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A one-dimensional interacting Fermi system with weak-coupling parameters g ~ ( &0) and

g2 is reexamined in the third-order renormalization-group approach. Our result indicates
that the value of the invariant coupling g~ varies, depending on whether the limit co~0,
q=O or co=0, q~0 is taken. For co~0, q=O, the invariant coupling g~ scales to
g& /m= —1.24, and for co =0, q ~0, it scales to g &

/m= —0.716. We also argue that the
invariant coupling g ~ obtained from neither limit is appropriate for calculating the critical
exponents of various response functions.

I. INTRODUCTION

During the past several years there have been ex-
tensive theoretical studies of the properties of a
one-dimensional interacting Fermi system. '

Among these different approaches, the method of
perturbative renormalization group has been applied
to the system, and it seems quite successful in
predicting the ground state for such a system with
restricted values of interacting parameters. ' The
preliminary work of applying the perturbative
renormalization-group approach was carried out by
Menyhard and Solyom ' up to second-order or
two-loop calculations. One essential feature of their
results is that with the backscattering interaction
gi &0 and the Tomonaga-type interaction gq small,
the invariant coupling g& is scaled to the value

gi /~v= —2 in the low-frequency limit, where v is
the particle velocity at the Fermi level. Another
feature of their calculation is that the value of
g &

—2g2 is a scale invariant.
Since the invariant coupling g&/m. v= —2 ob-

tained for g i & 0 in the second-order
renormalization-group calculation is quite large,
using it to calculate those response functions which
can only be obtained in powers of g i and g2 seems
to be unjustified. Carrying g &

to a higher order was
therefore necessary. The application of the third-
order renormalization-group method to evaluate gi
and g2 was first studied by Ting. ' In the previous
work' the scale invariance of g~ —2g2 is destroyed
by the presence of a small term a in Eqs. (52) and
(53) of Ref. 12. In evaluating those fourth-order dia-
grams' for the vertex functions, the values for most
of the graphs depend not only on how the
momentum-transfer cutoffs in the multiple momen-
tum integrations are chosen but also on how the

external frequencies are arranged on the vertex func-
tions. These artificial effects in our calculation al-
most cancel when the contributions from each of the
graphs are summed up. We believe that the pres-
ence of the parameter a might be either due to not
enough accuracies in the calculation or improper
choice of momentum cutoffs which might violate
the particle-hole symmetry of the Hamiltonian. ' If
the small term a (=41n2 —31n3) is neglected there,
then g&

—2g2 indeed becomes scale invariant. The
result' shows that g'& has a fixed point and in the
weak-coupling limit it scales to g&/~v= —0.87,
when g& is used for calculating the critical ex-
ponents of various fluctuation response functions.
Recently Rezayi, Sak, and Talukdar' have repeated
our calculation by using a similar approach and they
are able to show explicitly that g i

—2g2 is a scale in-
variant. However, their result for g& in the low-

frequency limit, contrary to that of Ref. 12, does not
have a real fixed point for g'& & 0. This difference as
pointed out by the authors in Ref. 16 is primarily
due to the choice of momentum cutoffs in the multi-
ple momentum integrations. In the work of Ref. 12
the bandwidth momentum-cutoff procedure was
used, while in Ref. 16 the transfer momentum-
cutoff procedure was adopted. In this paper the
problem shall be reexamined by using the bandwidth
momentum cutoffs. We shall show that in the
weak-coupling limit for g& &0 the invariant cou-
pling gi scales to gi /~v= —1.24 as co~0, q=O
and to g &

/m. v= —0.716 as cu =0, q~0. Namely the
value of g'i in the limit of low frequency is different
from that of g &

in the limit of long wavelength. We
shall also argue that the value of g'i used for calcu-
lating the low-frequency response functions should
be gi /m. v= —0.87, which is the result that we ob-
tained previously in Ref. 12.
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II. DESCRIPTION OF THE MODEL
AND THE RENORMALIZATION-GROUP

EQUATION

The model used here for discussion is identical to
that described in Refs. 4 and 12. We used the fol-
lowing Hamiltonian for the one-dimensional in-

teracting Fermi system:

H= gek(ak ak +bk bk }+H;„,, (1)
k, a

t t
Hire + g aklabk21Iak&IIbk +k —k, u

(2)+ ~ k~abk2p k3p k~+k2 —k3,a

where ak ~ and bk create particles with spin a, mo-
j l

menta kF kg (kj Q kF+kg and —kF —k,
& k; & —kF+ k„respectively. The cutoff momen-
turn k, is related to coD by vk, = —,coD, here v is the
Fermi velocity. ek=U( '~ k

~

—kF) is the kinetic ener-

gy of the particle. g1 represent the interaction with
momentum transfer near 2kF, and g2 with momen-
tum transfer near 0. The renormalized
interaction or the vertex function
I Ilrs{k,co„k2co2,k, co3, k4co4} depends on three in-

dependent momenta and three independent frequen-
cies, which have been chosen in such a way that

k1 ——k4 ———kF, k2 ——k3 ——kF ~

3
CO1= 2CO,

1 1

CO 2 = —
2 N, N 3 =CO4 =

2 N .

(4)

As pointed out by authors in Ref. 4 that exactly the
same results for the logarithmic divergent terms
would be obtained if all the frequencies are chosen
to be zero and keeping a single momentum variable

q, for example,

CO 1
=CO 2 =CO 3 =CO 4 =0,

k1 ———kF~ k2=kF+q s

k3 -—kF-q, k4= —kF+2q .
We shall show at the latter part of this paper that
this different choice of energy and momentum vari-
ables may lead to different results for the third-
order renormalization-group equation. For the mo-

ment, let us make the choice according to Eq. (3).
The vertex function I yields in general a spin struc-

ture

r ~(co)=g r (co)& &II g2&—2(co)& &II ~

The renormalized Green function 6 is related to the
bare Green function g(+kF, co ):

6(+kF,co)=d(co IcoD,g„g2)g(+kF, co } .

The detailed description of the renormalization-

group method has been given previously. ' Here
we need only to write down the scaling relations and
renormalization-group equations according to Ref.
4. By changing the energy cutoff from ND to coD

and simultaneously the couplings g1,g2 to g1,g2,
multiplicative renormalization means that the Green
function and the vertex functions transform as

d(co/coD, g l,g2 )=z, d(co IcoD,gl, g2),

D g g2) 2 1 ( I D g»g2}
—1

1 2(coIcoD gl g2 } z3 ~2(~I~D gl g2}
2 I —2

g1 =Z1 Z2g1~ g2 =Z1 Z3g2,

where the z s are real and independent of N. There-
fore, the z s can be obtained from the above equa-
tions by setting co =coD.

The prescription of the renormalization-group
method is that, for any quantity A obeying the mul-
tiplicative renormalization condition

~(I~D gl g2 } ~(coIcoD gl g2}

the Lie equation of the group can be derived as'

a — 1 a
Bx

' ' x Bg'
InA {x,g l,g2 }=— inA(g, g l,g2 )

(12)

where x =co/ND. The labor involved in the
renormalization-group calculation is the evaluation
of the right-hand side of the above equation by per-
turbation theory for co =coD (g = 1).

III. RENORMALIZING CONSTANTS AND INVARIANT COUPLINGS

The third-order self-energy and the fourth-order (or three-loop) diagrams for the vertex functions have been
calculated previously. ' The constants z; in the third-order renormalization have been shown to have the fol-
lowing expressions':

I I

2 COD 3 3 COD

z1 1+ 2 (g1 glg2+g2)ln + 3 g1
(2m.v ) 2(2mv)

3 3 ND
g1ln

2(2+v) ND
(13)
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'P

I I I I

1 D 1 2 2 D 1 3 3 ~a 2 COD

z2 ——1+ g]ln + g]ln + g]ln + (g]gz —gz)ln
D (]TV ) ~D (]TO ) ~D 2(]yv )

I

2 2 COD

3 (3g]+4g]g2 —4g]g2)ln +agin
8(m} COg

I I I

1 1 2 a 1 3 2 D 4 3 toD
z3 ——1+ giln + 2g)ln + 3g)ln

g2 2( ]yv ) ]vD 2(]yv ) n 2( yrv } D
I I

2 2 3 COD 4 3 2 2 2 D
+ z (g] —2g]g2+2g]gg —2g2)ln + ] (3g] —g]g2 —2g]g2)ln

4(]m ) 8(]yv )] COD

(14)

COD

+ a3g2ln
COg

(15)

