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Nonlinear scaling fields and corrections to scaling near criticality
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Thermodynamic functions in the vicinity of an ordinary critical point are expected to
obey asymptotic scaling laws as t =(T—T, )/T, and the ordering field, h, approach zero.
However, the optimal scaling variables are the nonlinear scaling fields,

gg =t +b,h +c,t'+ . and gq
——h (1+el, t + . ). The nonlinearities yield correction fac-

tors to the leading power-law (and scaling) variation of thermodynamic quantities, L, of the
form (1+al.t +br. t + ), etc., where the correction amplitudes aL, ,bl, , are uniquely

determined by the nonlinear scaling-field coefficients. It follows that "analytic" corrections
to, e.g., the susceptibility, are directly related to those for the free energy and magnetization
(in zero field). The term b,h also generates nonanalytic contributions such as an additive,
energylike term, varying as ~t

~

' in the zero-field susceptibility, and factors like

(I+cz
~

h
~

'~
) on the critical isotherm, t =0. Irrelevant scaling fields yield further, in

general distinct, nonanalytic corrections, and cause shifts in T, and various amplitudes al-

though "universal" ratios remain constant.

I. INTRODUCTION

As the critical point of a ferromagnet, fluid, etc.,
is approached, the asymptotic behavior of a quantity
L (T), as T~T, , can usually be characterized as

L(T)=L,
~

t ~" 1+g at-;
~

t
~

'

where Lo and I at-; ) are constants and
t=(T T,)/T, . The —+ (—) refers to T & T,
(T&T,). The expression in parentheses in (1.1)
represents the correction to scaling factor to the
asymptotic power law with exponent A,. It has been
evident for some time' that many real experiments,
even when of the highest precision, do not attain
the truly asymptotic regime. Thus one rather ob-
serves an effective exponent'

(1.2)

where t is a suitable average of t over the range of
measurement. The correction factor also plays an
important role in analysis aimed at estimating k ac-
curately from series expansions for model systems.
Accordingly, the nature and origin of the leading
correction terms, for quantities such as the free en-

ergy F, the spontaneous magnetization M, and the
suceptibility-compressibility X (with exponents
2—a, P, and —y, respectively) are matters of con-

tinuing significance to theory and experiment.
A commonly discussed source for corrections to

scaling arises, in the renormalization-group
viewpoint, from the leading irrelevant variables.
Recently we have emphasized' that additional ana-
lytic corrections arise from the nonlinearity of the
scaling fields. In Ref. 10 we discussed the leading
correction for the planar Ising model and showed
that it arises only from this latter source. The aim
of the present paper is to give a general discussion of
the corrections due to the nonlinearity of the scaling
fields. In particular, we calculate in detail higher
correction terms and discuss relations among them.

In Sec. II we present a simple general scaling
analysis in which we ignore all the irrelevant vari-
ables and concentrate on the case of pure power
laws, without logarithmic corrections. The theory
with a logarithmic specific heat, relevant, e.g., to the
planar Ising model, is discussed in Sec. III. Ir-
relevant variables are then introduced in Sec. IV,
and conclusions are drawn in Sec. V.

II. SIMPLE POWER-LAW SCALING

Ignoring irrelevant variables and possible logarith-
mic corrections, the singular part of the free energy
has the scaling form

(2.1)

where b, =P+y. The nonlinear scaling fields g, and
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g~ represent, in leading order, the temperature T and
the ordering field h at an ordinary critical point. In
the absence of irrelevant fields, g, and g~ are analyt-
ic functions of t and h, and we may expand them as

g& ——t+b~h +c,t +d, t +e, th

+f,h4+0( t', t'h'), (2 2)

