also at T =tD [when
1 —nXp(tD) =0], and inserting it in Eq. (14) gives

F(tD, O, M, Q) =FcEF ~ n Xst, oM4 (3)

where

FIG. 2. Variation of the free energy at tD (dashed line)
and TD (solid line) as a function of the order parameter
M, with go '

& 0 (first-order transition); inset: case go ' ~ 0
(second-order transition).

(2) 2

X~ p —Xp +2Gi(3) (3) (X2 )

iX

is the total third-order magnetic susceptibility in-
cluding the quadrupolar contribution but without bi-
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linear interactions (see Ref. 14).
The above discussion about the nature of the tran-

sition (Sec. III B 1) is then still valid, if we consider
XM'o instead of Xo '. In articular, a value of G
large enough may give Xs'tIo as positive, even if Xo(

is negative (Fig. 4); in this case the dipolar phase
transition then becomes of first-order owing to the
quadrupolar interactions, and occurs at a tempera-
ture Tz slightly higher than tD (Fig. 5). This situa-
tion was already pointed out in particular systems,
such as S =1 (Ref. 9) or S= —, (Ref. 10) systems.

However, we emphasize that the present analysis is
more general and can be applied to any multilevel
system involving all the (2J+1) CEF levels of the
rare-earth metal. On the other hand, a large nega-
tive value of Gi may give X~'0 negative even if J0 '

is positive; the dipolar phase transition then becomes
of second order when it should be of first order
without quadrupolar interactions. Finally, it should
be pointed out that the condition X~'op0 for a
first-order magnetic phase transition is only suffi-
cient, but not necessary. Indeed, very particular sit-
uations could give X~'0 &0 and X~'0 as strongly pos-
itive, for instance, leading to a first-order transition;
however, this case should be rare.

10

lO

CO 0 0
O

-5—

20—

I2
f-(2)

5

)20K

f3—f S

G =13 mK

10—

x =-0.34

G, = )3mK

,
[oolj

5 10 15

TEMPERATURE ( K )

20

FIG. 4. Upper part: temperature variation of +~ p cal-
culated for J=6 ( %=0.95 K, x =—0.34, G~ ——13 mK,
tetragonal symmetry); for comparison, the curve with

Gi ——0 is also drawn (level scheme indicated on the left).
' Lower part: deduced magnetic phase diagram n (TD); the

solid (dashed) line represents first- (second-) order transi-
tion; the tricritical point C occurs when g~'o vanishes; the
semidotted line corresponds to n(tD); T~ represents the
quadrupolar ordering temperature; tz corresponds to the
temperature tD but in the quadrupolar phase.

F (3)
& 0

& o
M, O

I

P2

FIG. 5. Variation of the free energy at tD as a function
of the two order parameters M and Q, with Xo

'
& 0 bnt

g~'o&0; solid (dashed) lines correspond to positive (nega-
tive) values for F; the P& line corresponds to the inset of
Fig. 2 (g =0); the Pi line satisfies Eq. (17) and is analo-

gous to the dashed line of Fig. 2.

3. Application: TmCu, DySb, PrMgq

A good example of the effect of the quadrupolar
interactions is given by TmCu. This compound or-
ders at Tz ——7.7 K in a modulated antiferromagnet-
ic structure, with all moments parallel to the z
axis. The transition is of first-order. Various ex-
periments performed in the paramagnetic state reli-

ably provided the tetragonal quadrupolar parameter
6& ——11 mK. Just above T~ and according to the
cubic CEF parameters, the CEF third-order
paramagnetic susceptibility Xo' is negative; this
should lead to a second-order magnetic dipolar tran-
sition. However, the quadrupolar contribution to
the total third-order magnetic susceptiblity is

positive and large enough to change the sign of P~ o,

in the vicinity of T~, as seen experimentally. ' Con-

sequently, the magnetic dipolar transition is expect-
ed to have a first-order character, as effectively ob-

served.
Another analogous example may be taken in the

rare-earth pnicitides series. DySb indeed undergoes
a first-order antiferromagnetic transition at TN ——9.5
K. Numerous experimental and theoretical works
have been made in this compound. In particular,
the use of the value 6& ——+1 mK deduced from the
fit of the elastic constants leads to a positive value
of Xst i8just above TN, while the pure CEF contribu-
tion Xo

' is negative. This positive value of X~'o
above TN explains the first-order character of the
transition and should be detected experimentally by
third-order paramagnetic susceptibility measure-
ments.

