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We study the interaction between spin waves and magnetic two-level systems (TLS) in a
ferromagnet with frustration. The coupling between the magnons and the TLS is due to the
modulation of the angle between spins, by the rearrangement of the spins directions when
the system tunnels from one metastable state to another. The magnon-TLS interaction
causes an instability of the ferromagnetic phase with decreasing temperature due to the ap-
pearance of a soft mode. We associate this instability with the disappearance of long-range
ferromagnetic order observed in reentrant ferromagnets.

I. INTRODUCTION

Recently much interest has been devoted to the
phenomenon of reentrant ferromagnetism, that is, of
systems which exhibit a ferromagnetic—to—spin-
glass or paramagnetic transition on cooling.!™*
This transition has been well characterized recently
through a scaling analysis of the magnetization as a
function of temperature and applied magnetic field.>
The scaling hypothesis is obeyed for this kind of
transition and allows for a determination of the crit-
ical exponents and critical temperature.

Reentrant ferromagnetism has been observed in
dilute ferromagnets with a concentration of magnet-
ic atoms near the percolation concentration®> and in
concentrated ferromagnets with a high proportion of
magnetic components.">* The common feature of
these materials is that they have additional magnetic
excitations, besides the characteristic spin waves of
ferromagnets. These additional modes can be ob-
served on the specific heat where they give origin to
a large linear term at low temperatures,® on the
neutron scattering cross section associated with an
excess scattering at low frequencies, and on the
electrical resistivity where they provide an extra
mechanism to scatter the conduction electrons in
metallic ft:rromagnets.5 Besides, ferromagnetic reso-
nance’ and neutron scattering’ give enough evidence
for the freezing of these additional modes at suffi-
ciently low temperatures.

In order to understand the phenomenon of reen-
trant ferromagnetism and the nature of the fer-
romagnetic instability on cooling, we describe the
additional magnetic modes in these materials as
two-level systems (TLS) and study the coupling of
the spin waves to these extra modes. Owing to the
random nature of the systems we are interested in
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the ensemble of TLS is characterized by a distribu-
tion of parameters.

We adopt of the point of view of Anderson,
Halperin, and Varma® and look at the classical po-
tential energy of the system in a space in which each
spin is specified by a set of two angles. We assume
that in this 2N-dimensional configuration space, the
classical energy has, in a given direction, local mini-
ma which are associated with the metastable fer-
romagnetic states characterized by distinct spin con-
figurations. Many of these states are accessible to
one another through quantum-mechanical tunneling
or thermal activation and most probably the transi-
tion between them involves the rearrangement in the
directions of a small number of spins.” In each of
the metastable states the spin waves are well-defined
excitations. We shall restrict our attention to pairs
of adjacent, accessible minima in configuration
space, the double-well potentials, which constitute
the TLS excitations.®

The theory developed in this paper generalizes the
model of Anderson, Halperin, and Varma for spin-
glasses® for the case of reentrant ferromagnets. In
both theories the exact nature of the modes
described as TLS remains unspecified.

One may think that the origin of magnetic TLS
and of the “glassy” topology of the classical energy
in configuration space may be quite different in di-
luted and concentrated reentrant ferromagnets. In
fact in the dilute systems we could tentatively identi-
fy the TLS modes with the degrees of freedom of
the finite clusters which coexist with the infinite
cluster near the percolation concentration.’

In concentrated reentrant ferromagnets the excess
modes and the glassy structure of the classical mag-
netic energy arise from the competition between fer-
romagnetic and antiferromagnetic interactions,
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which is a common characteristic of ferromagnets
with reentrant behavior. Indeed, this competition is
the essential ingredient for frustration,'” and as
shown by Villain'! and others®'? magnetic systems
with frustration exhibit two-level-system types of
excitations associated with distinct spin configura-
tions. The existence of these excitations has been
demonstrated on several experiments on spin-
glasses.!>!* We point out that even in the dilute
reentrant ferromagnets we cannot discard the
relevance of frustration as is obvious from the fact
that these systems become spin-glasses at low tem-
peratures. Also the similarity on the behavior of di-
lute and concentrated reentrant ferromagnets>* sup-
ports the point of view that frustration is the com-
mon ingredient responsible for the glassy behavior
of both type of systems.