However, the results for the coefficients a2 and a3
obtained by Ting' and by the more recent calcula-
tion' seem not to agree with each other. Before we

point out the origin of this difference, let us briefly
discuss which diagrams are contributing to a2 and
a 3 If those terms due to the artificial effects by
making the choice of momentum-transfer cutoffs in
the multiple momentum integrations and the ar-
rangement of the external frequencies on the vertex
functions are neglected, ' it is straightforward to
show that diagrams which contribute to a; and a;
are given by Fig. 4(i) of Ref. 12 and all the graphs
listed in Figs. 6 and 7 of Ref. 12. The method used

to evaluate all the graphs in Ref. 12 is to restrict the
momentum associated with each Green function in
the region (k„—k, ). We call this type of restriction
on momentum integration as the bandwidth cutoff.
In Ref. 16, however, the authors there used the
transfer cutoff method which restricts the momen-

tum transfer between two electrons or the rnomen-

turn associated with each interaction line in the re-

gion (k„—k, ). A careful examination indicates
that the results obtained in Ref. 16 for most of the

graphs mentioned above are identical to Ting, ' ex-
cept for the graphs listed in Fig. 1. The values of
graphs from 1(a) to 1(e} are separately equal to zero
if the choice of the momentum and energy variables
on the vertex functions is made according to Eq. (3).
The identical conclusion has also been reached by
the authors in Ref. 16. In the previous work, ' how-
ever, finite values have been assigned to these
graphs; the reason will be given later. For the mo-
ment let us take the values of graphs from 1(a) to
1(e}separately equal to zero. The only disagreement
left are the values for those graphs from (f) to (i) of
Fig. 1. It is straightforward to show that the value
of graphs 1(f) and 1(g) is identical to that of graph
1(h} and 1(i); the sum of their contributions to the
vertex functions has already been given':

y =2(g] —g]g2+g2)(2g]5~y5@ —g]5~s5]]y}— 3
ln( ifghi) 2 2 2 1 1 2 co

2 (2mv)'

CO—(1+i]y }ln (16)

The recent calculation by the authors of Ref. 16 shows a slightly different result for these sets of graphs; they

obtain

y" ""=2(g,—g]g2+gz)(2g]5~y5~ —g]5&y5]]y) 3
ill

2 (2~)'
—( —1+i')ln

COg)

(17)

Namely, the real part of the coefficient in front of
ln(co/co&) has an opposite sign as compared with
Ref. 12. The calculation has been checked again
and we concluded' that this discrepancy exists be-

cause in Ref. 12 the bandwidth cutoff method was

used while in Ref. 16 the authors used the transfer
cutoffs. Because of this difference, the result of
Ref. 16 for g i does not have a real fixed point for
gi &0, or the value of gi becomes divergent in the
low-frequency limit. In the following we sha11 apply
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the bandwidth cutoffs' for the momentum integra-
tions in evaluating those Feynman diagrams. It
would be useful to write down the vertex functions
I'1(co) and I 2(co) as defined in Eq. (5) up to third-
order terms in g1 or g2. In order to make our later
discussion more convenient and transparent, we
shall discard the imaginary parts associated with
those diagrams which represent the vertex functions,
and terms due to the momentum-cutoff procedures.
This simplication may not be necessary, but it is
equivalent to the simpler one of the two methods
proposed in Ref. 16. In the Appendix the results for
the vertex diagrams which have been evaluated in
Ref. 12 will be listed again in their simplified forms.
From the Appendix the vertex functions I'1(co } and
I 2(cv }have the following expressions':

FIG. 1. Some graphs representing the vertex parts.
The black dots are the bare interactions defined in Eq. (2).
The dashed lines and the solid lines are, respectively, the
Green function with momentum near —kF and +k~.