~g & h
gi =b g„gz ——b gq, (2.4)

which leads to the pure power-law scaling form
(2 1)

gh =h[1+cht+dht +ehh +O(t, th )]j, (2.3)

where we have assumed symmetry in h so that odd
powers of h do not appear in the correction factors.
Many of the results stressed in the present paper
arise directly from the second term b, h in (2.2).
We shall show that its presence is responsible for
various new, nonanalytic, correction terms which

might not, as first sight, be expected.
In the renormalization-group theory, g, and gA are

variables for which the recursion relations become
exactly linear; thus if b is the rescaling factor and a
prime denotes renormalization, one has

The functions Y+(y) and Y (y) describe the

scaling properties of F, for g, p 0 and g, g0, respec-
tively. It should be noted here that the free energy
should be analytic in g, when the ordering field is
nonzero, or gh~0. In the limit y '=

I g, I
/gh~0,

the two components of the scaling function, Y+(y)
and Y (y), must join smoothly to form a function
of x=g, /lgh I

', analytic for small arguments.
We shall return to this point later.

The various thermodynamic quantities now fol-
low as derivatives of F, with respect to h or T. For
example, the order parameter is

M. 'F=Y, g"
lg

I---a

Bh Bh

ag,

~g~
+(2—a) Y+

I a I

' (2.5}
i3h

where the prime here indicates a derivative of the
function with respect to its argument. Similarly,
if, for brevity, we write (Bgh/Bh) =gh. h,
(8 g, /Bh ) =g, .h h, etc., the susceptibility is

&~
~h

=Y+(gh;h)'Ia I' "+Y+gh;hh la I' '+(2—a}(1—a)Y+(a;h)'lg~ I

+(2— } +a;h, h lg I' + ( ——~) +'a;hgh;h la I'

+~ Y+(gt h } gh I gt I

"+Y+gt;hgh;hgh Ig~ I

'

+~Y+g;hhgh Ia I

' ' —~(3 2a ~}Y'+—(gt;h)'gh I a I
(2.6)

Substituting (2.2) and (2.3), and expanding in powers
of t and h, leads to explicit expressions for the
correction terms. At h =0 we find

F=AF-
I
t

I
(1+aFt+bFt + )+Wp(t),

(2.7)

aF =(2 a)c, , —

bF (2 a)d, + —,(2———a—)(1—a )c, ,

aM =pcg+ch,

bM
——pd, +pc,ch+ , p(p 1)ci'+dh—, —

(2.10}

(2.11)

(2.12)

(2.13)

Mo B
I
t

I
t(l+aMt+——bMt + ) (t (0), (2.8)

X=C+-I t
I

r(1+a~t+b~t'+ . . )

+D 'I t
I

' (1~azst+ -. )+W&(t),

Qy = —
QCg +2Cg (2.14)

bz —yd, 2yc, ch+ ———,y(y—+1)c, +2dh+ch .2 2

(2.15)

Finally, the additive correction terms in the suscep-
tibility are fixed by

(2.9)

where A~ ——Y+(0), B~ Y' (0), and C—+ ~ Y+(0),
while MF(t) and Mz(t) stand for terms analytic for
small t. The correction amplitudes are given by

D- =+2(2—a )b,AF

and

a&@ ——(e, /b, )+(1—a )c, .

(2.16)

(2.17)
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The lowest-order relations (2.10), (2.12), and (2.14)
were presented in Ref. 10. It is interesting to note
that the term b, h in the temperaturelike nonlinear
scaling field generates an energylike term, varying as

i
t

i

' in the susceptibility. Although such a term
is expected as a result of short-range correlations, "
its amplitude has not previously been related to the
coefficient b, .

We emphasized in Ref. 10 the relation

ap —2a~+ag ——0, (2.18}

which follows directly from (2.10), (2.12), and (2.14)

by eliminating c, and c~. Thus only two of the am-

plitudes az, aM, and a& should be independent.
Similarly, we now find that

bF 2bM+—bx = (aF aM )—

ly apply to the energy and specific heat.
Using the definition (1.2), we can now see that

a ff+2p ff+1 ff =2+b2
i
t

i
(2.20)

h}= Igs I" '"Yo(g /i gh I
'"},

where Yo(x ) is analytic at x ~0, and can be directly
related to Y+ and Y . For t~Owehave

where b2 is defined in (2.19). For relatively sinall t,
in the absence of irrelevant variables, the effective
exponents thus obey scaling to a good approxima-
tion.