The essential difference from the dynamical point
of view between spin-glasses and the systems we are
considering lies in the fact that in spin-glasses TLS
excitations are sufficient to explain most of their
magnetic properties without being necessary to in-
voke the existence of spin waves'>!® which, al-
though predicted theoretically,'® have not been un-
disputedly observed.!® On the other hand, in reen-
trant ferromagnets the TLS play a complementary
role, the relevant excitations being the spin waves.
We show, however, that the coupling of the spin
waves to the magnetic TLS softens the former exci-
tations and eventually causes an instability of the
ferromagnetic phase with decreasing temperature
due to the appearance of a soft spin-wave mode. We
associate this instability with the disappearance of
long-range ferromagnetic order on cooling which
characterizes reentrant ferromagnets. It is remark-
able that a softening of the spin waves has been
directly observed by neutron scattering on these ma-
terials,! as the temperature is decreased and the
spin-glass phase is approached.

II. HAMILTONIAN

The Hamiltonian which describes magnons, two-
level systems, and their coupling is given by

H=26ka£ak+-§—o’+%a"+Ka’S". (1)
k
A derivation of this Hamiltonian is given in Appen-
dix A. The first term in (1) describes magnons with
energy €, =Ag+Dok?, where A, is a gap, D, the
spin-wave stiffness, and k the wave vector of the ex-
citations. The a,:r,ak are Holstein-Primakoff boson
operators. The next two terms in (1) refer to the
TLS; € represents the energy difference between
metastable ferromagnetic states lying on opposite
sides of the double-well potentials and which are
characterized by distinct metastable equilibrium
directions for the spins. A is the quantum-
mechanical tunneling frequency which is related to
the transition rate from one metastable ferromagnet-
ic state to another. The last term couples the TLS
and the spin waves. The coupling arises due to a
modulation of the angle between spins, or of the an-
gle they make with a given direction when the sys-
tem “moves” from one metastable state to another
(see Appendix A). In the Hamiltonian above the
Pauli matrices, o refers to the TLS, and S~*
represents the x component of the spin S. Higher-
order terms which give origin to Raman-type
magnon-TLS processes have been negelcted in (1).
On the basis which diagonalizes the energy of the
defect, the Hamiltonian (1) can be rewritten as

H=Y eajay+(E/2)o*+(Do*+Mo*)S*
k
2)
where D =Ke/E, M =KA/E, and E =(e?+A?)'/2.
III. FERROMAGNETIC INSTABILITY

Recently we have studied!” a Hamiltonian such as
(2) to take into account the coupling between spin
waves and structural defects in a ferromagnetic
glass. The effect of the magnon-TLS interaction on
the spin wave of frequency w can be described by a
shift Aw in the energy and a damping I of these ex-
citations.!” One finds from (2), for the total energy
shift and damping,'”

NM?2s tanh(E /2kgT) olo—o,) wlw+o,)
Awresr' N E 2 -2 2 —2 _2 4 (3)
0 (0—w,) +T1; (w+w,)+T13
4ND2S 1
Aw = — 4 ,
rel No 0 6021'%4— 1 (4)
NM?2s tanh(E /2kgT) Ty Ty
I‘1'es= N E 2 + 22 ’ (5)
0 (0—0,)?%+1  (0+0,)3+1
4ND%S oT
Tr= XE 6)

No %41’
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where

X§= sechX(E /2kpT) .

4kyT
In the equations above #iw, =E, the energy splitting
of a TLS. N and N, are the numbers per unit
volume of TLS and spins, respectively, and 7 and 7,
are the longitudinal and transverse relaxation time
of the TLS.!® In reentrant ferromagnets TLS relax-
ation may occur by direct magnon emission and ab-
sorption. The longitudinal relaxation time due to
these types of processes has been obtained in Ref.
17. The transverse relaxation time r, arises due to
the interaction between TLS, which for the systems
studied here may be mediated by spin waves.!” The
subscripts “rel” and ‘“res” in the equations above
denote the relaxation and resonant contribution for
the spin-wave energy shift and damping.’® In the
theory of magnetic resonance these contributions are
known as longitudinal and transverse or as the slow
and fast relaxation mechanisms. '’

