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Continuous and first-order wetting transition from the van der Waals theory of fluids
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The transition between incomplete wetting and complete wetting of an attractive substrate
in contact with a gas at gas-liquid coexistence is studied. Within the framework of the sys-

tematic van der Waals (mean-field) theory of fluids, it is shown that both a continuous wet-

ting transition, as found by Sullivan, and a first-order transition with a prewetting line, pre-

viously found by other methods, are possible. The relative magnitude of the various charac-
teristic lengths in the problem is shown to be of relevance in this context. Beyond the model

calculations, purely thermodynamic arguments show that in general the prewetting line, if it
exists, joins the bulk coexistence line tangentially in the T-p phase plane. The manner in

which the difference in slope vanishes as bulk coexistence is approached is closely related to
the nature of the forces.

I. INTRODUCTION

The phenomenological characterization of an ad-
sorbing surface in the presence of liquid-gas equili-
brium is well known': Either the liquid completely
wets the surface or it does not. In the latter case
droplets of liquid appear on the surface with a finite
angle of contact. The former case is obtained in the
limit that the angle vanishes. In contrast to the
familiarity of these results, the transition between
these states, the way either of them is approached in
systems not initially at coexistence, and the connec-
tions between microscopic interactions and macro-
scopic behavior, have only recently come under
study.

In the case of strongly attractive substrates, ap-
proach to coexistence leads to an adsorbed film that
grows either continuously or via a series of steps, de-
pending on the temperature. As coexistence is ap-
proached, the thickness of the film grows without
bounds, producing at coexistence a completely wet
surface. For weaker substrates the film thickness,
and thus the excess surface density, remains finite as
coexistence is reached. Thus the surface remains in-
completely wet. As first noted by Cahn, a surface
which is incompletely wet at low temperatures is ex-
pected to become completely wet as the critical tem-
perature of the bulk system is approached. The
change from one condition to the other is denoted
the wetting transition and the corresponding tem-
perature the wetting temperature T . This transi-
tion is defined only at bulk coexistence.

If the wetting transition is first order, by continui-

ty we expect a line of first-order thin-film to thick-
film transitions extending into the {T,hp) plane (T
is the temperature, EJM is the deviation of the chemi-
cal potential from its value at bulk coexistence), and
terminating in a critical point. ' The locus of these
transitions, hp =15pv„{T), is denoted the prewetting
line. The location (Tv„„hpv„,) of its critical end
point must depend upon the properties of the sub-
strate as well as on the interparticle interactions. If

~ hpv„, ~

decreases with decreasing strength e of the
substrate potential, then there exists a critical value

e,„of this strength such that hp&„,——0. At this
point the wetting transition becomes continuous. As
there is every reason to expect the wetting transition
to persist over a finite range of even weaker sub-

64)i

FIG. 1. Topology of the phase diagram for not too low
temperatures. Heavy lines correspond to continuous tran-
sitions. The dashed line at coexistence (hp=0) and the
connected sheet shaded below coexistence indicate the lo-
cation of first-order transitions. The wetting transitions
change from continuous to first order at substrate
strength e,„.
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strate potentials, presumably the transition remains
continuous over this range. Such a continuous tran-
sition is denoted critical wetting. The topology of
the phase diagram as a function of T, hp, and e is
shown in Fig. 1.

The phenomenological picture sketched above,
which ignores possible transitions associated with
successive layering, emerges from the continuum
mean-field results of Pandit and co-workers. ' Ear-
lier efforts had revealed various aspects of this pic-
ture. On the one hand, the elegant experiments by
Moldover and Cahn on a related system are con-
sistent with a first-order transition at coexistence.
Furthermore, prewetting, but not critical wetting,
had been observed in calculations based on the
square-gradient approximation ' and in mean-field
and Monte Carlo' calculations for particular poten-
tials and parameter values. On the other hand, Sul-
livan in two important papers, " had convincingly
demonstrated critical wetting and complete absence
of prewetting, in a systematic mean-field approach
to a particular class of substrate and interparticle
forces. The qualitative difference between the
Pandit-Wortis and the Sullivan pictures could be at-
tributed both to the difference in the interactions
used and to the nature of the mean-field theory em-
ployed. Sullivan's calculations are within the sys-
tematics of the modern van der Waals theory" (see
Sec. III), whereas it is not easy to fit the calculations
of Pandit and Wortis into this framework.

The main purpose of this paper is to show that
the difference in methodology between Sullivan and
Pandit-Wortis is not responsible for the qualitative
difference in results. By two perturbation calcula-
tions around Sullivan's model, we get results that
lend support to the Pandit-Wortis picture of Fig. 1.
In addition, however, the results indicate that the
relative range of the forces can be relevant to the na-
ture of the wetting transition.

Before entering into the model calculations, we
show in Sec. II that one can derive some interesting
information about the prewetting line (if it exists)
from thermodynamics alone. In Sec. III the van der
Waals background is sketched and the Sullivan
model, basic to the perturbation calculations that
follow, is presented in some detail. In Sullivan's
model both the substrate and the integrated interpar-
ticle potential are exponential with precisely the
same range. Section IV contains the first-
perturbation expansion, in which the range of the
substrate potential is made slightly longer than that
of the interparticle potential. Within this perturba-
tion scheme Sullivan's conclusions remain valid,
nothing but critical wetting is observed. The range
of validity of this scheme is found to be restricted,
however, leaving open the possibility of prewetting

II. THERMODYNAMICS OF THE
PREWETTING LINE

In this section we shall call attention to a
Clapeyron-type equation for lines of first-order tran-
sitions, both between bulk phases and surface
phases, in the ( T,p) plane. With additional assump-
tions on the growth of the wetting layer as bulk
coexistence is approached, this equation is suffi-
ciently powerful to allow definite predictions on the
manner in which the prewetting line (if it exists)
connects to the bulk coexistence line.