2
' '

3g1 N g1 2 CO g1 3 CO 1 COI 1(cv) = 1+ ln + 2
ln +

&
ln + 2 (gig2 —g2)»

7Tv cop (harv ) cop (rrv ) cup 2(n v) Q)D

+
&

(3gl+4glg2 —4glg2)ln +blln +ci
co CO

8(lru) COD COg)

2 3 4

I 2(c0)= 1+ ln + 2
ln + 2

ln
g1 C0 g1 2 C0 g1 3 CO

2(harv)g2 cup 2(rrv ) g2 cop 2(n v) g2
r ~ r

+ 2 (gl —2glg2+2glg2 —2g2)ln +, (3g1 —glg2 —2glg2)ln
2 2 3 1 4 3 2 2 2

4(lru) g2 8(lru )'g2 Ct)D

(18)

+b2ln +c2,
CdD

(19)

where the constants ci and c2 are contributions en-
tirely from graph (a) of Fig. 1; in the present limit
co~O and q=0, c1 ——c2 ——0. The constants b1 and
b2 are proportional to the third power of gi and g2
and they can, respectively, be written as

bi =
2 [4gl(glg2 g2}] ~

1 2

(2m.v)'
(24)

Substituting them into Eqs. (20) and (21), we have

bl ——
2 [2gl(glg2 —g2)+2gl+P, ],1 2 3

(2m.u)
(20)

2

b2 ——
&

Sg 1
——

( z g 1 +2g2)
1 3 g1 3

(2~V)'
(25)

2
1 3 g1 1b2, 4g i

— ( , g i +g2 }+P2-
(2lrv)' g2

(21)
The constants Pl and P2 here are entirely from
graphs (f) to (i) of Fig. 1. Neglecting the imaginary
part on the right-hand side of Eq. (16},the following
results are obtained for Pl and P2..

By setting cop =cup in Eqs. (8) and (9), the renormal-
izing constants z2 and z3 can be shown to be given
by Eqs. (14) and (15) with a2 bi and a3 b——

2 The-— .
invariant couplings g1 and g2 are then determined
from Eq. (10} together with the expression for z,
[see Eq. (13)]. It is straightforward to show that

gl gl+ $ [ 3g 1+4g1(glg2 g2)l
(2m.u)

Pl 2gl(gl glg2+g2} ~

2 2

2
2P2 (g 1 glg2+g2 }

g2

(22)

(23)
Co~

)& ln (26)
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COD

&(ln

with g1 and g2 given, respectively, by

2 3 I
f1 D f1 2 D

g1
——g1+ ln + ln

m u coD (~u ) c0D

4 I

ln
81 3 D

(nv} 'cvv
3 I

g1 COD

+ ln
2(iru )'

+ ln
4(~u )

82 g2+ ) [ 3gi+4g1(glg2 g2}l
I 4 2 2

2(2m)'

(27)

(28)

would be obtained simply by replacing co with uq.

However, each value of those diagrams from 1(a) to
1(e) which was zero previously is now finite. This is

because each of these graphs consists of at least one

Landau bubble; for small co and q each Landau bub-

ble contributes a term Lz.

uq 0, cv~O, q =0
2~ —uq

—1/2m. u, co=0, q~O .

Its value, unlike those logarithmic divergent terms,
depends critically on how co and q are approaching
zero. For cu =0 and q~O the correction to the ver-

tex functions from graphs 1(a) can easily be ob-

tained,

2 I
~D

82 R2+
2(nv) cvD

4 I

+ ln
81 3 ~D

2(mv) cvD ND

3 I

+ ln
D

2(iru }'
3 I

g1 COD

+ 2ln
4(m.v)

(3g lg2 6glg2+4g2)'455py]
2 2

(2mu )

Summing the contributions from graph 1(b)—1(e),
we have

sgl 2 ND
ln

8(n v)
(29)

gl'(x}
2( )' 4( )'

here x=cv/coD and 5=(g2 —g&/2)/harv. In order to
obtain the above equation, the relation

gz ——g2 ——,g1+ —,g'1 has been used. We shall work

in the limit 5«1, that is, either in the weak-
coupling limit (g1,g2 «mu) or in the region where
g'1 -2g2 as co~0; it is easy to show that g'1/m. v

scales to a fixed value g'i /n. u =—(v 5—1)
(=—1.24).