Since we are dealing with a random system, the
expressions above must be averaged over the distri-
bution of energy splittings of the TLS. Let us first
consider the resonant contribution. For this purpose
we introduce the function ny(E), which gives the
density of states of TLS per unit volume and unit
energy and assume this function to be a constant n,
for E between 0 and E,,, and O otherwise. This is
consistent with the linear temperature dependence of
the specific heat observed at low temperatures on
the spin-glass phase and which is due to the TLS ex-
citations.® We then find for the resonant contribu-
tion to the energy shift of the spin wave of frequen-
cy o (Ref. 17)

© _2noM’S | o'ny [Rey(+ +2)— ()]
res NO (1)27'%—*-1 2 2
AL T )
_OT ot
co21'§+1 2

Emax 1
— |In———-¢¥(3) ||, (7)

[ Nk, V2
where (z) is the digamma function®® and
z=#(r;'—iw)/2nkgT. We are taking the cou-
plings D and M as constants independent of the en-
ergy splitting E as is usually assumed in the theory

of glasses.'®

The renormalized spin-wave energy E; can be
written as

Er=¢€x+2(fiw=¢;) (8)

with 2(w)=Aw.(®). Let us make this equation

self-consistent; that is, we write
E,=¢ +2(ﬁw=Ek) ’ 9)

which amounts to sum an infinite series of diagrams
representing single scattering resonant processes of a
magnon by a TLS.2! The critical temperature for
the appearance of a soft mode is determined by the
condition Ej =0, that is

€ +2(0)=0,
which gives
E max !
Ag+Dok?=G 1nm—¢(;)] , (10)

where G =2noM?S /N, and ¥( %) is a negative con-
stant. When the temperature is decreased, the first
mode to soften is the K =0 mode for which the criti-
cal temperature is given by
aE max - AO
kpTy= , 11

slo P (1
where a=7.121. The effect of a magnetic field H is
to decrease the critical temperature. We find

—gupHS
kBTo(H)=kBTo(H=0)exp—§%B—. (12)

For small fields (gugH <<G) the effect is linear on
the applied magnetic field. Notice that large fields
(gugH > G) can push the transition to infinitesimal-
ly small temperatures.”? The damping of the spin
waves due to the resonant contribution is given by
Eq. (17) of Ref. 17.

Let us make some numerical estimates of the
quantities calculated above. Firstly, we assume that
(aEqax/2m) is of the order of kzTc, where T¢ is
the Curie temperature of the material. This is in
agreement with the arguments of Anderson et al®
regarding the scale on which ny(E) should be con-
stant to yield a linear specific heat. Also for Ay=0
we should get To=Tc. In glasses E,,, is of the or-
der of the glass transition temperature.'® The quan-
tity no can be obtained from the linear term of the
specific heat on the spin-glass phase and turns out to
be of order ny=10* erg~'cm~* (Ref. 7) compared
to 10% erg~'cm™3 due to structural TLS in
glasses.'® We make the assumption that the density
of states of magnetic TLS is the same on both fer-
romagnetic and spin-glass phases. This is expected
for a quenched system and from the nature of mag-
netic TLS on systems with frustration; that is, once
the sample is prepared the number of TLS is fixed
independently if the system is in a ferromagnetic or
spin-glass state. The gap A, in soft ferromagnets is
mainly due to dipolar interactions and can be ap-
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proximated by Ag~gup(4m/3)Ms. It is typically of
order 107 eV for the systems we are interested in.2*
Taking No=10?2 cm~> and S =1 as for iron, the
only quantity which remains to be estimated in or-
der to obtain T, is the coupling constant M. This is
a difficult task since M is associated with anisotro-
pic interactions (see Appendix A) which are not well
known in these systems. We shall proceed in the op-
posite direction and from the known values of T,
we estimate the order of magnitude of the coupling
constant M necessary to account for the ferromag-
netic instability. From experimental results we take
To~Tc/e (Refs. 3 and 4) which requires that
Ay/G ~1 so that M turns out to be of order 10~3
eV. This value of M implies strong anisotropic in-
teractions although this is not necessary if the TLS
involves a reasonably large number of spins since, as
shown in Appendix A, the constant K appearing in
(1) scales with the total number of spins in the TLS.
We point out however that large anisotropies may
exist in these materials, as has been shown recent-
ly.2* This order of magnitude for M is consistent
with a Dzyloshinskii-Moriya or pseudodipolar an-
isotropic interaction.?* In metallic ferromagnetic
glasses with reentrant behavior, these interactions
may also be due to the presence of metalloid atoms
which give origin to anisotropic superexchange in-
teractions between the transition-metal ions.?

