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We report a detailed study of the magnetic properties of the site-random solid solution

Fe& „Co„C12. Fe& „Co„C12 represents an archetypal example of a system with competing

orthogonal spin anisotropies; the easy axis of the Fe spin is orthogonal to the easy plane of
the Co spin. The magnetic behavior of single-crystal samples was characterized with the

use, as probes, of both dc magnetic susceptibility and elastic neutron diffraction. We find

behavior that is in fundamental disagreement with the theoretical predictions for random

anisotropy magnets. In particular the transition in one spin component is drastically altered

by the existence of long-range order in the other component. We argue that this is due to
random off-diagonal terms in the Hamiltonian which generate site-random molecular fields.

I. INTRODUCTION

Following the great success achieved during the
past decade in understanding the nature of phase
transitions in a wide variety of pure physical sys-
tems, it is only natural that more attention is now
being focused on the critical and cooperative phe-
nomena in random systems. Magnetic. materials
with quenched disorder play a special role in these
studies since many different types of randomness
can be physically realized. ' Perhaps the most in-
teresting random magnets are compositionally disor-
derd alloys composed of constituents with dissimilar
and/or competing interactions. There are many ex-
amples of these: magnetic-nonmagnetic alloys,
ferro-antiferromagnetic alloys, alloys with random
anisotropies, etc. In almost all cases the competi-
tion, in conjunction with the disorder, leads to
unusual states of matter. For examples, alloys com-
posed of ferromagnetic and antiferromagnetic con-
stituents can have a spin-glass phase at intermediate
concentrations, magnetic-nonmagnetic solid solu-
tions may contain unusual magnetic phases with
power-law decay of magnetic correlations, 2 etc.
Among all the random magnets, one of the simplest
is a solid solution with competing orthogonal site-
random anisotropies. In these crystalline binary

mixtures there is only compositional disorder which
causes the direction of easy axis at each site to de-

pend on the identity of the ion at that site. The
work reported in this paper represents a study of the
nature of phase transitions and magnetic ordering in
an archetypal example of one such system, anhy-
drous Fe~ „Co„Clz. A preliminary report of this
work has been published elsewhere.

Crystalline Fe& „Co„C12provides an excellent ex-

ample of a site-random solid solution with compet-
ing spin anisotropies. The easy axis of the Fe spin is
orthogonal to the easy plane of Co spin. In Sec. II
we give a brief review of the properties of FeC12 and
CoC12, and explain in more detail why we have
chosen this system for study.

According to the theoretical work of Fishman and
Aharony (FA), using both a scaling argument and a

. renormalization-group (RG) calculation, the order-

ing of the two orthogonal spin components in this
type of system should occur independently. The
magnetic phase diagram in the x-T plane should
consist of two smooth second-order lines crossing
each other at a point designated as a "decoupled
tetracritical point. " This and other more elementary
theories will be described in Sec. III. The results of
quantitative mean-field calculation pertinent to
Fe& „Co„C12will also be given.
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In order to study the properties of Fej „Co„Clz
we have carried out a systematic study of single-
crystal samples using as probes both the dc magnetic
susceptibility and elastic neutron diffraction over
the entire composition range 0&x & 1. The experi-
mental procedures and detailed experimental results
are presented in Sec. IV. As will become clear, the
simple theories presented in Sec. III fail to describe
much of the observed experimental data. In Sec. V
we argue for the necessity of including off-diagonal
terms in the Hamiltonian and show how these terms
lead to the concept of a random molecular field. We
will argue that such fields can account for much of
the observed experimental data. In Sec. VI we
present data on the critical and multicritiml
behavior of Fe~,Co„C12 with specific emphasis on
how these properties might be changed by the off-
diagonal terms in the Hamiltonian. Finally, in Sec.
VII we discuss the generalization of these results to
other systems and present our conclusions.