We now turn to the critical isotherm T =T, or
t=O. In the limit ig, i

/gs~O we may rewrite
(2.1) in the form

= [(r+P)c cs]'=—b2 (2.19} g, =b, h +f,h +O(h ) (2.22}

Similar relations can be found for higher-order
terms. Knowledge of the analytic correction terms
in any two of F Mp or 7 thus determines those for
the third one to all orders. Similar statements clear-

and

gs =h [1+ebb'+O(h'}],

which yields

(2.23}

F(T„h)=
i
h i" " 1+ e&h'+ . [Yo(o)+Yo(0}bi I

h i' '"+ ' (2.24}

where we have expanded Yo(x ) for small x.
The magnetization and the susceptibility can now

be found by taking derivatives with respect to h. We
thus see that the "analytic" nonlinear scaling fields
generate nonanalytic correction to F„M, etc. For
example, we have

iM
i
=B, ih i

'~ (1+x~ ih
i

+&M I" i'+ (2.25)

y~ ——(2—a +26)eI, /6, (2.27)

and an odd analytic function of h has been dropped.
Similar expressions apply to F, and to X. Note that
b, determines amplitudes of both the "nonanalytic"
corrections at t=O and the energylike term in the
susceptibility, through (2.16).

The specific heat at t=O can now be found by
differentiating (2.21) with respect to t and then set-
ting t=O. The result contains, in addition to the

where 1/5= —1+(2—a)/b„B, is related to Yo(0),
the correction amplitudes are given by

x~ ——[(1—a+2k)/(2 —a}][Yo(0)/Yo(0}]b, ,

(2.26)

F(Th)= it i' Y+(h/it
i

)

x [1+ bi t
i

' 'y (h /
i
t

i
)

+ 0+(h/i t i')], (2.28)

I

leading power h, terms like
i
h i,

ih i" ', h ",and ih
i

. Thus, in
addition to h in the correction factor, one
should encounter new nonanalytic correction terms
of order

i
h

i

'~,
i

h
i

~, etc.; these can be traced
directly to the analytic dependence of F on t for fin-
ite h. One may, in analogy to (2.20},derive effective
exponent relations for exponents defined at T, .

Thus far, we have concentrated only on the spe-
cial axes h =0 and t=0. In fact, the "analytic"
corrections are meaningful for the whole equation of
state. Usually, the scaled equation of state is written
so that F, /

i
t

i
(or M/

i
t

i
~) is, asymptotically,

a function of the single variable h /
i
t i, for

M, t, h ~0. However, such a representation may be
misleading when b,&0. Although gq may always be
replaced by h in the limit t, h ~ 0, the value of g, de-
pends in a significant way on the manner in which
the critical point t =h =1 is approached in the (t,h)
plane. ' It is only in the limit

i b, h
i « i

t
i
«1

that one can recover the "usual" scaling dependence
of F, / i

t
i

2 on h /
i
t

i

~. Thus expanding (2.1) in

powers of h /t we find
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for
~
b, h

~
&&

~

t
~

&&1, where

y+(x) = [2—a —b Y'+(x)/Y+ (x)]xi, (2.29)

y+(x) =(2—a)e, +(eq —hc, )x Y+(x)/Y+(x) .

(2.30)

Usually one has 6 & 1, so that the new nonanalytic
correction term

~

t
~

' may be neglected in com-
parison with the leading "analytic" term t. Note
that all the correction terms are of the scaling form

e,.
~

t
~

'y;(h/ t
~

); however, they are limited to the
range

~
b, h"

~
&&

~

t
~

. If
~
b, h

~

&&
~

t ~, one must
switch back to the original form (2.21). It is then
easy to check that F,(T,h) can be expanded in
powers of t, with coefficients whose dependence on
h is similar to (2.24).