The relaxation contribution to the shift also de-
creases the spin-wave energy as can be seen from Eq.
(4). In principle this type of process can also lead to
an instability of the ferromagnetic phase. The relax-
ation shift is more difficult to calculate since in gen-
eral the longitudinal relaxation time of the TLS de-
pends on the energy of the TLS.!” There is strong
experimental evidence from the study of spin-
glasses'* that in systems with frustration TLS tun-
neling is mostly performed by thermal activation.
In this case the relaxation contribution to the energy
shift is given by'’

ND32S f ( dv

NoksT o TA M) +1
where r=7oexp(V /kgT) with 7 a constant and V
an activation energy with probability distribution

P(V). In particular, for a constant distribution of
energy barriers from 0 to V,,, one gets from (13)

A")rel= - ’ (13)

DN | 1 1 o’rg+1

Awg=— + n
rel No |kpT " 2oy w7, +1

’

(14)

where T, is the value of 7 for V =V ,,,,. From this
expression we obtain a critical temperature for the
mode of k =0, with the same arguments used above,

kpTo=(D2Sc/A,), where c =N /N, is the concen-
tration of defects. This temperature turns out to be
roughly of the same order of magnitude of T, ob-
tained from the resonant shift, if we use D ~1073
eV and ¢ =0.1 (see Appendix A). In this case, how-
ever, we get a different field dependence for the crit-
ical temperature.

IV. FERROMAGNETIC RESONANCE
IN REENTRANT FERROMAGNETS

Expressions (3)—(6) and (13), averaged over the
distribution of TLS parameters, give the line shift
and linewidth of the modes of frequency w excited
in a ferromagnetic resonance experiment in fer-
romagnets with frustration.!” Owing to the relaxa-
tion contribution, we expect the linewidths to exhibit
maxima as a function of temperature. These maxi-
ma are in fact observed.>?* They are due in part to
the shape of the distribution of energy barriers and
reflect the freezing of the magnetic TLS on the time
scale of the experiment.!® As shown below in Eq.
(15), these linewidths are proportional to the average
imaginary part of the dynamic longitudinal suscepti-
bility of the TLS. The physical origin of these max-
ima is quite simple. The ensemble of magnetic TLS
provides a relaxation channel for the ferromagnetic
medium. When the temperature decreases the TLS
starts to freeze, increasing the lifetime of the fer-
romagnetic modes excited by the radio frequency,
and consequently the linewidth decreases giving ori-
gin to a maximum. On the high-temperature side of
the maximum there is a kind of “motional” narrow-
ing of the line due to the increasingly rapid relaxa-
tion of the TLS. This is essentially the explanation
for the linewidth maxima proposed by Coles et al.’
for these systems. The model developed by Sarkis-
sian?® however considers only the resonant contribu-
tion since he assumes an isotropic interaction be-
tween spins. Furthermore, he took w, =0.

The expression for the relaxation contribution to
the linewidth is, in the case of thermally activated
processes, given by!’

_ ND32S f oT
rel —
NokpT 0?41

av (15)

with r=7oexp(V /kpT) as before. In the case when
the width of the distribution P(¥) is much larger
than kpT, a useful approximation can be obtained
for the above integral.”” We find

ND2s

N, P(V), (16)

I“rel =

where ¥ = —kp T In(w,). The above expression al-
lows for direct determination of the distribution of
energy barriers P(¥V) from the measured linewidths.
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Notice that for a constant distribution P(V) the
linewidth is temperature independent.

Recently Bhagat et al.?® have shown that in a
large class of systems exhibiting TLS freezing, in-
cluding ferromagnets, the linewidth as a function of
temperature can be described by the following ex-
pression, in a certain temperature range above the
freezing temperature:

Fzrlexp(—T/TA) s (17

where I'; and T, are functions of the concentration
of magnetic ions. It is easy to see that if we assume
a normalized distribution of energy barriers

SN, V<v,;

PW= 1w exp—v /vy, Vv, 18

where f(V) is a function joining smoothly to the
value of P(¥V) for ¥ =V, and with the use of Eq.
(16) for I, we obtain expression (17) for the
linewidth, whenever

kBT>V,/| 111((1)T0)| ’

and T =cD>S/¥,. Using o/2r=10 GHz,
To=10"13 sec, and the value of T, =26 K obtained
by Spano and Bhagat?® for a typical reentrant fer-
romagnetic glass, we get ¥~ 10~2 eV. Since I'; is
in this case of order 10° Oe (Ref. 23) we estimate
cD? above to be of order 10~% V2. Thus expression
(17) for the linewidth is a consequence of the ex-
ponential tail of the distribution of energy barriers
for large activation energies.