II. FeC12 AND CoC12

A. Crystalline properties

Both FeC12 and CoC12 are extensively studied
layer-type metamagnets. They have the crystal
structure of CdC12, belonging to the space group
83m (D3~). The rhombohedral primitive unit cell
contains one formula unit, as shown in Fig. 1. The
cation is situated at (0,0,0) in the rhombohedral
coordinates and the Cl ions at (u, u, u), (u, u, u)

where u=0. 25. A simpler way to view this struc-
ture is to observe that every cation layer is
sandwiched between two Cl layers. The sandwiches
are stacked in a 12312. . . sequence as indicated in
Fig. 1, that is, one has an fcc stacking sequence with
alternate cation sheets removed along the trigonal
[111]axis. The two-dimensional lattice within each
layer is triangular. It is therefore more convenient
to use hexagonal coordinates with lattice vectors re-
lated to the rhombohedral ones by x~ ——x, —y„
yI,

——y, —z„, zI, ——x„+y, +z„. The hexagonal
primitive unit cell then contains three formula units
with the cations at (0,0,0), ( —, , —,, —, ), and ( —,, —,, —, ).
It is not difficult to see from Fig. 1 that the separa-
tion between two Cl layers is twice that between a
cation layer and a Cl layer. This muses the binding
between adjacent Cl layers to be very weak so that
the crystal is lamellar in habit and quite soft.

The important physical parameters of FeC12 and
CoC12 are summarized in Table I. Their lattice con-
stants match within 1%, ensuring that the random
solid solution Fe& Co C12 can be formed at any
composition x without altering the crystal structure.
Their melting points are 675 and 725'C, respective-

ly, indicating little difference in their cohesive ener-

gy. When a crystal is grown from the melt near
700'C, this small difference (-50'C) cannot lead to
any appreciable local segregation. However, during
crystal growth a macroscopic composition gradient
develops along the crystal's growth direction. De-
tailed chemical analysis of our samples shows that
this gradient in x can be as large as 0.01/cm, a fact
of important positive consequences for our neutron-
diffraction studies.

-A

2

-B

. A

Fe, Co ion

O Ct ion

FIG. 1. Crystal structure of FeClz and CoC12. The
crystal field on the magnetic ion is primarily due to six Cl
ions around it in an approximate octahedral arrangement.

B. Magnetic properties

Early neutron-diffraction work by Wilkinson
et al. had shown that both FeC12 and CoC12 or-
dered ferromagnetically within the layer and antifer-
romagnetically between adjacent layers. The differ-
ence between the two magnetic structures is that the
Fe spins order along the hexagonal c axis while the
Co spins order in the a-b plane perpendicular to it.
The in-plane anisotropy for the Co spins is relatively
small. It is known that an applied field of 2 kOe in
the a bplane induced -a spin-flop (SF) transition
and 33 kOe is sufficient to saturate the magnetiza-
tion. The maximum in-plane anisotropy field (Hz )

can be deduced from the relation HsF (2H&HF )'~, ——
giving Hz &100 Oe. The actual anisotropy field is
probably much smaller since the spin-flop transition
is at least partially resisted by domain effects, not
just by spin anisotropy. Therefore, the Co spins are
essentially XY-like and the Fe spins are Ising-type.
These anisotropies are due to the crystal-field sym-
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TABLE I. Important physical parameters for FeC12 and CoC12.

FeC12 CoC12

Hexagonal lattice constants
(T=300 K)

Rhombohedral lattice parameters
(T=300 K)

Molecular weight
Density (g/cm )

Melting point ( C)
Color
Magnetic moment
Effective spin

Neel temperature (K)
Exchange constants (K)'

Qg

CA

Qq

ur

p
S

TN

Jg
J
D

3.579 A
17.536 A
6.20 A
33'33'
126.76
3.25
675

brown
~kg

1

23.6
5.53
3.60
4.24
1.29

3.544 A
17.430 A
6.16 A
32'26'

129.84
3.41
725
blue
~3pg

1

2

24.7
5.68
15.33
12.11
—6.44

'The exchange constants are defined according to Eqs. (1) and (2).

A = —2 gJ'JS(i).S(j)
&~j&

+D"[S~~(i).S~~(j)——,Si(i) Si(j)], (2)

where the
~ ~

and I signs are with respect to the hex-
agonal c axis. The anisotropy is represented by the
fact that the J~ &Jz (D &0) between the two
Fe spins, and J~~ &Ji (D &0) between the Co
spins. The exchange constants for the first, second,
and third neighbors (Ji,J2,J3) have been determined
from the spin-wave dispersion relations' ' and an-
tiferromagnetic resonance measurements. The im-
portant physical parameters of pure FeC12 and

metry of surrounding ions as well as to spin-orbit in-
teraction within the cations themselves. Both fac-
tors are basically unchanged in the mixed crystals
and the single-ion anisotropies should remain the
same.