III. SCALING WITH A LOGARITHMIC
SPECIFIC-HEAT SINGULARITY

The specific heat of planar Ising models displays
a logarithmic specific-heat singularity. ' Conse-
quently, the free energy in zero field, although for-
mally described by a=O, contains a term of the
form

~

t
~

ln
~

t
~

', which does not follow directly
from (2.1). [The way in which such a term appears
"naturally, " as a continuous parameter, say the
dimensionality d, is varied, involves the "analytic
background" in a crucial way (see, e.g. , Ref. 14).] In
general, the scaling form (2.1}must then be replaced
b 15

F,(T'h)=a'(»~a
~

')Y+(g«/la I')

+g'Y+(g«/I g I

'» (3.1)

when a =0. The two scaling functions Y+(y} and

Y+ (y) must match appropriately when

y=g«/~g,
~

~ ao, so that, in the limit g, ~O, the
ln

~ g, ~

' term cancels, to be replaced by a ln
~ g« ~

term. ' (Note that this cancellation cannot occur if,
for example, ln~g,

~

' is replaced by ln~ t
~

', even

though this would still reproduce the desired zero-
field results. )

For the planar Ising models we also know' ' that
MD/~ t

~

~ and X
~

t
~

", with P= —, and y= 1 —,, ap-

proach finite, nonzero limits 8 and C+-, as t~O+-
for h =0. In other words, MD and X have, in zero
field, no leading logarithmic factors. It follows from
this that the first two derivatives of Y+(y) must
vanish at y=O. In fact, we suspect strongly that a
similar result will hold for all derivatives of Y+(y),
i.e., no leading factor ln

~

t
~

' appears in any field
derivatives of the free energy of the planar Ising
model in the limit h ~ 0. This belief is based on the
known structure of the correlation functions and the
fact that the true inverse correlation length

'—:«(T) is an analytic function of t so that v= 1

and there are no logarithmic terms. If we accept
this "minimal logarithms" conclusion, generally
(which will certainly suffice for our present discus-
sion, which will not go beyond M and X), we may
replace Y+ (y) in (3.1) by a constant amplitude

AF= Y+(0) (3.2)

where a~ and b~ are given by (2.10) and (2.11) with
a =0. The singular terms in the magnetization are
likewise found to be

Mcc -2A~ „g,(ln ~g, ~

'}aF aga, a
1 —5+2Y+ „a+~Y'+ „g« I a l

~A
+ Y'+

h
I a I

(3.4)

Only the last term survives when h~ 0, and we re-
cover the asymptotic form (2.8) with correction am-
plitudes given by (2.12) and (2.13) (with, for planar
Ising models, P=2 —6= —, ). The behavior of the
susceptibility follows similarly, but (2.9) is replaced
by

X=C+-~ t
~

r(l+axt+bxt + . . )

+D, [t ((I (nt
(

')(I+a~st+ .
)

with

+My(t), (3.5)

DD ——4bgAF (3.6)

although the expressions (2.14)—(2.17) for the
correction amplitudes remain valid with a=O (and,

3
for planar Ising models, with y=1 4 ).

Consider now the critical isotherm t~0. Since,
as mentions, F, ( T,h) must be analytic in T through
T, for nonzero. h, the scaling function must behave
as

(see also Ref. 7). Note that the requirements of
analyticity in t for h&0 force the equality of the

scaling amplitudes for T& T„i.e., Y+ (0)= Y (0).
Given the scaling form we can now follow the

procedures of Sec. II and examine the interesting
thermodynamic functions. When h~O the second
term in (3.1) becomes analytic in t and we obtain

F, (T,O)=A~t (ln
~

t
~

')

X(1+at;t+b~t + )+Mr(t),

(3.3)
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Y+ (y }= Y&y
i + F;y

'i + Yt'lny+ Y2

yc —1/d+ yc —2/d+. . .

where one must have

FI'———Ap/6

(3.7)

(3.8)

g, =t+a, u+O(h, t', u, ut, uh ),
gs =h[1+asu+cst

+O(h, t,u, ut, uh )] .