The linewidth due to the resonant contribution is
given by

[ee=(mnoM? /N )i 2k T

for wr;>>1 and #iw <<2kpT.!” Our estimate of M
from the critical temperature obtained above,
M~10"% eV is consistent with the observed
linewidths in magnetic resonance*> in reentrant fer-
romagnets since for w/27=10 GHz and on the
range of temperatures investigated, the resonant
contribution turns out to be negligible compared to
the relaxation contribution to these linewidths.

The shift in the field for resonance due to the
resonant contribution can be obtained from Eq. (7).
It is given, in the cases wr, >>1 and #iw <<k T, by’

2n0MZS
Hr“(T)—Hr“(T0)= —W In

T

T,

b

(19)

where H . (T,) is the field for resonance at an arbi-
trary reference temperature T',.
The dynamic shifts, that is, these contributions to

the shift which vanish with frequency, are positive
and generally increase with decreasing temperature
for both relaxation and resonant contribution.
These dynamic shifts consequently cause a decrease
on the field for resonance as the system is cooled.
They are given by expressions (10) and (11) of Ref.
17 averaged over the distribution of energy split-
tings. The static shifts, on the other hand, are nega-
tive and should enter the resonant conditions for the
ferromagnetic spins as effective anisotropy fields.

In a ferromagnetic glass with frustration one has
coexistence of magnetic and structural relaxation
and as we have shown in Ref. 17 structural relaxa-
tion may also give origin to maxima on the
linewidths as a function of temperature. However,
in the case of the glasses studied by Spano and
Bhagat?} the anomalies on the linewidth as a func-
tion of temperature appear, for the range of tem-
perature investigated, only on the alloys which show
a transition from a ferromagnetic to a spin-glass
state at low temperatures. These results strongly
suggest that the observed anomalous linewidths in
these materials are due to magnetic relaxation and
are given in Ref. 16 with an appropriate distribution
of energy barriers. It is interesting to speculate
whether structural and magnetic TLS can in fact be
treated in reentrant ferromagnetic glasses as distinct
excitations.

V. CONCLUSIONS

We have calculated the effects on the spin-wave
propagation of the interaction between these modes
and magnetic TLS in ferromagnets with frustration.
The coupling between magnetic TLS and magnons
arises due to a modulation of the orientation of the
spins, by the rearrangement of the spin directions
when the system tunnels from one metastable state
to another. We have shown that the magnon-TLS
interaction causes an instability of the ferromagnetic
phase with decreasing temperature due to a soften-
ing of the former excitations. Both resonant and re-
laxation contributions may drive this instability.
They predict, however, distinct field dependence for
the critical temperature and could be easily identi-
fied experimentally.'®

We have associated the instability at T, with the
disappearance of long-range ferromagnetic order on
cooling observed in systems with competing interac-
tions and which is accompanied by a softening of
the spin waves as directly confirmed by neutron
scattering experiments. The instability involves an
interplay between dipolar forces which give origin to
the gap A, and frustration effects represented by a
density of states n, of magnetic TLS. The theory
presented above shows that a system with a small
anisotropy gap and a large density of defects may
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not sustain long-range ferromagnetic order which,
however, can be stabilized by an external magnetic
field. In this respect it is worthwhile mentioning
some recent experimental results which show that
ferromagnetic order may set in on spin-glasses under
sufficiently strong applied magnetic fields.?’

Recently a ferromagnetic—to—spin-glass transi-
tion has been associated with the temperature of the
maximum of the ferromagnetic resonance (FMR)
linewidth.3® As we have shown this maximum is
due to the relaxation contribution, Eq. (15), and
occurs at a temperature Ty such that or(T,)=1."®
It should be clear from the results above that the
freezing temperature Ty and the temperature of the
ferromagnetic instability T, are independent quanti-
ties such that ferromagnetic order may subsist below
Ty (ferro-plus-cluster glass regime, Ty <Ty) or al-
ternatively freezing may occur below T.2 Also the
FMR linewidth is proportional to the imaginary
part of the dynamic susceptibility of the TLS and
not to the real part from which the spin-glass transi-
tion temperature is obtained.

