PHYSICAL REVIEW B

VOLUME 27, NUMBER 7

1 APRIL 1983

Temperature dependence of the magnetic susceptibility of almost-ferromagnetic materials

D. R. Grempel
Department of Physics and Center for Theoretical Physics, University of Maryland,
College Park, Maryland 20742
(Received 23 April 1982)

We present a microscopic calculation of the magnetic susceptibility of exchange-enhanced
materials based on the paramagnon model for the interaction of electrons with spin fluctua-
tions. By explicitly calculating the vertex corrections, we find that, in a spin-conserving ap-
proximation, the low-temperature magnetic susceptibility contains anomalous logarithmic
corrections that account for the maximum in X(T) observed in many materials. This is the
result expected on the basis of phenomenological Landau theory. Our results, which are not
limited to low temperatures, show that at temperatures above the spin-fluctuation tempera-
ture the inverse susceptibility increases almost linearly with 7, in agreement with spin-

fluctuation theories.

I. INTRODUCTION

The static magnetic susceptibility of nearly fer-
romagnetic Fermi systems, such as *He, Pd, and
Ni3Ga, is large and depends strongly on tempera-
ture. Since the natural temperature scale for Fermi
systems is the Fermi temperature Ty and, under or-
dinary circumstances T /T <<1 this behavior is at
first sight surprising. In many Fermi systems (e.g.,
3He, N13Ga) the quantity a(T)=X~!(T)X,, first rises
as T? at very low temperatures (T << ®) and then
changes over to a nearly linear behavior for T > ©,
where ©® is a characteristic temperature of order
Tr/S, and S is the enhancement of the zero-
temperature susceptibility over its free-electron
value. This behavior has been explained! by a
dynamical model that represents almost-
ferromagnetic systems of fermions as a collection of
interacting spin and density fluctuations. The re-
sults of such a theory have been applied successful-
ly! to itinerant systems, like He and some interme-
tallic compounds (e.g., Hf Zn,, Ni; _,Rh,).

There is yet another class of materials’ (e.g., Pd,
a-Mn, U,C;, NpCo,, YCo,, and LuCo,), in which
the susceptibility exhibits a maximum at low tem-
perature before falling off as the temperature in-
creases. The magnitude of this effect varies from
material to material ranging from a maximum of
about 6—10% above X(0) in the case of Pd, to cases
like YCo, and LuCo,, where the maximum value of
X is almost twice the value at 7=0 K. Experimen-
tally it is well established® that this maximum can
be described by adding a logarithmic correction to
the susceptibility of the form 8Y ~ T?InT.

The origin of this anomalous feature has been the
subject of much controversy.>** In a number of pa-
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pers the existence of a T?InT term in the susceptibil-
ity has been claimed, both on the basis of general
Fermi-liquid arguments,’ and also as the result of
the solution of particular microscopic models,”® the
two approaches giving different estimates of the size
of the effect.

In the microscopic approach one tries to go
beyond the standard random-phase approximation
by dressing the fermion propagators with the self-
energy corrections that result from their interaction
with the spin-density fluctuations. It is well
known,” however, that if such dressing is done, ap-
propriate vertex corrections must be included in or-
der for the response functions to obey the conserva-
tion laws. The main effect of the self-energy correc-
tion is to introduce nonanalytic terms in the expan-
sion of the quasiparticle energies. These singular
terms give a nonanalytic correction to the quasipar-
ticle density of states near the Fermi level of the
form 8N (e)~é€’lne. It is obvious that the convolu-
tion of this with the derivative of the Fermi factor
will give a T?InT term in the magnetic susceptibili-
ty. However, the vertex corrections may have com-
pensating contributions and the anomalous terms
can be canceled. Indeed, it has been suggested® that
this is the case if one uses the ladder-bubble approxi-
mation for the self-energy. This is contradiction
with some previous work.?

In this paper we adopt the paramagnon model®
for the interaction of the d-band electrons with spin
fluctuations. As is usual, no account is taken of the
s-band electrons beyond including explicitly their
screening of the Coulomb interaction between the d
electrons. By direct calculation of the vertex correc-
tions, we show the existence of a nonvanishing loga-
rithmic contribution to the low-temperature suscep-
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tibility. Our results are valid throughout the degen-
eracy region and are not restricted to T <<O.
Indeed, for T>® they agree with those of spin-
fluctuation theory.! Our approach is related to the
one used previously,? but is different in detail and
avoids the approximations used in the latter work
that lead to a spurious logarithmic anomaly.