In our discussion above, the momenta and fre-
quencies that appeared in the vertex functions have
been chosen according to Eq. (3), that is, in the limit
u~O, q=0. The only variable is the frequency co.
If the other choice which is given by Eq. (4) is made
or in the limit co =0, q~O, the only variable is the
single momentum q. It is easy to show that exactly
the same results for the logarithmic divergent terms

Here we wish to point out that the results of Rezayi
et al. ' for g1 and gz can be exactly obtained if one
uses Eq. (17) or simply changes the sign of P& and Pq

defined in Eqs. (22) and (23). It is noted that

g2 ——,g1
——g2 ——,g1 is invariant under the

renormalization-group transformation. Within the
validity of the third-order renormalization, the in-

variant coupling g1 satisfies the following equation:

1 1 5
lng'i (x ) =— 1 — g i (x )

Bx x 7Tv 2

y" d"= —(2gi5 r5)ss —gi5 s5pr)

x
(2nu) cvD

(33)

Thus in the limit of q~O and co =0, there are extra
terms from Eqs. (32) and (33) which should be ad-

ded to our previous vertex functions. By replacing
cv with vq in Eqs. (18) and (19), and adding the con-
tributions from Eqs. (32) and (33) to I i(vq) and
I 2(vq}, we have

1 2
bi —— i [ —2g i+4gi(gig2 g2)], —

(2m.v )

2
1

b2 = i Sg1 — ( i g 1 +2gp )
(2irv) g2

(34)

(35)

The constants c1 and c2, which were previously
zero, now become

1

(2 )

1 2
c2=,(3S1—6S1S2+4S2) .

(2~V)

(36)

(37)

ci2
p [—ggi +4(g ig2 glgi }],2 2

(2m) )

1 1 4 3 2 2
~3=, ( —»g i + log ig2 —4g igi)

(2mu) 2g2

(38}

(39)

With the use of the multiplicative renormalization
Eqs. (8) and (9), the constants appearing in z2 and z3
can be obtained as
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From Eq. (10) the invariant couplings g'i and gz in
the limit of co=0 and finite but small q can be
shown to have the forms

g'i =gi+, [—»gi+4gi(gig2 g2}]
(2~U)'

I
COD

)(ln (40)

g2 g2+, [ —»gt+4gi(gig2 g2)l
2(2n.v }3

I
COD

Xln
COD

(41)

With the use of the invariant property

g2 ——,gi ——g2 ——,gi, the Lie equation for g) be-

comes

lng'i (x)=— 1 — g'i (x}+
BX X 7TU 2 2(harv )

3 gi (x}
4(harv )

(42)

Here 5=(q2 —g&/2)/mv and x =vq/coD.
weak-coupling limit where 5 «1, gi &0, and q~0,
it is straightforward to show that g &

/m. v scales to a
fixed value g i /n. v = ——,(~21—1) (=—0.716),
which is quite different from the case where co~0
and q =0.

For g& &0 we have reached the conclusion that
the value of the invariant coupling g~ depends on
the choice of the frequency and momentum vari-
ables for the vertex function. In the limit of weak

coupling and co ~0, q =0, g &
has the value

g~/m. v= —1.24. In the other limit as co=0 and

q~O, g& scales to g&/n. v= —0.716. In order to
evaluate the low-frequency response functions '

which describe critical fluctuations of the singlet
Cooper pairing, triplet Cooper pairing, spin-density
wave, and charge-density wave, it seems that the
value of gi at co~0 and q=0 should be used. In
this case, although the corrections from the vertex
parts listed from graphs 1(a) to 1(e} to the invariant

couplings are zero, the response functions using
these graphs as vertex parts have finite value. Two
of these response functions are shown in Figs. 2(a)
and 2(b}, in which external momentum and frequen-

cy variables appearing in the vertex part have to be
integrated over and the result for each of them be-
comes finite. Moreover, it is doubtful whether the
limit co~0 and q =0 should be used for the vertex
parts listed from graphs 1(a) to 1(e), since the mag-
nitude of the Landau bubble LB associated with
each of these graphs, unlike those logarithmic diver-
gent terms, depends critically on how co and q ap-

proach zero. If we assume that only nonzero ver-
tex parts contribute to the response functions, then
there is a unique way to determine the values of
graphs from 1(a) to 1(e). We have noticed that the
value of graph 2(c) is identical to that of graph 2(b)
except by a spin structure due to the interactions.
Therefore, the vertex parts which enter graph 2(b)
and 2(c) should have the same magnitude. More-
over, the vertex part which enters graph 2(c) is
nonzero and together with its Cooper pairing coun-
terpart, their contribution [graph 7(a) and 7(b) of
Ref. 12] is given by'2 (see the Appendix)

r""'(~)= (2g i& reps g i~ s~pr)—

—ln
1 1 co

(43)
(2irv)' 2 ~g)