Finally, it is important for our analysis that the
spin-wave modes whose energy vanish and which
are responsible for the collapse of the ferromagnetic
phase remain well defined down to T;,. The damp-
ing of the spin waves in the limit ®—0 can be easily
obtained for the resonant contribution. It is given
by e=(mnoM?/2NokT)#iw and at T, with the
numerical values wused before, one finds
[ es/#i>~1073 and consequently well-defined mag-
nons in this limit. The relaxation contribution to
the damping depends strongly on the relaxation
mechanism of the TLS. For thermally activated
TLS relaxation, with a constant distribution of ener-
gy Dbarriers, as used to obtain (14), we get
[o=(ND2STpuy/AiNgViax . At T, with
Vmax =2kp T (Ref. 18) and the other parameters as
used before one gets I /% ~10~2 confirming the
validity of our approach.

The spin waves which are probed by neutron
scattering have much larger energies than the modes
which cause the ferromagnetic instability. The
behavior of the damping of these excitations can be
inferred directly from the FMR linewidth and in
fact we expect it exhibits a maximum at the freezing
temperature of the TLS due to the relaxation contri-
bution.
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APPENDIX A

Let us consider a system of spins which interact
through a Hamiltonian of the general form®'

H= EJi?ﬁS,'aSjB ) (Al)
as

where i and j run through the spins and a,B=x,y,z.
This Hamiltonian includes the wusual isotropic
Heisenberg terms and also anisotropic interactions
like pseudodipolar, dipolar, etc.’! In a ferromagnet-
ic system with competing interactions the directions
of the spins in the metastable equilibrium are non-
collinear due to frustration,”? and in this case it is
useful to rewrite (A1) in a local set of frames in
which the local Z direction is taken as the local
metastable equilibrium direction of the spin. For
simplicity we consider the case of planar spins for
which the direction of a given magnetic moment is
specified by just one angle'” §; which the spin makes
with a fixed direction in the laboratory. After the
change of axis we can distinguish three types of
terms in the transformed Hamiltonian:

(i) terms of the type

3, 78(6,0,)SiS} ,
L]

(ii) terms like

L]

and finally,
(iii) terms like

3 7 [1(6,,6,)S7S] +k (6;,6,)S!S]
l')

+1(6,,6,)S7S7] .

The S above refer to the components of the spins
on the local frames, and for simplicity we took all
J° 10 be equal. On these local frames it is reason-
able to take S7=S, and we adopt this approximation
on the discussion below.

The first type of term determines essentially the
energy of a given metastable state and together with
contributions arising from local anisotropies give
origin to the term (€/2)o* in (1) which represents
the difference in energy between the two accessible
magnetic states lying on opposite sides of the
double-well potentials. This difference in energy is
associated with different sets of angles 6; character-
izing the local equilibrium directions of the spins in
the two distinct metastable states. At this point we
introduce the term (A /2)o* appearing in Hamiltoni-
an (1) and which allows for quantum-mechanical
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tunneling from one magnetic metastable state to
another. The theory can be easily generalized to in-
clude thermally activated transitions® as is done in
the text.

The second type of term arising from (A1) gives
origin to magnon-TLS interactions. The functions
f(6;,6;) and z(6;,6;) have different values in the
distinct metastable states. This difference is ac-
counted for by the interaction terms K°S$%?S* and
GS%7S?, S° is the total spin associated with a TLS.
Notice that S° has been included in the definition of
the constant K appearing in Hamiltonian (1) which
gives a false impression that (1) is not time-reversal
invariant. In (1) we considered only the term pro-
portional to S* since taking into account the one
proportional to S” merely renormalizes the coupling
constants D and M which are not determined from
first principles anyway.

Finally, the third type of term gives origin to
magnon-TLS interactions described by terms like
BJd*S*S* or Co*S*S?, which are associated with in-
direct scattering of spin waves by the TLS (Raman
processes). They involve two boson operators and
shall not be considered here.