For an open system, with given volume V, the ex-
change of particles and energy with the surround-
ings is governed by the chemical potential p and the
temperature T. The differential of the appropriate
thermodynamic potential Q is'

dQ= —SdT —Ndp, (2.1)

where N and S denote the total number of particles
and the total entropy in V. When surface effects are
disregarded, Q= —pV and dQ= —Vdp, where p is
the pressure. Since thermodynamic stability re-
quires Q to be minimal, two phases (1 and 2) can
only coexist if Q, =Q2. Along a line in the (T,IJ, )

plane, corresponding to coexistence between the bulk
phases, one must therefore have dQ& ——dQ2, i.e.,

dp Sq —Si
dT

b N2 —Ni
(2.2)

where subscript b stands for bulk.
The thermodynamics of surface effects can be ex-

tracted from (2.1} by subtraction of the bulk part
which dominates all extensive quantities. The bulk
parts are defined on the basis of the associated den-
sities at given p, T so that

Nb =p(p, T) V, Ns=N —Nb,

Sb=o(p, T)V, S,=S—Sb,

Qb — p(p, T)V, Q, =Q—+pV .

(2.3}

Here subscript s denotes the excess surface contribu-
tion to the corresponding quantities.

The Clapeyron-type equation for first-order coex-
istence lines between two surface phases follows im-
mediately from (2.1) and (2.3) as

dp
dT

~

S,2
—S, i

Ns2 —Ns]
(2.4)

beyond this range. The results of Sec. IV suggest
the second-perturbation scheme, explored in Sec. V,
in which a weak long-range tail is added to the sub-
strate potential. In this case prewetting is indeed
found. Concluding remarks are made in Sec. VI.
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in complete analogy with (2.2).
A note of caution on the application of (2.2) and

(2.4) is in order. In phenomenological thermo-

dynamics the chemical potential is only defined up

to a linear function of T. This reflects the arbitrari-

ness of the zero point of S and of p. Consequently,

dp/dT is, in thermodynamics, defined only up to an

additive constant. ' Furthermore, in theoretical dis-

cussions of phase equilibria based on classical sta-

tistical mechanics, the kinetic degrees of freedom

play no part, since they give contributions to the en-

tropy per particle, and to p, which are independent

of the phase and are determined by the temperature

alone. Only configurational contributions to S and

p need therefore be considered. As a result, the

coexistence lines in the (T,p) plane are distorted,

and the quantities in (2.2} and (2.4) must be reinter-

preted accordingly.
Generally, the competing surface phases are both

thin, with a thickness of a few molecular layers.

The special feature of the prewetting line (if it ex-

ists) is that one of the competing phases is a liquid-

like layer with a thickness that tends to infinity as

bulk coexistence is approached from the gas side.

Capitalizing on the special properties of this thick

film, one can extract more information from (2.4).
Consider a fluid at (or slightly below} gas-liquid

(bulk} coexistence, in contact with an attractive sub-

strate. Assume the temperature to be at or above

the wetting temperature TN. Disregarding trans-

verse variation, one can describe the fluid near the

substrate by the density profile p(x), where x & 0 is

the distance from the substrate (Fig. 2). Let this

thick phase be 2. The excess number of particles

with respect to the bulk gas can be written

Ns2 A [n sw2 + (pt pg )I+n„j . —

Here A is the transverse area, n,„2 and n„are the

dp
dT p-

sw2+ si sswl +(aI +g)l

ns„r yn„—n,„,+(p, pg }l—
(2.5)

As coexistence is approached, l~ oo, so that

dp
dT

&I —&g dp
pI —

pg dT
(2.6)

Thus the prewetting line meets the coexistence line

for bulk liquid and gas tangentially' (Fig. 3).
One can go one step further. Under the assump-

tion that all quantities in (2.5), except 1, vary slowly

as the bulk coexistence line is approached from

below, one has, asymptotically,

dp dp C
dT „dT gI

l
(2.7)

where C=C(T) is necessarily positive.

The dependence of I on the distance —hp from

excess surface densities associated with the transi-

tion layer at the wall and the interface, respectively,

pt and pg are the liquid and gas (volume) densities,

and I is the thickness of the liquid layer. In analo-

gous notation one can write the excess surface entro-

py as

Ss2 ——A [ssw2+(srt —og )l+s»] .

The thin phase (phase I} amounts to nothing more

than a transition layer close to the wall, so

s1 =~nswl s $1 = 0swl ~

Insertion of these expressions into (2.4) yields for the

prewetting line

px)

n, „,

prewetting line

X

FIG. 2. Typical density profile of a thick film wetting

the substrate, which is located at x =0. The shaded re-

gions with areas n,„2 and n„represent excess surface den-

sities of the two transition layers. The thickness of the

liquid layer is l.

FIG. 3. Schematic plot of surface phase boundaries in

the T,hp plane, where hp is the chemical potential mea-

sured from its coexistence value. The prewetting line

joins the coexistence line tangentially.
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bulk coexistence has been discussed in the litera-
ture. ' For Lennard-Jones —type forces (substrate-
fluid 9-3 and fluid-fluid 12-6) such that the long tail
of the substrate-fluid force dominates, one expects
1 &(T)(—b,p) '~ . For finite-range forces (nearest
neighbor or exponential), the expected behavior is
1=—D(T}ln( —bp). Thus in every case the prewet-
ting line will connect tangentially to the bulk coex-
istence line. However, the way in which the slope of
the coexistence line is approached, reflects the na-

ture of the microscopic interactions.
Note that the above discussion makes no reference

to the value of (dpldT}st. The absolute values of
the slopes have the ambiguities mentioned earlier.
Their difference does not.

Finally, if the fluid is represented by the lattice-
gas model (the nature of the lattice being irrelevant),
the configurational entropies per unit volume are the
same in the liquid and gas phases. ' Consequently
(dpldT)st=0, and the results above show that in
the (T,is) plane, the prewetting line will approach
the coexistence line horizontally.

III. THE SULLIVAN MODEL

A. Basics

In this section we review Sullivan's work" on a
mean-field model for the wetting transition. Since
Sullivan's model constitutes the starting point for
the perturbation calculations of the two subsequent
sections, it is necessary to present it in some detail.