(4.3}

(4.4)

In addition, u must also enter into the nonlinear
scaling fields g, and g&, in the form

in order that the logarithmic terms in g, cancel iden-

tically. With the use of this result one finds

I
&

I
=&.

I
h

I
'"{1+~~

I
h

I

' '"+y~h'+

+E,h+E, h'ln
I

h
I

-'+ (3.9}

where xst and yst are given by (2.26) and (2.27) with
a =0, while

Ei 4AFb, —/—6 . (3.10}

A~ lh I2-isa (3.1 1)

where

A;/8, =(P+y)c, +cs , yaF+a——st—, (3.12)

while higher-order terms proportional to
h ln

I
h

I
', to h, etc. also appear.

IV. ROLE OF IRRELEVANT VARIABLES

Note that a similar, energy-related term varying as
h ia arises in (2.25) but was not displayed since,
as is clear here, it is comparatively of very high or-
der.

The specific heat on the critical isotherm follows
similarly as

BF
CH cc

2
——2(Ap/b, )ln

I
h

I
'+Ao+Ai lb I

'i

The term a, u in {4.3), and the higher-order terms of
order u, u, etc., imply a shift in T, relative to a
system with u =0. If T, is identified as the value of
T for which t vanishes [in the leading singular term
of Eq. (1.1)], then we may absorb these terms in a
redefined (shifted) variable t. Similarly, the terms of
order ut, u t, etc. represent a (multiplicative) change
in scale, so t becomes A (u)t. Such a change will im-

ply that amplitudes like Lo in (1.1) are nonuniversal,
containing factors like [A(u}]". All such factors,
however, should disappear from properly construct-
ed amplitude ratios, which will then be universal. '

Finally, terms like ut, u t, etc. may be absorbed in
a redefinition of c„while uth serves to redefine e„
and so on. Similarly, the term as u in (4.4)
represents a rescaling of the variable h, and further
u-dependent terms represent modifications to the
coefficients cs, ds, etc. in (2.3}. Although one must

accept the fact that all the amplitudes we have dis-
cussed in the previous sections are u dependent, the
relations among them, e.g., (2.10}—(2.17) and
{2.23)—(2.24), nonetheless remain true.

We are thus left with the explicit dependence of
F, on g„, as exhibited in (4.1). Assuming that
Y+(y,z) is analytic in z when z~0, ' we now find5 ~

Y+(gs /
I a I

')

x [1+g„ I g, I
'"f„'(gp, /

I g, I
')+-. .

Thus far we assumed that the ordinary critical
point is fully described by the two relevant fields t
and h. Renormalization-group theory predicts
that, in general, there will exist many irrelevant

fields, whose effects become negligible very close to
the critical point as t, h~0. Consider one such
field, say the least irrelevant field u. If the associat-
ed nonlinear scaling field is denoted by g„, then (2.1)
must be extended to7

F (T» u)= lg I Y+(gs/I gt I

(4.1)

where the leading irrelevant variable exponent is
8„)0.

If u represents a perturbation, even with respect to
the order parameter, as found in the e expression, '

one has

where

{4.5}

f, (y)= —»Y+(y,z) l, =o .
az

Usually, the exponent 8„ is nonintegral. The result-

ing nonanalytic corrections, of order
I
t

I

", can
then, in principle be distinguished from the "analyt-
ic" r.orrections discussed previously. Note that the
terms of order t and h in (4.2) for g„, yield correc-

8„+1 2 8„
tions of order

I
t

I

" or h
I
t

I
", which will al-

8„
ways be smaller than

I
t

I

" and thus represent
higher-order terms. Finally, Eqs. (2.7) and (2.8) now
become