The general formalism is presented in Sec. II
Our results for the paramagnon model are described
in Sec. III. Comparison with other work and some
concluding remarks follow in Sec. IV.

II. FORMALISM

In this section we derive an expression for the
static susceptibility of a system of interacting fer-
mions in terms of the real spin-antisymmetric
scattering amplitude. This expression is a finite-
temperature generallzatxon of well-known ground-
state results.” We use the temperature Green’s-

J

Dagyulksp,p')= [d*1-2) [d¥(1—

1) [d*2'-2)D

function formalism throughout.'®

The magnetization of a system of fermions in the
presence of a magnetic field H is given by

M=— (BV)2 EDaﬁm(p,p )0 o Ty H),

(1)

where the summations are over four-momenta
p=(P,iv), iv are the fermion Matsubara frequen-
cies, yg is the Bohr magneton, and D,g,,, is the so-
called k limit of the Fourier transform of the two-
particle Green’s function, taken in the particle-hole
channel,"i.e.,
hm Daﬂ,vp(k ;P,P'),
%] [0,
ko/ | X | —0

D,’;ﬁ,m(p,p' )=

(2)

where

)D g, (11',22")

Xexp{ —i[k(1=2)4+p(1—-1")+p'(2'—2)]}. 3)

The two-particle Green’s function is defined as

Digu(11,22') = —( T{$a LK1 ),(2)91(2)) ).

4)

For spin-independent forces, Dog ., has only two independent components, namely those corresponding to the
singlet- and triplet-spin states. In terms of these components

aﬁ, (k :Pyp

=3 S[D;(k;p,p’ 0800y, + D> (k;p,p') 0 op Oyl (5)

Substituting (5) into (1) and contracting spin indices, one obtains the static susceptibility

X=M/H=—2u3—— 3 D%(p,p"). 6)
Ho gy E 2(pp
The two-particle Green’s function is related to the vertex part'? via the definition
Dy(k;3p,p")=G(p)G (p +K)[BV8,y+ sk :p,p )G (p)G(p' +K)]. %

Substituting (7) into (6) one gets an alternative and
more useful expression for X:

X=—2u3—— SR 1+4(p)], (®)
BV%
where ¥4(p) is the k limit of Ya(k,p)

valk,p)=—— EFz(k,p,p )G (p")G (p’'+k),

BV
9)

and R: is the k limit of the product of two Green’s
functions,

R,(k)=G(p)G(p +k). (10)

[

The vertex part is the solution of the Bethe-
Salpeter equation which, in the low—momentum-
transfer limit, may be written as

Tk ;0,0 ) =T (p,p") + —— — 3 T(p,q)R (k)

BV

X Ty(k;q,p"),

(11)
where I‘(O)(p,p ) is the irreducible vertex part.
For a given approximation for the self-energy,
I')(p,p’) must be chosen as

o B21(p). I
PP)= 5610 12
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in order for the response function to be consistent
with the conservation laws.’

Now we start a series of formal manipulations to
rewrite (8) in terms of real scattering amplitudes.
The following relations!® will be used:

k__po 2 af

RY =R} =2’ | =55 — [bnts (13)

— ), i=1,2 14
o Y2p), i (14)

SRI[1+7(p)]=0, i=1,2. (15)

p

Equation (14) is a Ward identity which can be de-
rived from the conservation of particle number, Eq.
(15) is a result of the structure of the perturbation
series for the self-energy, and ¥7(p) is the w limit of
va(k,p), i.e.,

Yi(p)=lim[limy,(p,k)].

The relation (13) between the k and o limits of
R, (k) (i.e., R: and Ry, respectively) involves the re-
normalization factor on the energy shell,

—1_,__0
Z5'=1-Re34(0) | ooy (16)

where E 7 are the quasiparticle energies

E =e +ReZ—p.(ET; )y (17)

P
and e, are the bare energies measured from the
chemical potential.