Sullivan's starting point, and ours, is the van der
Waals, or mean-field, theory of fluids. In its
modern formulation' it is viewed as the lowest-
order theory in which the properties of a reference
system with short-range repulsive interactions are
taken as known, and the effects of longer-range at-
tractive forces are treated as perturbations. This ap-
proach to the theory of fluids has been thoroughly
explored for the last 20 years. The results of these
efforts indicate that, as long as one stays away from
critical regions, the modern van der Waals theory
(possibly including leading correction terms) gives a
good account of a wide range of phenomena.

The type of interparticle potential used in the van
der Waals theory is the following':

4(r) = r Qd
(3.1)

«v(«r), r &d .

Here d is the diameter of the hard-core repulsion, D
is the dimensionality, and v(r) &0 is the attractive
potential, the inverse range of which is measured by
z. The potential is parametrized in such a way that

fd r «v(«r)= —a (3.2)

is independent of ~. In the van der Waals theory the
quantities of interest are studied as power-series ex-
pansions in «d [or («d) ]. The two results for uni-
form systems of immediate interest to us are

p(p, T)=ps(p, T) —p—+O((«d ) ),

p(p, T)=ps(p, T) ap+—O((«d} ) .
(3.3)

The pressure pI, and chemical potential p~ of the
hard-core system are assumed to be known functions
of p and T.

When the theory is generalized to systems nonuni-
form" in one direction (in our case the distance x
from a solid surface), the x-dependent density is
split into components with different characteristic
spatial scales of variation. The longest spatial scale
set by the interactions is a '. The corresponding
component p(x) of the density obeys, to zeroth order
in ad, the equation

} =Vs lp(x) I+@(x)

+ dx'J x —x' p x' (3.4)

X(/» /)= ——e
2

(3.5)

This choice is not based on physical considerations,
but is made for mathematical convenience. Dif-

Here the function X(
~

x —x'
~

) is the attractive in-
terparticle interaction v(r) integrated over lateral di-

mensions, and the substrate potential 4(x) is as-
sumed to vary on the same scale as I( ~x

~
). For

notational simplicity the scaling factor ~ has been
absorbed into x, and the temperature dependence of
the various quantities has been suppressed.

Equation (3.4) is the basis for Sullivan's work"
and for ours. It applies to situations where lateral
variations can be ignored and is the lowest-order (in
«d) equation for the slowly varying part p(x) of the
density. Close to the wall, where the density abrupt-
ly falls to zero, the density develops oscillations on
the spatial scale of d. This part of the density is ig-
nored in (3.4). By the same token, layering transi-
tions are not accounted for by (3.4). In the limit
«d~, (3A) becomes exact for the slow component
p(x }. However, even for realistic forces, where
«d -0.3, (3.4) is expected to give a good account of
the slowly varying density component p(x), except
for properties associated with criticality.

With the nonlinearity inherent in ps(p), the in-

tegral equation (3.4) resists easy analytical progress.
Following Sullivan, however, we now adopt the sirn-

plifying first assumption: The interparticle attrac-
tion is of the D-dimensional Yukawa form, i.e., after
lateral integration,



4292 E. H. HAUGE AND M. SCHICK 27

4(x)=—ee (3.7)

i.e., 4(x) is also exponential with precisely the same
range as X(

~

x
~

). With this assumption, the inho-
inogeneous terms in (3.6) cancel to give

d pa =ps [p(x}] p~p(x—} . (3.8)
dx

The differential equations (3.6) or (3.8) must be
supplemented by two boundary conditions. As the
boundary condition at infinity, we shall always insist
that the bulk fluid is a gas, p(x~00)=ps. The
boundary condition on the wall (i.e., at x =0) for ex-
ponential interactions (3.5) follows from the same
type of argument as that leading to (3.6):

dph =ps [p(0)]—p, +@(0)—&&'(0),
dx p

or, with Sullivan's second assumption (3.7)
T

dpi'
=ps[p(0}] p —2e . —

dx x=0

(3.9)

(3.10)

In Sullivan's case the substrate potential 4(x)
does not affect the differential equation (3.8}. It
does, however, enter through the boundary condition
(3.10). For any form of 4(x) other than (3.7), the
substrate potential will influence both the differen-
tial equation (3.6) and the boundary condition (3.8).
In this paper we adhere to Sullivan's first assump-
tion (3.5) in order to trade the complexities of the in-
tegral equation (3.4) for the relative simplicity of the
differential equation (3.6) with (3.9). In Secs. III B
and III C we shall, however, cautiously move away
from Sullivan's second assumption (3.7).

B. The dynamical analog

Before moving away from Sullivan's second as-
sumption, we shall reformulate the problem as one
in classical mechanics. ' For concreteness we shall
also invoke the simplest possible model for pI, (p)

ferentiating (3.4} twice with respect to x and elim-
inating the integral by (3.4), one finds

d pI,
=ps[p(x)] —p —ap(x)+4(x) —4 "(x) .

dx

(3.6)

Knowing the monotonic function ps(p), one can in-
vert to find p=p(ps). Thus the integral equation
(3.4) for this special choice of X( ~x

~
) has been

turned into a second-order nonlinear differential
equation for p~, with inhomogeneous terms due to
the substrate potential 4(x).