F=Ap
I
t

I
(1 ~a~t+aF"

I
t

I
"+bFt +b7 I

t
I

8„+1+ci". It I

" +. )+Zq(t),
g„=u+O(t, h ) . (4.2) (4.6)
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Q 2 Q + Q 0 (4.8)

which imposes a strong restriction on the scaling
function Y+ (y,z). It thus seems more reasonable to
conclude that the planar Ising models do not have
any irrelevant fields with 8„=1.' (Note, even so,
that the lattice anisotropy v represents a marginal
variable with 8„=0, which changes critical ampli-
tudes but not exponents or most "universal" ampli-
tude ratios; it does, however, change those otherwise
"universal" ratios that measure the spatial isotropy
of the critical-point decay of correlations. '

)

V. CONCLUSIONS

We have shown that the nonlinear scaling fields
are directly responsible for the leading corrections to
scaling in the case of planar Ising models. It is thus
crucial to include such "analytic" corrections in the
analysis of two-dimensional experimental and nu-

})fo=~
I
t

I
~(1+a~t+a

I
t

I
"+bstt'

+bMIt I
"+c~lt

I

" + ''' }.
{4.7)

It has recently been shown' that the dependence on
u cancels in ratios like aF"/a~ or bF"/b~, which are
thus also universal.

Generally, one must analyze data including all the
terms in (4.6) and (4.7), and possible additional sig-
nificant terms due to further irrelevant fields. The
situation is likely to be complicated if some 8„, or
an integral multiple of 8„,happens to be an integer.
For example, if one has an irrelevant variable u with
8„=1, one would in general be unable to distinguish
between the "analytic" term aFt and the "nonanalyt-
ic" one aF"

I
t

I
. It is therefore important to note

here their different relations: The "analytic" coeffi-
cients aF, a~, and az always obey (2.18), whereas
the "nonanalytic" coefficients aF", a~, and a~ usual-

ly do not. This may enable one to distinguish two
distinct origins for such corrections. Nonetheless,
one should also note the likelihood of corrections
like t ln

I
t

I
appearing when a multiple of 8„ is an

integer (e.g., 38„=2for this example}. s'7

In the planar Ising model we have shown' that
the coefficients of the linear correction terms always
obey (2.18), even for general lattice anisotropy
~ =J„/J». If 8„=1 (and it cannot be smaller), this
means that

merical data. In most three-dimensional systems 8„
is approximately 0.5, ' so that the "analytic"
corrections will usually be dominated by those due
to the leading irrelevant fields. However, in some
cases (e.g., the spin- —, Ising inodel) u appears to be

8„
relatively small, so that aF"

I
t

I

" may be small

compared to aFt. In such cases, and in all cir-
cumstances where the precision allows the deter-
mination of more than one correction term, one
must include the "analytic" terms.

It is also worth emphasizing again the various
nonanalytic terms, which arise from the term b, h

in the nonlinear thermal field g, . Even though it is
relatively small, it would certainly be of interest to
try to detect the energylike term

I
t

I

' in the sus-
ceptibility X [see (2.4}]. The nonanalytic corrections
on the critical isotherm [see, e.g., (2.25)] are also of
interest.

We hope that this note will prove useful as a basis
in future analyses of precise experimental data near
critical points. Further considerations, however, are
clearly needed in practice and it is worth mention-
ing that a parametric representation ' of our results
would also be of practical utility in examining the
full equation of state.

Finally, we emphasize again that all our results
were based on the assumption of symmetry in h, so
that g, (gs ) contains only even (odd} powers of h. In
many cases this symmetry is absent, and both g, and

g~ will contain linear terms in t and h. As near a bi-
critical point, or near a liquid-gas transition, one
should then be careful in choosing the correct scal-
ing axes. ' Inappropriate choices will yield new
nonanalytic correction terms. A new example of
such a situation concerns the percolation problem,
in which there exists no evident symmetry in the
"ghost" field (h), and therefore the scaling fields
may well mix the concentration p and h already at
linear order.