The Bethe-Salpeter equation (11) may be com-
bined with (13) to derive the finite-temperature ver-
|

1
7

-
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At zero temperature the momentum integrations
are restricted to the Fermi surface. For a parabolic
band (22) yields the well-known result’:

X(0)=2u3 N*(0)[1—4,(0)], (23)
where
1
N‘(0)=7§5(E3) (24)
P

is the quasiparticle density of states at the Fermi
level and

—z2N*0) [ L rkp,p 25
4,0)=ZFN*©0) [ ZET5p,5") (25)

is the angular average of the scattering amplitude on

sion of the Landau equation'” relating the k and o
limits of the vertex part:

of

: o1 ~
T4p.p)=T3(pp)—+ S5, 2% |- 5
T T

xT3(q,p"), (18)

where the presence of q as an argument indicates
that the momentum is taken on the energy shell, i.e.,
qs(ﬁ,qo)=(?i,E3).

From (14), (16), and (18) one can derive a relation
between the k and w limits of y,(k,p), Eq. (9):

of

- LSrkpg _
=13~ STHp, 92 T

q

(19)

Evaluation of (19) on the energy shell and use of (13)
and (16) gives
af

aEa.

ABI=25' - 1= 3145,

(20

Substituting (19) into (8) and using Egs. (13)—(16)
one obtains

1
X=2u55; 37
5

of -
‘~—aE3 I[H—}/{(p)]. 1)

Finally, by combining (20) and (21) one gets the sus-
ceptibility in terms of the vertex part, evaluated on
the energy shell:

_ U kgl (22)
3E .

T
the Fermi surface.

From Eq. (22) we obtain the finite-temperature
analog of (25), i.e,,

of

X(D=2} [ _:dE —oF [N*B) [1-4;(E)),

(26)

where the finite-temperature analog of the scattering
amplitude is

_o
3’

A(E)=Z(E) [ dE’ N*(E"Z(E")

x [ %F’z‘(ﬁ,E;ﬁ’,E'). 27)
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FIG. 1. (a)—(c) Diagrammatic representation of the
paramagnon approximation to the self-energy. See text
for the meaning of the symbols.

In deriving (26) and (27) we assumed that the expli-
cit momentum dependence of the renormalization
factor and the vertex part is smooth and, for a de-
generate system (T /Ty <<1), the momenta can be
placed on the Fermi surface. Their implicit momen-
tum dependence, through the momentum depen-
dence of the quasiparticle energies, has, however,
been maintained.

J

s iU (4o > dE' 5, = |\ = g
2(B,iv)= 2V§f_a - f_w p (4,0)p(P+q,E")

=2F( ﬁ,l"V)‘f-EB(B,i‘V),

where the last equality defines the Fermi and Bose
parts of the self-energy. In Eq. (33) f(w) and g(w)
are the Fermi and Bose distribution functions and
D"(qw) and p(q,E) the spectral functions for spin
fluctuations and fermions, respectively.

Within the quasiparticle approximation, for the
fermion’s Green’s function we have

p(P,0)=Z(0)rél0—E) (34)
and
. Yo /qup
D"(q,0)=——""—7, (35
d a*+(yo/qup)?

III. RESULTS FOR THE PARAMAGNON MODEL

The approximation® used for the self-energy in
the paramagnon model is shown in Figs. 1(a)—1(c).
The solid lines represent fermion propagators for the
d-band electrons, and the dotted lines represent their
mutual Coloumb interaction as screened by the s
electrons. We take this screened interaction to be of
zero range and strength U. In this approximation
the electron is coupled to particle-hole excitations
only, and no scattering in the particle-particle chan-
nel is taken into account. As will be discussed later,
the inclusion of particle-particle scattering would
enormously complicate the calculation without
changing the nature of the results. The analytic ex-
pression associated with Fig. 1(a) is

1 ’ ’ ’
2(p)= ZBVE[t‘(p’p )+3t,(p,p")]G (p"),

(28)
where the spin-symmetric and antisymmetric parts
of the ¢ matrix are

U
nk=—1 % 29)
U
ty(k)= U (30)
and
1
(k)=——=——=3G(p +k)G(p) 31)
T BVg’ p p

is the normalized polarizability. Near the ferromag-
netic instability ¢, >>¢,, and so ¢; can be neglected
and the self-energy becomes

S(E)+glw) (32)
E'—w—iv
(33)
[
where
a=1—UN*(0)Z%0), (36)

v depends on the band structure (y=1/2 for a para-
bolic band), and v; is an average over the Fermi sur-
face of the quasiparticle velocity. Equation (35) is
valid for w < qur and q <A. The cutoff momentum
A depends on the band structure and will be written
as A=mnky, where 7 is a constant of order 1 (y=2
for a parabolic band).