Sullivan proceeds by making a second assumption:

ps(p)=ksTln P
7 (3.1 1)

where ke is Boltzmann's constant. Note that ps(p)
is the configurational chemical potential of the lat-
tice gas. With this choice for ps(p), a standard cal-
culation based on (3.3) shows that the chemical po-
tential JM at gas-liquid coexistence has the value

a
IMg(

=— (3.12)

The dynamical language is introduced when we let
x~t and treat t as a time variable. Furthermore, we
use the dimensionless variables

IM~ 1 drM

ksT '
AT dx

(3.13)

e P Pgl 2
p+—

AT
'

AT
'

AT kgT

(where g plays the role of a "position" and g plays
the role of a "velocity" ). In these variables (3.8)
reads

~ ~ A A
g=g —M+ ——

e-&+1

—/+M+ —tanh = — . (3.14)
A ~ dV
2 2 dg

Thus Sullivan's model is equivalent to the problem
of a classical particle of mass unity, moving in the
one-dimensional potential V(g). The arbitrary con-
stant in V is conveniently chosen such that at a g
corresponding to the gas density, V vanishes, i.e.,
V(g(ps ) ) =0. Energy conservation gives

—,g +V(g)=W, (3.15)

where W is the total energy. Solving for g one has

g'=+ [2[W—V(f)]) 'i~ . (3.16}

The boundary condition on the wall for Sullivan's
case, (3.10), is translated into the initial condition

g(0) =g(0) —M+ — 2E . —
2

(3.17)

and p~(p), namely the lattice-gas model. The results
do not in any essential way depend on this choice.
For the lattice gas one has

ps(p) = ks—T ln(1 —p),
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v((e) I,

(a) (b)
FIG. 4. Potential energy V(g) sketched as a function of "position" g (a) below coexistence, M & 0, and (b) at coexistence,

M =0.

Figure 4 shows a qualitative plot of V(g), (a)
below (i.e., on the gas side of} coexistence, M &0,
and (b} at coexistence, M =0. Figure 5 shows corre-
sponding plots of the trajectories of the continuous
map generated by (3.16}at various energies W. The
heavy curve corresponds to W=0. The boundary
condition p(x~ao }=ps clearly translates into the
requirement that the particle should end up on the
"gas peak" in Fig. 4, with zero energy, i.e., only the
heavy trajectories of Fig. 5 are allowed. The initial
condition (3.17) is plotted as dashed lines of slope
unity in Fig. 5. The different positions of the
dashed lines 1, 2, and 3 in Fig. 5(b) reflect increasing
values of E, the (dimensionless) amplitude of the
substrate attraction.

The solution g(t) for the case M &0, Fig. 5(a), is
clearly unique: At t=0 the particle stands at the in-
tersection of the lower heavy 8'=0 trajectory and
the dashed line, and moves to the left until it asymp-
totically ends up at g=gs, (=0. At coexistence,
M =0, again only the lower branch of the W=0
trajectory is, by continuity, of relevance. This time,
however, the nature of the solution, g(t), depends
crucially upon the position of the dashed line. The
marginal case is represented by line 2, corresponding
to substrate strength E=Eo (or e eo)=for which

A
g(0}=P+——2Ec ——0 . (3.18)

2

AP= —tanh+ .
2 2

Use of (3.11) and (3.13) in (3.18}gives'

Eo = pi(T)—A

2

or

(3.19}

(3.20}

ec———pt(T} .
2

With (3.18)—(3.20) the initial condition (3.17}can be
written

g(0) =g(0) +2(Ep —E )—P —M . (3.21}

When E &Eo [line 1 in Fig. 5(b}],the particle rapid-

ly finds its way to the gas peak, corresponding to the
substrate being incompletely wet. When, on the oth-
er hand, E &En (line 3) the particle slows down on
approaching the liquid hill and (as M~O ) takes a
(logarithmically) infinite time to pass it. This corre-
sponds to a liquid film completely wetting the sub-
strate. As the temperature increases pt(T), and thus

eo, decreases and the thickness of the liquid film
grows continuously as the dashed line moves to the

Here we have defined P as P=g(p=pt, M=0),
which is determined from (3.14) by (d V/dg)~ c——0,
i.e.,

c
/

/ I /

(a) ( )
FIG. 5. The dynamical trajectories (solid lines) in the (g, g) phase plane (a) below coexistence, M &0, and (b) at coex-

istence, M=0, for various total energies W. The heavily drawn trajectories correspond to W=O. The dashed lines

represent initial conditions for various substrate attractions.
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right. From the position of line 2 on, the film is in-
definitely thick. It follows from the above picture
that in Sullivan s model the wetting transition at T,
defined by ep=(a/2)pt(T ), is continuous

IV. THE FIRST-PERTURBATION SCHEME

We now relax Sullivan's second assumption and
let the substrate potential have the form

4(x)= —ee (4.1)

where the inverse dimensionless range P of the sub-
strate potential is assumed to be close to unity. In
the dynamical language of (3.13) the differential
equation (3.14) for ps now takes the form

with

+F(t)
d

(4.2)

F(t)= E(1—P2)e—
The potential V(g) is the same as in (3.14), but, in
addition, there is now a transient external force F(t).
We shall mostly be interested in the case where the
range of the substrate potential is longer than that of
the interparticle forces. In that case P & 1, and F(t)
pushes the "particle" to the left in Figs. 4 and 5.

At coexistence, Fig. 5(b), the question of whether

/

Y"
k T

—
KA t E "%lllllll~'" }

/

FIG. 6. Surface free energy in Sullivan's case. To
—E should be added the value of the shaded area in the
the (g, g) plane.

C. The free energy

We shall also need the expression for the free en-

ergy. For any van der Waals model governed by
(3.4), the excess surface free energy per unit sub-
strate area, y,s=Q, /A, is given by Eq. (Al) of the
Appendix.