ACKNOWLEDGMENTS

We are grateful for the support of the National
Science Foundation and of the U.S.—Israel Bina-
tional Science Foundation. One of us (M.E.F.) is
grateful to the Sackler Institute for Advanced Stud-
ies and to the Department of Physics and Astrono-
my at Tel Aviv University for their kind hospitality
during a visit when the paper was written. One of
us (A.A.) thanks H. E. Stanley for a helpful discus-
sion on the percolation problem.



4400 AMNON AHARONY AND MICHAEL E. FISHER 27

J. S. Kouvel and M. E. Fisher, Phys. Rev. 136A, 1626
(1964).

See, e.g., D. S. Greywall and G. Ahlers, Phys. Rev. Lett.
28, 1251 (1972); Phys. Rev. A 7, 2145 (1973).

Note that we neglect here and below additional terms, in

particular linear terms in t, that will in general arise if
the true T, is unavailable in computing A.,g~. However,
in practical data fitting this is an important point
which significantly increases the difficulty of extracting
reliable estimates for the powers and coefficients in the
correction factor.

4See D. M. Saul, M. Wortis, and D. Jasnow, Phys. Rev. B
11, 2571 (1975); W. J. Camp et al. , ibid. 11, 2579
(1975); 14, 3990 (1976); J.-H. Chen, M. E. Fisher, and
B.G. Nickel, Phys. Rev. Lett. 48, 630 (1982).

5F. J. Wegner, Phys. Rev. B 5, 4529 (1972).
M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).

7F. J. Wegner, in Phase Transitions and Critical Phenome-

na, edited by C. Domb and M. S. Green (Academic,
New York, 1976), Vol. 6, p. 8.

A. Aharony, in Phase Transitions and Critical Phenome-

na, p. 357.
D. R. Nelson and M. E. Fisher, Ann. Phys. (N.Y.) 91,

226 (1975).
' A. Aharony and M. E. Fisher, Phys. Rev. Lett. 45, 679

(1980).
M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665
(1968).

A similar situation arises near a bicritical point when

the scaling fields related to T and H mix [M. E. Fish-

er, Phys. Rev. Lett. 34, 1634 (1975)].
' See, e.g., B. M. McCoy and T. T. Wu, The Tmo-

Dimensional Ising Model (Harvard University Press,
Cambridge, Mass. , 1973).

' D. A. Huse and M. E. Fisher, J. Phys. C 15, L585
(1982).

' H. Au-Yang and M. E. Fisher, Phys. Rev. B 11, 3469
(1975).
E. Barouch, B. M. McCoy, and T. T. Wu, Phys. Rev.
Lett. 31, 1409 (1973).

' A. Aharony and P. C. Hohenberg, Phys. Rev. B 13,
3081(1976).

' This is not the case in the presence of "dangerous ir-
relevant variables, "when, for example, hyperscaling re-
lations fail [M. E. Fisher, in Renormalization Group in
Critical Phenomena and Quantum Field Theory:
Proceedings of a Conference, edited by J. D. Gunton
and M. S. Green (Temple University, Philadelphia,
1974)].

' A. Aharony and G. Ahlers, Phys. Rev. Lett. 44, 782
(1980).
It is interesting to note to leading order in e =4—d one
does have aF"—2aNI+az ——0 (Ref. 19). However, this
fails in order e [M. Chang and A. Houghton, Phys.
Rev. Lett. 44, 785 (1980)].

'See, e.g., M. E. Fisher, in Critical Phenomena, Proceed-
ings of the 1970 Enrico Fermi International School of
Physics, Course 51, Varenna, edited by M. S. Green
(Academic, New York, 1971),and references therein.

See, e.g., D. Stauffer, Phys. Rep. 54, 1 (1979).