The spectrum of spin-wave excitations is obtained
from (A1) in a given metastable ferromagnetic con-
figuration. It may also include other contributions
arising from local anisotropies. We assume that this
spectrum which is described by the dispersion rela-
tion €, = Ag+ Dok ?, remains unchanged and well de-
fined in the different metastable ferromagnetic
states. This assumption is essentially the same made
on the theory of glasses when one couples phonons
to structural defects in the well-known tunneling
model.'

With regard to the order of magnitude of the cou-
plings D and M, we have shown above that K in Eq.
(1) can be written as K =K°S°, where K° is related
to an anisotropic exchange interaction and S° is the
effective spin of a TLS. Let us assume that a TLS
involves on the average a rearrangement on the rela-
tive orientations of ten spins so that we associate an
effective spin S°=10S with a defect. This is reason-
able since it is of the order of the number of nearest
neighbors in a three-dimensional structure. In this
case, for M and D to be of order 103 eV one re-
quires K°~10~* eV (with S =1 as for iron), which
is of the order of a familiar pseudodipolar interac-
tion.>* The total number N of TLS is given by
N =ngE . ~10*' cm~3 which yields ¢ =0.1 as
used in the text.

A final remark concerning metastability should be
made. When one does the transformation of the
spin components to the set of local axis one finds
that in the case of planar spins the isotropic Heisen-
berg exchange interaction J,-(} gives origin to a term

of type (ii), namely'’

3 Jij sin(6,—6,)S7S; .
"J

What we mean by a metastable state is one for
which

3 Jijsin(6; —6;)=0
J

for all i and that is the reason why effectively the
isotropic Heisenberg interaction does not contribute
to the coupling K°.

APPENDIX B

In this Appendix we generalize a cluster model in-
troduced by Sarkissian®® to take into account aniso-
tropic interactions of the Dzyaloshinskii-Moriya
(DM) type between spins. In this model a ferromag-
net with concentration of magnetic ions a little
above the percolation threshold is viewed as consist-
ing of an infinite island of ferromagnetic spins coex-
isting with small finite clusters. The infinite cluster
has long-range ferromagnetic order and can sustain
propagating spin waves. The finite clusters are
treated as single entities and represented by two-level
systems. This model is interesting on its own and is
also useful in clarifying the one studied in the text,
which we shall refer to as the glassy model.

The Hamiltonian which describes spin waves in
an infinite ferromagnetic cluster interacting with
aglomerates of spins represented by TLS is

H= ZGkazak +JFS+DFXS, (B1)
k

where the spins S belonging to the infinite cluster in-
teract with the finite clusters through effectives iso-
tropic exchange and anisotropic DM interactions.
The symbols above have the same meaning as in the
text.

This Hamiltonian can be studied by the dynamic
reaction field method used before. The shift on the
energy of the magnon Aw and its damping I" are
given by

Ao=—3N (72 D2)Re[¥¥(0)—x%(0)]
No
+%[(J2+D2)ReX’;(w)+D2ReX§(m)] ,
(B2)
r=%{(ﬂﬂ)z)Imx*(w)+1>21mxz(w>] :

where w=¢€;/%. N and N, are the number of clus-
ters and of spins in the infinite cluster and X*(w)
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and X*(w) are the dynamical transverse and longitu-
dinal susceptibilities of a TLS, respectively.!” We
also defined X3(w)=X%0)—X*®), and for simplici-
ty we took ((D*)?)=((D”)*)=((D*?)=D? where
( ) means a configuration average. The dynamical
susceptibilities depend on the energy splitting E of
the TLS which in this case is given by E =JS?, that
is the “Zeeman” energy of the finite cluster on the
local molecular field produced by all other spins.
The function ny(E) for the cluster model is given by
the distribution of these local molecular fields while
in the glassy model it is associated with the energy
for the rearrangement of the metastable equilibrium
directions of the spins.

The terms in square brackets on the shift

represent static and dynamical contributions, respec-
tively. For J > D and X*(0) > X*(0) the static shift is
negative and an instability may occur for this cluster
model at k =0. A linewidth maximum due to the
relaxation contribution arising from ImX* ) also
appears in this model.

For D =0 we have X*=X7*, the relaxation contri-
bution for the energy and damping disappears and
we obtain essentially Sarkissian’s result.”® In this
isotropic case there is no ferromagnetic instability
since the static shift is zero, which is a consequence
of Goldstone’s theorem.>® A more detailed study of
the cluster model which consists in a particular rep-
resentation of a magnetic two level system will ap-
pear in a future publication.3
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