Sullivan has shown" that in the special case con-
sidered by him the (dimensionless) free energy can
be given a geometric interpretation in terms of the

g —g diagrams of Fig. 5. As pictured in Fig. 6, yz
is (apart from a constant term} given as the area be-
tween the dynamical trajectory, the initial condition
line, and the g axis. Unfortunately, this appealing
picture does not carry over to the more general case.
We shall nevertheless have occasion to use it as it
does apply in a special situation considered in Sec.
V.

the substrate is completely or incompletely wet is, in
the dynamical picture, decided by what happens
close to the liquid peak, i.e., close to g=P. By con-
tinuity, the thickness of the film close to coexistence
is also determined there. If P is close to 1, F(t) is
small. The external force will therefore have a
negligible effect on the trajectory of the particle un-
less the initial condition line crosses the ( axis in
Fig. 5 close to g =P. Thus the pertur-
bing force can onjy be of qualitative relevance if E is
close to Ep, given by (3.20). Also, if M is sizable
(and negative}, F(t} becomes largely irrelevant. We
shall consequently consider 1 —P, F(t), E Ep (o—r
e ep)—, and M (or p —pet) as small quantities. It will

later become apparent that with 1 —P and E Ep-
considered as of first order, M must be taken as
small of second order. With

C=4+ki+4+ (4.3)

where g„ is considered small of nth order, lineariza-
tion of (4.2) gives

~ ~

E(1—P —)e (4.4)

where [with use of (3.8), (3.13), (3.3), and

(dp/dp)r=p)

d V 8
(ps —V

—p}
dg' &ps

=1—a
(ap/ap),

(4.5)
Bp (&p /& )

From its definition, A, is a measure of the curvature
of V at g=P. It is closely related to the (inverse}
correlation length of the liquid. From (4.5) it fol-
lows that 0& A, & 1, and that A, ~O as T~T, , A,—+1
as T~O. Note that since M is considered small of
second order, it does not affect the linearized equa-
tion of motion (4.4).

The general solution of (4.4) can be written as

g, =net'+ be '+ ce

with

(4.6)

c= E(1—P )/(P ——A, ) .

The constants a and b in the solution of the homo-
geneous equation associated with (4.4) must be
determined by the boundary conditions.

The boundary condition at infinity, p(x~00)
=p~, is now translated into (essentially) an energy
condition: In order that the particle ends up on the
gas peak with zero energy, the sum of the initial en-

ergy and that delivered to the particle by the exter-
nal force must vanish. Therefore, in general,

—,g (0)+ V(g(0))+ J dt F(t)g(t) =0 . (4.7)
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Within perturbation theory all these quantities are of second order and, at this level of approximation, (4.7)
reduces to

—,(Aa A—b pc—) ——(a+b+c) +2/M E(—1 —p )I dt e ~'(Aae ' Ab—e ' pc—e ~')=0 .
2 0

(4.8)

ln writing down (4.8) we have used the fact that the
maximum of the liquidlike peak at finite M &0 is,
to leading order, shifted downwards by the amount
2/M.

As long as P & A, all integrations in (4.8) converge
and can trivially be performed. After the algebra
has been performed, (4.8) reduces to

ah= M
x2

(4.9)

Since a and b are small of first order, (4.9) shows
that M must be considered a second-order quantity.
Equation (4.9) is the energy condition to leading or-
der. It is almost equivalent to the corresponding
boundary condition at infinity. What is missing is
the requirement that a &0, i.e., that the motion be
asymptotically directed towards the gas peak rather
than away from it.

It is important to realize that the straightforward
perturbation expansion considered here can only be
meaningful for A, &P. Equation (4.5) showed that
A, (T) ranges from zero at T, to unity at T=O. Con-
sequently, with p&1 and fixed, there is always a
low-temperature region in which the restriction
A, & p does not hold. We shall come back to this
point.

The boundary condition on the wall, (3.9), or the
initial condition in dynamical language, reads

g(0) =g(0) —M+ ——(1+P)E .
2

(4.10)

To first order M can be neglected. Introduction of
Eo as given by (3.20) then turns (4.10) into the first-
order initial condition

g, (0)=g, (0)+2(Eo —E)+ (1 P)E . —

With gi(t) given by (4.6) this ineans that

(4.1 1)

(1—A, )a+(1+A, )b =6,
where

(4.12)

(I +P)E 2EO . —1 —I,
p2 $2

For p=1 and E=EO, 6=0 as it should. When

P & 1, the sign of h, depends on the relative magni-
tude of E and E0( T) (i.e., with fixed e, on T ).

Solution of the two equations (4.9) and (4.12) for a
and b gives

(1+k)b'-=(1 —}1.}a'
1/2

b, + 6 —Q M1, 1 —X'

2 A,
2

(4.13)

where upper signs go together. Since M &0, it fol-
lows that a+ &0, b+) 0 and a &0, b &0, regard-
less of the sign and magnitude of 6 (i.e., regardless
of the temperature). But a positive a does not
represent an acceptable solution to the dynamical
problem, since it corresponds to a particle moving
off to the right in Figs. 4 and 5 with rapidly increas-

ing velocity, i.e., a &0 violates the boundary condi-
tion at infinity, p(x~ ao }=ps. Thus only one phys-
ically acceptable solution (a+,b+) exists within the
present perturbation treatment.

When M &0, i.e., a+ &0, the solution found cor-
responds to a "particle" which, after some initial
hesitation close to the top of the liquid peak, quickly
traverses the valley and lands on iI;s gas peak des-
tination. This dynamical picture clearly corresponds
to an incompletely wet substrate. No singularities
develop as the temperature (i.e., ep and A,) is
changed.

Complete wetting can, of course, only occur at
bulk coexistence. When M=O, already (4.9) shows

that either a or b vanishes. By continuity from the
(a+,b+ } solution, a can only be negative and b only
positive. Equation (4.12) in that case reduces to

1 —A, (1—A, )a(1+P)E—2EO= '(1 ~)b I4.14)

(Tw) =0 (4.15)

is clearly continuous.
We close this section with the following four re-

marks:
(1) To first order in our perturbation scheme,

Thus [a=A/(1 —A, ),b=0] is the only acceptable
solution when 6&0, whereas [a=0,b=h/(1+A, }]
must be chosen when 6&0. The first case, 6&0,
corresponds to incomplete wetting. The second one,
6&0, shows a particle that comes exponentially to
rest on the liquid peak (from which it crosses over to
the gas peak after an indefinite time). This is tan-
tamount to a completely wet surface. The transition
between the two cases, at a temperature T~ such
that
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A. The starting point

The calculations of Sec. IV showed that prewet-
ting, if it exists in our model, must be found in the
temperature range for which P&li, (T), i.e., roughly
speaking, when the range of the substrate potential
exceeds the fluid correlation length. When P&)i,,
however, the energy condition (4.7) presents an obs-
tacle to analytic progress. To circumvent this diffi-
culty it is tempting to consider the extreme case of
P«){,(T). Most of the valley between the liquid
and the gas peaks is traversed on a time scale A.