The correction to the vertex functions from graph
1(b) ' and 1(c) can easily be shown to have the result

r" '(~)= (2gi& r&ps g'i5 s&pr)—
r

B 1 CO—ln
(2mv) 2 COD

(44)

LB here is given by Eq. (31) and it has different
values in different limits. It is easy to show that the
sum of the response functions with graphs 1(b) and
1(c} as vertex parts are equal to those with graphs
7(a) and 7(b) of Ref. 12 as vertex parts. Therefore, it
is natural to choose the value of y" ' to be that of
y' ' '. This is equivalent to assigning LB ——1/2mv,
or to take the limit co =2uq~O for the Landau bub-
ble in the present case. There should be no difficul-
ty to show that the contribution from graphs 1(d)
and 1(e) is identical with that of graphs 1(b) and
1(c), the final result' for them is written as

ic)

FIG. 2. Some graphs representing higher-order
charge-density-wave or spin-density-wave response func-
tions. Diagrams (a) and (b) use graphs 1(a) and 1(b) as
vertex parts. Diagram (c) takes graph 7(a) of Ref. 12 as
its vertex part.
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y" '(co)= (2g15 ~5~ —g15 s5pr)

ln
1

(Zm. u }
(45)

g2 g2+ 3 2 I —7g1 +4(glg2 glg2}1
(2mu)

Xln (50)

b2 ——

Ci =

2
1 3 g1 1

Sg 1
— ( , g 1 +2—g2)

(2m) g2

(2n v)

1 2(3g 1 6g1g2+—4g2 ) .2

(2n.u }'

(47}

From the multiplicative renormalization Eqs. (8}
and (9), the constants a2 and a3 appearing in z2 and
z3 can be obtained as

u2=,[—4g 1 +4g 1(glg2 g2 }]
1 2

(2lru )
(48)

+3=, I —7g 1 + log lg2 4g lg2] .4 3 2 2

(2~v) 2g2

From Eqs. (9) and (10), the invariant couplings g&
and g2 which should be used to calculate the low-
frequency response function are given by

gl gl+ 3 l 7gl +4(glg2 g182}]
(2m v)

)& ln
ND

(49)

It should be noted here that the above equation
differs primarily from Eq. (33) by a minus sign.
Graph 1(a) involves the product of two Landau bub-
bles, with Lz ——1/2~v, its contribution can be easily
obtained':

y'"'(~)=[g15.r5~ —(3glg2 6glg2+4g2}

x5 s5p„)] 2
. (46)

1

(2n.v }

By choosing the value of Lz ——1/2m. v, we wish to
point out a simple fact that all the vertex parts,
which are generated from an arbitrary vertex graph
of lower order by replacing any of the black dots
(bare interaction) with a zero-sound (or a Cooper-
pairing} channel graph of two black dots, have the
similar leading logarithmic divergent term except by
a spin structure due to the interactions. With the
use of Eqs. (45) and (46) as new contributions to the
vertex functions, the constants b&, b2, ci, and c2 ap-
pearing in Eqs. (18) and (19) are, respectively, given
by

, [2gl+4gl(glg2 g2}1
1 2

(2m v)

These expressions for g'i and g2 are identical with
Eqs. (52) and (53) of Ref. 12 if the small term a is
neglected there. It is noted that the above equations
still satisfy the relation g2 ——,gi ——g2 ——,g&. As we

have shown in Ref. 12, for gi &0 and weak cou-
plings gi, which has been used for calculating the
critical exponents of various response functions, '

scales to fixed value gi/n. v= —0.87 in the low-
frequency limit.

IV. DISCUSSION

This paper is an extension of our previous work'
for a one-dimensional Fermi system with weak-
coupling parameters gl (g0) and g2. All the
relevant third- and fourth-order diagrams for the
vertex parts and self-energies were evaluated in Ref.
12. In those calculations the momentum associated
with each Green function appearing in every dia-

gram had been restricted to the region —k, & k & k, .
If there is no other profound reason the particle-hole
symmetry should hold for this cutoff procedure.
By using the property of particle-hole symmetry,
Fowler' was able to show that the value of g&

—2g2
is scale invariant. In Ref. 12 the invariance of
g &

—2g i was destroyed by the presence of the small
term a. The authors of the present paper have
shown that this is due to insufficient accuracy in the
calculation for the coefficient in front of the term
in(co/roD) associated with some of the graphs in Fig.
5 of Ref. 12. This set of graphs has proven to be the
most tedious to evaluate. Although the values for
most of the graphs representing the vertex parts in
Ref. 16 are identical with ours, there still remains
minor differences for several graphs in addition to
the major difference as pointed out in the text. We
believe that these differences are due to the choice of
different cutoff methods in momentum space.