The self-energy enters the calculation of the sus-
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ceptibility only through the frequency and

p P P PP P’
temperature-dependent renormalization factor. The
latter can be calculated from Egs. (32)—(36). After r° - + P9, _ p'+q
some tedious but straightforward algebra one ob- (p,p" P=q P-q
tains the following results, valid in the limit of large

N A PP p’

enhancement (a—0):

) m* FIG. 2. Irreducible vertex part obtained from Fig. 1 by
Z (oT)= 7[ 1—Lp(w,T)—Lp(T)] (37) functional differentiation. The solid wavy lines stand for
the total renormalized electron-hole interaction given in
with Egs. (29) and (30) of the text.
LioT=—2 [T | = g 2L | [0=o | | o=+ ks0F (38)
FOU==%1q |m*d-=%? | " 30 kz® " (0—o')? ’
2 -1
e 6 | T 70/T
Li'M=1+ | g | [ yFoud| (39)
where
1 y T Y
Fy)=- |l | L |-Z— : (40)
) 2 " 27 y ¥ 27

and Y¥(x) is the digamma function. In Egs. (38) and (39) © is the spin-fluctuation temperature, ® =2T /7S,
and m* is the zero-temperature effective mass.® The normalization factor can be evaluated in closed form both
for T/® «< 1 and T /O >> 1 with the following results:

— 2 2
m* 3{U | m (0] | T [0}
_ = |=|— — | = , T<«<®
. m [1+4 a |m*| | kz® + 310 n nkp® <
Z (0,T)= (41)
Me 1+_§'_'L T , T>>0
m T |®

where, again, only the leading terms in the enhancement are kept. The low-temperature result, which comes
from the Fermi contribution, has been discussed by several authors'! in the context of the low-temperature
anomaly in the specific heat of Fermi systems. The high-temperature result, on the other hand, comes from
the Bose term in the self-energy and is essential for the determination of the temperature dependence of X for
T>0.

The irreducible vertex associated with this choice of self-energy is shown in Fig. 2. In this figure the solid
wavy lines represent the total renormalized particle-hole interaction whose spin decomposition is given in Egs.
(29) and (30) above. Had particle-particle interactions been kept in the self-energy, the expression for the vertex
part would have included the whole series of parquet diagrams. The evaluation of these would have made the
problem intractable. Since the physical origin of the effects of interest here is the energy transfer between elec-
trons and a long-lived soft mode (the paramagnon), they should not be qualitatively affected by particle-
particle scattering, a process that does not lead to the appearance of soft modes. Figure 2, evaluated in the »
limit, represents I'“(p,p’). In the limit of large enhancement the paramagnon pole dominates the integrals con-
tributing to Fig. 2. Because of this “paramagnon dominance,” I'” can be calculated in closed form. The ex-
pressions are, however, complicated and not very illuminating, and we only quote here the high- and low-
temperature results:

~ 2
U 0—0' kp®*
— < |1= 1 , T
[a 1 P n| P | <0
Awe)=1 ' 42
— [E m‘ 27a r , T>0
a m ®
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where we have defined a dimensionless angular average

A%0,0")=N*(0)Z, [ %I“"(ﬁ,w;ﬁ‘w’).

(43)

The integral equation for Fk(p,p'), Eq. (18), can now readily be solved in the degenerate case, T /T <<1,
with no conditions imposed on the ratio T/®. Once I'*(p,p’) is known, the susceptibility can be evaluated
from (26) and (27). The algebra is tedious and the results rather complicated. However, they again simplify
for both high and low temperature in the limit of large enhancement. Explicitly, as a—0,

m™ | m T
1+485— |[—= | |[= | In|—=|, T«®
1) _ 6 |m*]® d
X0) |,
m* 6 |O
—_ | = , T
m St | T >0

where S is the enhancement, S =X(0)X " ! The tem-
perature T* cannot be determined reliably from the
low-temperature expansion, but is of the order of ©.
In any case, it can be estimated numerically.

The low-temperature result exhibits the triply
enhanced contribution to the logarithmic term dis-
cussed by Barnea? (recall that ® ! « S), although we
find a different coefficient. The actual dependence
on the enhancement is model dependent. It is be-
lieved'? that the paramagnon model overemphasizes
the role of spin fluctuations and hence this coeffi-
cient is probably too large.