An opposite example is PrMg2. In this compound
(which orders ferromagnetically at T, =10 K), a
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neutron spectroscopy experiment provided cubic
crystal-field parameters giving a nonmagnetic doub-
let I', as the ground state. As said above (Sec.
III B 1), this CEF configuration gives rise to a posi-
tive value for Xo

' in the vicinity of T„' this should
produce a magnetic transition with a first-order
character, which is not observed experimentally.
However, the G& value suggested in Ref. 8 for ex-
plaining the temperature dependence of the spon-
taneous magnetic moment, i.e., Gi ———13.3 mK,
leads to a negative total third-order magnetic sus-

ceptibility X~o. This now accounts for the second-
order character of the transition.

1 nXp(tD) —=0, (20)

and a new expansion of the free energy F in zero
field at T=tD,

F (ta 0 M) =FCEF g gp M (21)

Note that the Q terms in the expansion are now in-

cluded in FcEF since the system is quadrupolarly or-
dered. The discussion of the nature of the dipolar
transition is the same as in Sec. III B 1, where X' ' is
replaced by Xp

' '. According to the sign of Xp
' the

dipolar phase transition has a first- or second-order
character (see Fig. 4).

l. Application: TmZn

A particularly interesting example is given by
TmZn, where bilinear and quadrupolar interactions
are present together and generate a ferromagnetic
ordering (T, =8.12 K) slightly below the quadrupo-
lar ordering (T& ——8.55 K}. Numerous studies of
the properties in the cubic paramagnetic phase
(T & T~) have been consistently described with a
quadrupolar parameter Gi ——25 mK. ' According to
the cubic CEF scheme, the critical temperature t~ is
then calculated to be t~ ——5.5 K, with a positive
value of 7,' ' in the range 5.5—10 K. This leads to a
first-order quadrupolar transition at T~ & t&, with a
positive value for Q, as observed experimentally.

C. Dipolar phase transition (t& & t& )

The last case corresponds to a dipolar phase tran-
sition inside the quadrupolar phase (T & Tg, see Sec.
IIIA). Below T~ the quadrupoles are ordered and
the crystal field no longer has the cubic symmetry
but the tetragonal symmetry. The various suscepti-
bilities (Xp, Xp ', . . . ) therefore have new values

(Xp, Xp, . . . ) according to the new tetragonal CEF
level scheme. Note that this level scheme is now
temperature dependent, like the ordered quadrupolar
moment. We can then define a new critical tem-
perature tD, such thatT

Below T~ the cubic ground state I 5" is split into
a doublet and a nonmagnetic singlet which becomes
the new ground state, and the bilinear interactions
are strong enough to induce a magnetic dipolar or-

dering in the tetragonal phase. Calculations lead to
a critical situation for T, : The nature of the mag-
netic transition seems to be very sensitive to the
values of the various parameters. For instance, T, is

calculated to be of first order for Gi ——25 mK, but

would be of second order for Gi ——28 mK, as it ex-

perimentally appears. Consequently, the situation
of TmZn with regard to the ferromagnetic transition
seems to be not far from a tricritical point. " In ad-
dition, a small shift of some parameters seems to oc-
cur below T~. This makes a more precise and
complete description of the ferromagnetic transition
difficult.

IV. CONCLUSION

The present work constitutes a new analytical ap-
proach to the problem of magnetic (dipolar} and
quadrupolar phase transitions in rare-earth interme-
tallic compounds, in terms of single-ion CEF sus-

ceptibilities, related to the Landau free-energy ex-
pansion. It is more general than the effective-spin
models previously used since the formulation is
valid for any multilevel system. In particular, the
coefficients in the M and Q development of the free
energy are simply related to several single-ion CEF
(magnetic, strain, and quadrupolar) susceptibilities.
Analyzing the sign and relative magnitudes of these
susceptibilities with regard to the two-ion interac-
tion parameters allows one to deduce the possible ex-
istence and the nature of magnetic dipolar and/or
quadrupolar phase transitions.

In comparison with previous results from
effective-spin calculations, one has to note that the
inclusion of the 2J+1 actual wave functions may
sometimes modify the conclusions relative to the
phase transitions. For instance, in the I 3-I 5 system,
the existence of a I 5 level at a finite energy above
the ground level I 3 changes the character of the
quadrupolar phase transition from second to first
order through the van Vleck quadrupolar matrix ele-
ments between I 3 and I 5.

"' It is therefore more
prudent to take into account all the CEF levels in
actual systems rather than only the ground state;
this is done easily with the present formulation.