The simplified results for the vertex parts listed in
the Appendix of this paper can also be obtained by
setting the external frequency equal to zero and in-
serting a cutoff co/u (or q) near the origin in the re-
gion of momentum integration. With these results,
we are able to show that the invariant coupling gi
scales to a fixed value g'i /n. v= —1.24 in the limit
co~0, q=O and it scales to gimv= —0.716 in the
limit co =0, q ~0. For g'» 0, there is no ambiguity
and gi/m. v always scales to a very small value. '

The reason that gi scales to different values for
g i &0 is because of the presence of the Landau bub-
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bles [see graphs from 1(a) to 1(e)] in the third-order
renormalization-group equation. As we have point-
ed out in Eq. (31), the magnitude of the Landau
bubble, unlike the logarithmic divergent terms, criti-
cally depends on how co and q approach zero. On
this basis we have argued that the invariant coupling
which should be used to evaluate the critical ex-
ponents for various fluctuation response functions is
from neither of the above limits but is given by

g &
/m= —0.87. The latter is obtained by assigning

the value of the Landau bubble Lz ——1/2mv. The
number g&/m. v= —0.87 should not be taken too
seriously since its value is expected to change in a
higher-order calculation. We are not sure whether
the co- and q-dependent invariant couplings g& and

g2 should be interpreted as a breakdown of scaling
in third order.

Finally, we would like to point out that the scal-
ing equation for g'] [Eqs. (30) and (42)] depends on

g2 via the quantity 5. This seems not to agree with

the results obtained by using the Tornonaga's boson
transformation, where the scaling equation for g&

does not contain g2. ' We believe that although
both the model Hamiltonian used in this paper and
the Hamiltonian obtained by bosonization of Eq. (2)
describe the same system, the two are not exactly
identical. Moreover, in the weak-coupling limit
both models predict the same ground state. '

Another consequence of our perturbative calculation
is that the spin-density and the charge-density de-

grees of freedom may not be independent from each
other.
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APPENDIX: LIST OF THE SIMPLIFIED RESULTS FOR THE VERTEX FUNCTIONS

The vertex I can be decomposed into the following spin structure:

I'] (cu)=1+ ln

r.~ ~(~)=g, r, (~)5.,5~ —g, r,(~)5.,5~„. {A.l)

The first- and second-order corrections to I i and I 2 have been calculated previously. If we neglect the ima-
ginary parts and the constant terms due to the artificial effects, ' I i and I 2 have the expressions

2
CO g 1 2 CO+ ln + (glg2 g2)ln

CO

(A2)
~D (]rv ) ]vD 2(]rv )

2

rp (]v)=1+ ln
gi 1

77v 2g2

3
co g 1 1 2 et) 1 1 3 2 3+ p

ln + g (g] 2g]gp+2g]gg 2gp)ln
~D (]I)' 2gz D (]rv)' 4gz

(A3)

In order to consider the third-order correction to I
&

and I 2 we need to know the fourth-order contribution to
the vertex function r(co}. The fourth-order diagrams have been calculated previously. ' Again if the ima-
ginary parts and the terms due to artificial effects are neglected, ' ' the fourth-order vertex parts in Fig. 5 of
Ref. 12 can be rewritten in more simplified forms:

g]g+ g]g&)5 r5% ( g]g&+g])5 s51]l']
(2m v)' ]vD

(A4}

y""'(~ ) = —[—8(g ]g2 g]gp )5~r5]]s+4(g ]g2 g Ig2)5~s5]]r ]
2(2mv) D

(A5)

y""'(~)=—[—8(g]g2 g]g2)5~ 5I]s+4(g]g2 8]g2}5.s5I] ]ay 2(2~)'
(A6)

y' "'(]v)= —[—2g, 5 5]]s+(4g, —6g,gq)5 s5p„] ln
3(2@v)

(A7)

y""](~}= [ 2g']5.—,5 —+]](s4gt 6g]g~)5 —s5y„] 3(2~)'
(A8)
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y' ""(co) =—[(4g lg2 —4g lg2)5 y5ps+ (3gt —8g lg2+2g lg2 )5os5py]
3(2nu)' D

(A9)

r" "'(o])= [—8(—glg2 g lg2}5 y5pS+4(g]g2 g lg2)5 s5py]
3(2]rv )

(A10}

y' '&'(o])= —[2(gl —2g g]2+2g g]z)5 oy5ps
—(gl —2glg2+2g]g2)5~s5py] &

ln
6(2nu).