On this time scale an external force -e ~' can be
considered a constant, prouided that P « A, . A con-
stant external force brings us back to (essentially)
the problem considered by Sullivan. Unfortunately,
we cannot use P «A, dire:tly in the perturbation ex-
pansion of Sec. IV, since then the "distance" from
Sullivan's case cannot be considered as small.

We can, however, achieve the same benefit by
choosing the substrate potential to be

@(x)= —ee "—
gpss (5.1)

Sullivan's conclusion stands up: Even if the range
of the substrate potential is made slightly longer
than that of the fluid interparticle potential, the wet-
ting transition is continuous and no prewetting is
observed. A calculation of competing free energies
is not necessary to reach this conclusion, since only
one physically acceptable solution exists.

(2) The above certainly holds also to second and,
presumably, to higher orders in the present pertur-
bation scheme. However, to go much beyond first
order does not make sense, since the expansion used
clearly is not a convergent one. (The top of a peak
represents an unstable equilibrium point. ) It does
have an asymptotic meaning, however.

(3) For the present scheine to work, even to first
order, ' we must require that A,(T) &P. When P & 1,
this leaves open the question of what happens in the
low-temperature region where the above requirement
is violated. Note that there is no problem in princi-
ple with the basic equations (4.2} and (4.7) when
A,(T) &P. The divergence in (4.8) is clearly an ar-
tifact of linearization. Even if simple analytic tech-
niques are not available, the nonlinear problem can
therefore be studied numerically. This will be done
in future work.

(4) In the linear approxiination there is nothing
preventing us from taking P & 1. The results [(4.14)
and (4.15)] remain the same; i.e., a sufficiently
strong substrate attraction of slightly shorter range
than that of the interparticle forces still gives com-
plete wetting and a continuous wetting transition.

V. THE SECOND-PERTURBATION SCHEME

The first term, with E close to eo ——(a/2)pt(T), can-
cels identically in the dynamical equation and makes
its presence felt in the initial condition only. The
second term, with a coefficient ep ——k&TE~ con-
sidered small of second order, contributes an exter-
nal force

F{t) = Ett{—1 P)e—~'= Ette— (5.2)

where we used that p«1. To leading order this
force contributes neither to the dynamical equation
nor to the initial condition. It does, however, affect
the energy condition.

The choice (5.1) makes it possible to stay close to
Sullivan's case and still study the effects of a long-
range tail in the substrate potential.

B. Fast solutions

g (t}=ae '+be (5 4)

The energy condition (4.7), if treated in the
manner of {4.8}, would contain a divergent integral.
However, for fast solutions and with P «A, , we can
consider the external force as a constant, F=—E~.
This constant force will have the same effect on the
energy condition as a finite M. Thus the condition
becoines, to leading {i.e., second) order,

P(M+Ep)ah=
k2

The initial condition to first order reads

(5.5)

(1—k)a+(1+i)b =6, , , (5.6)

where l},=2(E —Eo) is obtained from the 6 of Eq.
(4.14) if one sets P= l.

From Eqs. (5.4)—(5.6) it is clear that fast solu-
tions, if they exist, obey to leading order precisely
the same equations as those governing Sullivan's
case, except that M is replaced by an effective chem-
ical potential, M+E~.

In order to understand the implications of this we
use slightly modified versions of Figs. 4 and 5. Fig-
ures 7(a) and 7(b) apply to the case when
M+E~&0, i.e., at some distance below gas-liquid
coexistence. The 8'=0 trajectory of Fig. 7(b) clear-
ly shows that only one solution with the gas point as

We first search for solutions to the dynamics that
represent rapid crossovers from the liquid to the gas
peak. Since the first term in (5.1) cancels and the
second term is small of second order, the first-order
dynamical equation is simply

k —Ai=o (5.3)

with solution
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M E&0
v(g)

M+E&& 0

(a) (c)

(b) (d)

FIG. 7. Potential V(g) and W=O trajectories (solid curves) in the {g,g) plane are shown for M+Es & 0 in (a) and (b),
and for M+Ep & 0 in (c) and (d). The dashed lines in (b) and (d) represent initial conditions.

(5.7)

For fast solutions to exist, (5.7) shows that one
must have

1 —A,4(E Ep) =lLi &Q (M—+Ep) .
A.

2 (5.8)

This is trivially fulfilled when M+Ep &0. In that

its final destination exists. The wall condition
(dashed line} determines the initial point on the tra-
jectory. The situation with M+E~ &0 is therefore
essentially the same as that of Sullivan's case (and
that of Sec. IV), with M &0. Figures 7(c) and 7(d)
depict the situation when M+Epp0. Since Ep&0,
this includes coexistence, M =0. Froin Fig. 7(d} it
is clear that, depending on the initial condition
(dashed lines), 0, 1, or 2 fast solutions exist. Fast
solutions exist only when the dashed line crosses the

g axis (a finite distance} to the left of g=P, i.e.,
when hi&0. Reference to the expression for the
surface free energy in Fig. 6 shows that the solution
with the smaller g(0) has the lower free energy.
Whether this solution is the physical one can only be
determined after the possible existence and free ener-

gy of slow solutions have been investigated.
Quantitatively, the a's and b's for the fast solu-

tions follow from (5.5} and (5.6) as

{1 —}i,)a+- =(1+}I,)b+-
' 1/2

1 —A,= —,hi+ 6i —Q, (M+Ep)
A,

2

case, however, {5.7) shows that a &0, and the
minus solution must be discarded as unphysical [it
corresponds to the upper branch of Fig. 7(b)]. With
M+E~ & 0, then, the solution is unique, as indicated
by Fig. 7(b).