The high-temperature result, on the other hand, is
the classical spin-fluctuation behavior first pointed
out for itinerant ferromagnets by Murata and
Doniach'® from a very different point of view, and
discussed in detail for these systems by Mishra and
Ramakrishnan.!

For intermediate temperatures X must be calculat-
ed numerically. As an illustration, Fig. 3 shows the
temperature dependence of the inverse susceptibility
for S =20, with such a large value chosen to exhibit

L AL L B BN B L L B

25—

o

X (0)
X(T)

N P

O'O:lllllllllllllLllllA
0.0 0.5 1.0 1.5

T
(%)
FIG. 3. Inverse susceptibility as a function of the tem-
perature for S=20.

[ I

0

(44)

[

clearly the minimum at low temperature. Notice
that the curve reaches its asymptotic linear depen-
dence quite rapidly. This behavior is qualitatively
similar to that observed in many strongly enhanced
paramagnetic metals, such as Pd, U,C;, NpCo,, and
LuCo,.?

Since the absence of a maximum in X in the case
of Ni;Ga has been explained in terms of impurities
or imperfect crystalline order,? it is of interest to
discuss their effects. Impurities and imperfect or-
dering introduce damping in the motion of the
quasiparticles near the Fermi surface and this, in
turn, causes the appearance of a diffusion pole in the
paramagnon propagator. The T?InT term in the
low-temperature susceptibility is replaced by
TAn(T + Timp) where Ty, =0/(kgl), and I is the
mean free path. Thus the maximum in X(T) is re-
duced in size and is shifted towards lower tempera-
tures as Ty, increases. In fact, for Ti,,>® the
maximum disappears completely and X ~! increases
approximately as T2. In contrast, the behavior for
T >©® remains unchanged, and one still obtains a
linear increase of X~' with temperature. This
behavior, quadratic at low temperatures and linear
at higher temperatures, describes qualitatively the
observations.

IV. DISCUSSION AND COMPARISON
WITH OTHER WORK

We calculated from a microscopic model the
magnetic susceptibility of almost ferromagnetic ma-
terials. We find that at low temperatures the sus-
ceptibility exhibits an anomalous maximum that can
be described by a T?InT term, whereas, at high tem-
peratures, our results agree with those of spin-
fluctuation theories.! It is of interest to discuss the
origin of this discrepancy between these two theories
at low temperatures. In the spin-fluctuation model'
the spin-fluctuation self-energy was calculated by
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considering a set of diagrams that are essentially
identical to the ones in Fig. 2, with their external
legs restored. However, in the evaluation of the dia-
grams, the effects of four-momentum transfer be-
tween spin fluctuations and electrons was neglected.
Now, typical paramagnon momenta are restricted to
the range |q| <<kr whereas, in the degenerate
case, typical electron momenta are of order kg.
Hence, it is a good approximation to neglect the
momentum transfer. However, for given |q |, the
paramagnon energy (~qug/S) and the electronic ex-
citation energy which lies in the interval 0 < E < qup
may become of the same order depending on the
direction of q. Under those circumstances it is not
permissible to neglect the energy transfer. Although
the phase space for such processes is very small in
the case of large enhancement (it is essentially limit-
ed to 90° electron-paramagnon scattering) it is large
enough to introduce the low-temperature logarith-
mic singularities.

In previous work? based on the microscopic ap-
proach, the susceptibility was evaluated from an ex-
pression that can be shown to be equivalent to (22),
namely

af 1 d

BEB.

P

2uj
=—3Z_

In the evaluation of this formula the explicit tem-

l———""ReZ(E=) |.

perature dependences of the renormalization factor
and of the field derivative of the self-energy were
neglected. Unfortunately, it can readily be shown
that the temperature-dependent part of Z 7 exactly
cancels the logarithmic contributions obtained from
the anomalous terms in the quasiparticle spectrum,
and all the interesting temperature dependence must
come from the neglected thermal part of
(3/0H)Z(P,w). What we have shown in this paper
is that a consistent evaluation of the latter quantity
is possible, at least for large enhancement and in the
degenerate case, and produces the expected results
throughout all the temperature range of interest. In
this work band structure and other effects of
relevance for real materials were neglected. Howev-
er, their introduction is not expected to produce any
change in the qualitative results although, of course,
they have to be included if detailed comparison of
the theoretical results with experiments is desired.
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