The present approach to phase transitions may be
also compared with the cubic model which has
been applied to HoSb in particular. This cubic
model was developed for explaining the magnetic
properties of a sixfold degenerate CEF ground state
in the presence of an external field and/or quadru-
polar pair interactions. HoSb seems to be close to
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such a situation in the J=8 CEF diagram. ' An
analysis of this system within the present suscepti-
bility formalism leads to the same conclusions as the
cubic model: HoSb is close to being tricritical, in
the sense that the third-order magnetic susceptibility

Xo
' is very close to zero in the transition tempera-

ture range, and thus the nature of the antiferromag-
netic transition is very sensitive to the presence of
quadrupolar interactions.

Another interesting feature of the present analysis
is its analytical treatment, which appears to be less
difficult than any self-consistent calculation, as well

as its applicability to systems with fourfold or three-
fold easy-magnetization directions. For example,
starting from the parameters given in Ref. 2 for
some terbium monopnictides (TbP, TbAs, TbSb, and
TbBi), the present formalism provides the same con-
clusions relative to the nature of their antiferromag-
netic transitions: The calculated values of XM'p (M
along a (111) axis) are positive at TN for TbP and
TbAs, and negative for TbSb and TbBi, in agree-
ment with the experimental character of their phase
transition, which is, respectively, first and second
order. In addition, we find that the transition in
TbSb is close to first order; 7'0 changes its sign at
13 K due to the trigonal quadrupolar coupling, i.e.,
not far below T~ ——15.5 K.

It would be very interesting to confirm these
analyses by a direct measurement of XM in the
paramagnetic range for Tb pnictides as well as for
other compounds such as HoSb, DySb, or PrMg2. It
is worth noticing that it is important to know all the

involved parameters well, in particular the crystal-
field and the quadrupolar parameters, by means of
various and independent experiments, in order to
have a reliable ground for the interpretation of the
magnetic properties. When these precautions have
been taken the analysis within the present formalism
and in the molecular-field approximation has always
been found to be consistent with experiment.

APPENDIX

In a first stage we define the eigenvalues E; and
the eigenvectors Iik) corresponding to the Hamil-
tonian 4 czF alone,

~CEF I
ik ) =El I

ik )

In each subspace i the
I
ik ) have to be adapted to

the perturbation Hamiltonian. A perturbation
theory up to the fourth order for H and to the
third-order for Q allows us to obtain the analytical
expressions of the perturbed energies E;k.

4

Ek=E+ QEk+
n=1

Then the partition function Z,

Z g ik

i, k

can be calculated (with P=1/kjiT, kji being the
Boltzmann constant and T the temperature). One
then obtains

Z =ZcEF ( I + , pXp(H +nM}—+—,pX, ( G i Q) +pX2 'G
l Q (H +nM)

+ —,p[Xp"+ —,p(Xp) ](H+nM) + —,pX,' '(G, Q)'+ },
which leads to the expression of the total free energy F= kji T lnZ [EiI. (—9}].

The expression of the five CEF susceptibilities Xp, J p2 Jo ', and X, ' are given by the following:

Xp=gJjkjigfi —2 g E E +
k T l&ik, ik I

I ikjl I

ik j~iI i j

ik j~i I i j B

~ik, jl Qjl j'I'~j'I', ik +2Qik, jl jl,j'l' j'l', ik
X2 =gJjk ji ~fi (E; Ej )(Ei Ei')——

I J;kjl I Qik, ik+2Qikjl Jjlik Jikik, ,
2

(E;—Ej)
1 1 1

E E+ k T +
k —T)2 I ik, ik I Qikik,

2(kji T)
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XQ = —
~k ~ (Xo) +gjpii

B

Jikj lJjlj 'I'~j'I',j",I"Jj "1",ik

(E; Ei—)(E; E& —)(E; Ei—)

j '+i, I'

j "+i,I"

I Jik,,v I I
Jikj'I' I +2Jik,j!Jji j'!'Jj'!',ik Jik, ik
2, 2

(E E)(—E E)—
2 1+-

EI —E kB T

I Jik, ik I'I Jik, ji I'
(E; E!)—

2 2 1 1

(E E) (—E;—E )kiiT k T 6k T

(Q)g f 3 ++ QikjiQjl j'!'Qj'I', ik

i, k j~i, i j'~i, r (E; Ej)(E; —E! )—

( )'
ik, ik ikjl
(E. E).EI' Ej kB T 2k T

where

1f=
ZcEF i,k

is the Boltzmann population factor.

J;k ji ——(ik
I
J,

I JI),
Qik, jl (ik 102 I jI &

are the matrix elements of J, and 02 between the cubic CEF levels. For each degenerated CEF level i,
—PE; —PE; —PE
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