When M+Ep & 0, (5.8) puts a lower bound on g,
i.e., an upper bound on (the negative ) 6i. With
negative h, i and M+Ep&0, both a and a+ are
negative. Both solutions are therefore physically ac-
ceptable. As will become apparent later, the plus
solution is the one with lower free energy. This sub-
stantiates the picture of Fig. 7.

C. The slow solution

In addition to the fast solutions found above, at
least one slow solution must exist for certain ranges
of the parameters. [For e & ec(T), the substrate with
the potential (5.1) is certainly completely wet at
coexistence. ]

The dynamics of the slow solution can be pictured
as follows (under the assumption that M+E&&0).
The particle starts moving close to the top of the
liquid peak in the tilted potential of Fig. 7{c}.The
initial conditions are such that it takes a long time ~,
of order P ', for the particle to make the final pas-
sage across the top of the peak (with negative veloci-
ty). After t=~, when the tilt of the potential has
been reduced to M+E~e ~', the particle rapidly (on
the scale of A, ') traverses the valley and finds its
way to the top of the gas peak.

The first-order condition that the particle passes
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the top of the liquid peak at t =~ reads, from (5.4),

gi(r) =ae '+ be '=0 . (5.9)

The first-order initial condition is again given by
(5.6). With b of first order and A, »P-r ', the
second term in (5.9) becomes small, of much higher
order than first order. To leading order [when the
particular solution originating in (5.2) is also added
to (5.9)], (5.6) and (5.9) therefore give

M~0 one finds ~~ 0O, corresponding to complete
wetting.

The situation is now as follows. We have shown
that for M +E~ & 0 no slow solution exists and that,
among the two fast ones, only the plus solution is
physically acceptable. Conversely, when M+Ep & 0
and E & E', where from (5.8),

E' —Ep ———,6)

E —p.—z~

A.
2

1/2

(M+Et3)
1 —A,

(5.13)

(5.10}

so that a =0 to first order. Since (5.10} shows a to
be very small and negative, this solution is an ac-
ceptable one. To first order, however, one should
put a =0.

To make the picture complete, we need an expres-
sion far w. This is furnished by the energy condi-
tion. Since for t & v. the traversal to the gas peak is
assumed to be rapid, we can use the same argument
as that leading to (5.5) to write the energy condition
as

, g(r)'+—2$(M+E&e &)=0 . (5.11)

To leading order the kinetic energy is negligible and
one finds

p, —M
e

Ep
(5.12}

Equation (5.11}shows, on the one hand, that a slow
solution does not exist when M +Ep & 0. This is as
should be expected: Only thin films will form on
the substrate for chemical potentials well below
coexistence. On the other hand, (5.11) indicates that
slow solutions, i.e., thick films, are possible close to
coexistence when, say, —M & 2 E~. In particular, as

I

and no fast solution exists, whereas a slow one does.
The only parameter range in which two solutions
compete is thus M +Eq g 0, E &E*. The outcome
of this competition, which will yield the first-order
transition associated with the prewetting line, can
only be decided when the free energies associated
with the two solutions have been calculated to lead-
ing order.

D. The free energy

In the Appendix we sketch derivations of expres-
sions for the first- and second-order shifts in the ex-
cess surface free energy associated with perturba-
tions away from the Sullivan model at the tempera-
ture where this model has its wetting transition.
The first-order shift (A5) is indifferent to the form
of the solution gi(t) to the dynamical problem. It is
therefore irrelevant to the competition between dif-
ferent solutions of the dynamics That competition
is determined by the second-order shift, given by
(A6), or, rather, the difference between the shifts
corresponding to the fast and the slow solution. To
calculate it, we use (5.7) and discard terms of rela-
tive order P/A. . The difference,

EQ, /A =hy~ =ke T(co
+ tp'), -—

is, in terms of the original variables, found to be

hy~ = op+ Ap 1 +ln
pI pg

aP

E'p

—hp

[e—ep( T}l' u 1 —a' ~V+ ep

1 —A, A, [e—ep(T)]
1+ 1 —ppI

1 /2

(5.14)

Where pst=keT&, dqs=kttTM. A sketch of hy, s
as a function of [e ep(T)] is giv—en in Fig. 8. Rath-
er than think of T as fixed and e as variable (as we
have done in the calculations up to this paint), one
should keep the potential parameters e,P,ett fixed
and vary T—that is, ep(T) and A,(T). The combina-
tion [o'—ep(T)] is a monotonically increasing func-
tion of T (linear for small [e—ep(T}]),and the hor-

I

izontal axis in Fig. 8 can therefore be regarded as a
temperature axis. The solid line correspands to
(5.14), i.e., to use of the plus solution for the fast
solution. The dashed line would result if one were
to use the minus solution instead.

The fast solutions exist for e & e*=k TE*, as
given by (5.13). At one particular value of e, which
we shall call eh & y——0. When e& eg, Q& cpi, the



27 CONTINUOUS AND FIRST-ORDER WETTING TRANSITION. . . 4299

~y
Sg

\

&0

(or "T")

FIG. 8. Difference h,y~ in the excess surface free ener-

gy between the fast solution and the slow solution. The
solid curve represents the fast plus solution. For compar-
ison the corresponding minus solution is represented by
the dashed curve. For e&e, the slow solution has the
lower free energy, whereas the fast solution is better when

e&e,. The first-order phase transition between the two
occurs at e=e, .

slow solution is the one of physical relevance, and
there is a thick film on the substrate. When e &@„
on the other hand, the fast solution is better, and the
film on the substrate is thin. At e=e, (i.e., at the
corresponding temperature) there is a transition be-
tween the two. Since the slope of dy,~ is finite at
e=e„ the transition is first order. The prewetting
line, defined as the locus of this transition, is given

by h,y+ ——0. For fixed potential parameters this
gives an equation for hpz„——hp&„( T},which applies
within the range where our perturbation scheme is
valid. Note that the slope, (dlkpldT)z„, of this line

goes to zero as coexistence is approached. From
(5.14}one finds that, as bp~O

E'p
(5.15)

dT „—hp

This is in complete agreement with the thermo-
dynamic result (2.7}, for the special case of short-
range (here, exponential) forces.