(Al 1}

y" q'( ro) = —[2(g', —2g lg, +2g', g', }5~y5ps—(g, —2g',g, ~2g]g2)5os5py], ln'" 6(2]rv)2 arD
(A12}

y' "'(o])= —[2(gl —2g lg2+2glg2)5 y5ps —(g 1
—2g lg2+2g lg2)5 s5py]

6(2]rv }' o]D
(A13)

y' ""'(o])=—[2(gl —2glg2+glg2)5 y5ps —(gl —2glg2+2glg2)5 s5»] &
ln

6(2]rv )' ]'oD

The next class of graphs comes from Fig. 6 of Ref. 12; they can be rewritten as

(A14}

y' ' (co)=2(g] —glg2+g2)(2g]5 y5ps —g]5 s5p„) 3
ln

2( 2]rv ) coD

CO—ln (A15}

[ 4g1 (g2 g]g2)5 y5ps+2g](g2 glg2}5 55pyl
4(2]ru )'

N—ln
COD

(A16)

y'""'(o] )=[—4g] (g2 —g]g2)5~y5ps+2g ] (g2 g]g2 }5 s5py]
4(2]yu )' roD

N—ln (A17}

y]s"""(N )= [(4g ]g2 —4g]g2)5~y5ps —(2g lg2 —2g]g2)5 s5py]» +»
2(2m.u )' ~D COD

(A18)

r" ""'(~)=[(4glg2 4g']g2}5 y5ps (2g]g2 2g]g2}5 s5py] 3
n + n" 2(2]yv)'

(A19}

y'+""(o])=[g'5 y5ps —(2g 1
—3g lg2 I s5py]

2(2]yu )' o]]]

CO—ln (A20}

y' """"'(o])=[g]5y5ps —(2gl —3glg2)5 s5py] 2(2].v ) o]D
—ln

CO (A21}

The last set of graphs are shown in Fig. 7 of Ref. 12; they have the following expression':

y'" '(ro) =(2g 15 y5ps —g 15 s5p„), ln
2(2~)3

(A22)

V' ' '(co ) =(2g i5ay5p5 —g i5ag5py 3
1n

(2mv }'

y(7k1) 0

(A23)

(A24)

The contribution from graphs 7(g)—7(j) is zero in the limit co~0, q =0. By summing the right-hand sides of
Eqs. (A4)—(A24) together with Eqs. (A2) and (A3), it is straightforward to show that the vertex functioris

I ](o]} and I 2(o]) are, respectively, given by Eqs. (18}and (19) with constants b, and b2 defined in Eqs. (24)

and (25), and constants c
&

——cz ——0.
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In Ref. 12 we obtained the result for the Landau bubble
by integrating over the momentum variable first. For
example,

2trv 2ni — -"", [tv'+tv —g+i5sgn(tv'+to)][tv' g ii—5 sg (ntv)]

It is straightforward to show that with fixed vk„
L~ ——0. But if vk, is extended to Do, the method of con-
tour integration can be used. Lz is nonzero only when
co'+co & 0 and co' p 0. We then obtain L& ——1/2m. By
doing this we have neglected the contribution from
large g. This type of integration has been used exten-
sively for studying the electronic transport in metals.
[See A. A. Abrikosov, L. P. Gorkov, and I. Ye. Dzy-
aloshinskii, Quantum Field Theoretical Methods in Sta
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329.
Graph 1(b) is the vertex part which enters the response
function as shown in graph 2(b).

2 Graphs 1(b)—1(e) of the present paper and graphs 7(a)
and 7(b) of Ref. 12 can be obtained from graph 1(a) of
the present paper simply by replacing one of its black
dots (bare interaction) with a Cooper pairing (or zero-
sound channel) diagram.
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