ln

VI. CONCLUSIONS

In this paper we have shown that prewetting and
critical wetting are both within the scope of the
lowest-order van der Waals theory of fluids. We are
not as yet in a position to formulate general criteria
on the substrate and interparticle potentials by
which the order of the wetting transition can be
determined. Our calculations have so far been re-
stricted to exponential forces. The results of Sec. IV
show that, at least within perturbation theory, the
wetting transition is continuous as long as A,(T) &P.
From Sec. V, on the other hand, one concludes that
a long-range [p«A, (T)] tail added to the substrate
potential produces a first-order wetting transition
and prewetting. It is tempting to conjecture that

with exponential forces the range of the substrate
potential relative to }(,(T) is indeed the decisive fac-
tor, and that the breakdown of the perturbation
theory of Sec. IV at A,(T}=p signals the crossover to
a first-order transition. In Sullivan's model, in
which p=l, this crossover would then be driven
down to zero temperature.

In order to relate to experiments directly, results
pertinent to Lennard-Jones —type forces are needed.
General statements on nonexponential forces would
clearly be premature at this point. We would, how-
ever, like to draw attention to Ebner's Monte Carlo
results. ' With a Lennard-Jones (9-3) substrate and
nearest-neighbor interparticle interaction, his calcu-
lations strongly suggest prewetting for the particular
parameters used. If one considers the potentials
used in Sec. V as exponential caricatures of those
used by Ebner, our results are consistent with his.

Clearly the model calculations for the wetting
transition are still in a rather primitive state. Con-
tact with the modern theory of phase transitions and
critical phenomena has only recently begun. It is
not even clear a priori that mean-field —type theories
can be trusted to answer the simplest possible ques-
tion in this context, namely: What is the order of
the wetting transition? This paper has been based
on the premise that the van der Waals theory can be
trusted up to this point. If one wants to go beyond
it and investigate the nature of the various critical
points associated with the wetting nature of the vari-
ous critical points associated with the wetting transi-
tion, mean-field theories are clearly inadequate.

Any microscopic theory, however, must be con-
sistent with thermodynamics. Both van der Waals
and more refined theories (if they exist) must yield
prewetting lines that are consistent with the Clapey-
ron equation derived in Sec. II. In particular, the re-
sults on the way prewetting line joins the line of
bulk coexistence can serve as a check point for fu-
ture developments.

After the present work was submitted for publica-
tion, Tarazona and Evans kindly informed us of
their work on the same problem. They have made
an extensive numerical study of the model treated in
Sec. IV. Their results are consistent with ours, and
they do find a first-order transition in the region
where our first-perturbation treatment does not ap-
ply. In addition, the classical Landau phenomenolo-

gy applicable to the phase diagram of Fig. 1 was
worked out by Nakanishi and Fisher.
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APPENDIX

+2[ps [p(x)]—p I ) (Al)

Here p is the bulk (gas) pressure, and the prefactor
' is due to our choice of measuring x on the scale

set by the range ~ ' of the forces.
The zeroth-order situation around which we per-

turb is that of the Sullivan model at gas-liquid coex-
istence and at the wetting transition point; i.e.,
p(x) =pt for 0&x &L, where L is a length (unspeci-
fied} much longer than the length scales set by the
fluid and the substrate potentials. Beyond L there is
a liquid-gas interface so that p(x ~ 00 ) =pg. The in-
terfacial free energy, which we shall not calculate, is
included in y~ to zeroth order.

We now consider perturbations away from the
"Sullivan point, " caused by small changes in the
substrate potential and by negative shifts in the
chemical potential away from its value pgI at coex-
istence. To this end we write

4(x) =@0(x}+5i4(x)+5i@(x}+

In this Appendix we sketch the derivation of the
expressions for the first- and second-order shifts in
the free energy needed in Sec. V. The general ex-
pression for the excess surface free energy per unit
substrate area, y~ =0, /A, for van der Waals models
governed by (3.4) is"

l oo

y~ =— f dx( [}I—ps[p(x)] —4(x) Jp(x)

to the symmetry of X( ~x —x'
~
). One ultimately

finds

5iy~ =—f dx 5i@(x) . (A3}

—ps f dx 52@

1 apl f dx 5i@(x)5ips(x)
2 ap„

(A4)

The expression (A4} does not quite make sense as
it stands, since the 5&p integrals clearly diverge.
The reason for this is that we have made a strict
perturbation around p(x) =pt, although the density,
for 5z p &0, does cross over to pz at a large but finite
distance from the wall. Tracing the origin of the
diverging terms, one realizes that, e.g., the first in-
tegral in (A4) follows from (Al) after an operation
of the type

f dx[p, —4(x)]p(x)~pt f dx[52p —524(x)] .

In view of the ultimate crossover to pg it is more
reasonable (if less rigidly systematic) to keep the x
dependence of p(x) in terms involving the constant
shift 5qp, and the very slowly varying 52@(x)
(-e + in Sec. V). With the potential (5.1) the di-
mensionless shifts 5„y+/k~ T=co„ then become

pI 00

coi ——— (E Eo) —dt e—
K 0

pI (E Eo), — —
K

(A5)

Similarly, to second order one finds [this time using
(3.4) to second order]

co

52@~=——
pt f dx[52p, —524(x)]

p =pg(+52@+
(A2) ao

co2 ————f dt M[p(t) ps]+Ettp—(t)e
The shift in 4(x) is allowed to be first and/or
second order, whereas the shift in p is considered as
second order only.

One now proceeds by expanding (Al) to first or-
der in 5~4 and 5~@~. Considerable simplification re-
sults from use of the zeroth- and first-order versions
of the equilibrium conditions (3.4), and from appeal

+— (E Ep)e 'g,(t)—l l —A,

This expression is the basis for the discussion of the
competing solutions found in Sec. V.
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