It can be seen in Fig. 1 that every cation is sur-
rounded by six Cl ions in an octahedral arrangement
with a trigonal distortion. According to Hund's
rule, the ground term for Fe + 3d ion is P and for
Co + 3d is F. A number of crystal-field-theory
calculations on these ground terms exist. ' ' The
general conclusion is that the Fe ion has a triplet
ground state and Co ion has a doublet ground state,
appropriate to the pseudospin assignment S =I,
S =C 2'

The magnetic exchange interaction within these
ground states can then be described by the diagonal
pseudospin Hamiltonian

M= —2 g J'j S~)(i)'S(((j)+J~(S (i)' S))(j), (I)
(~j&

or equivalently

CoC12 are listed in Table I. We note that the
strength of interaction between Co spins is compar-
able to that between Fe spins. Concomitantly, their
Neel temperatures are approximately the same. In
addition, the anisotropies (D) in both systems are
very strong, comparable to the exchange (J). Both
features are important in studying the effect of com-
peting random anisotropies. We should note that
while the above Hamiltonian has heretofore been
sufficient to describe the salient behavior of the pure
systems, in Sec. V we will argue for the necessity of
including off-diagonal terms to describe our results
on the Fe& „Co„Clz system.

Finally, we point out that the interlayer exchange
is only an order of magnitude smaller than the in-
tralayer exchange, " not sufficiently weak for any
quasi-two-dimensional critical behavior. Yelon and
Birgeneau' have studied the spin-spin correlation
above the Neel transition in FeC12. They find that
the correlation lengths parallel and perpendicular to
the c axis are of comparable magnitude and the crit-
ical behavior is fully three dimensional. Although
similar studies on CoC12 or Fe~ „Co„Clz have not
been made, there is no reason to suspect otherwise.

III. THEORY

In order to facilitate the interpretation and discus-
sion of our experimental results, we describe in this
section three existing theories that are relevant to
the random anisotropy problem. Although these
theories differ in both approach and complexity,
there are some important common features among
them.
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A. Landau theory

The simplest theory for systems with two compet-
ing order parameters is a purely phenomenological
one due to Liu and Fisher. ' If the order parameters
are the two orthogonal components of magnetiza-
tion M~~ and Mz, the free energy can be written as a
standard Landau expansion:

(a)
PM

(b)
PM

F(x,H, T)= aM
~~

+bMi+cM[~ +2dM ~~Mi

+8~ + 0 ~ ~ (3)

PM PM

where all the coefficients a,b, c,d, e presumably de-

pend on the alloy compositions x. As in the case of
one order-parameter Landau theory, one assumes

FIG. 2. Four possible magnetic phase diagrams in the
Landau theory of Liu and Fisher: (a) zero coupling
(d =0); (b) attractive order parameters (d & 0 and d & ce),
dashed line corresponds to zero coupling (d =0); (c)
repulsive order parameters (d & 0 and d & ce), dashed line
corresponds to zero coupling (d =0); (d) strongly repul-
sive order parameters (d & 0 and d & ce), dashed line cor-
responds to weakly repulsive order parameters.

a =ap(T —T~~)

b =bp(T Ti), —

B. Mean-field theory (MFT)

A more quantitative theory is due to Matsubara
and Inawashiro' (MI) who considered the solid
solution of a spin-1 ion and a spin- —, ion with

orthogonal anisotropies, exactly the situation of
Fe~ „Co„C12. They neglected the random local en-
vironment of the individual ion and assumed that
the molecular fields acting on similar ions are iden-
tical; the field is simply weighted by the solution's
average compositions. For example, the a corn-
ponent of the molecular field on an Fe ion is

h~ =2z [( 1 x)J~ —(S~ ) +xJ~ (S~ )], (4)

and similarly for the Co ion. Their calculation
demonstrated a phase diagram similar to Fig. 2(c).
Substituting the values of Ji and J~~ in Table I and
assuming

JFC (JFFJCC) i /2

in MI's result, one can obtain

Tii
——44.2—27.2x,

Ti ——46.0—17.2(1 —x)

(6a)

(6b)

as the upper phase boundaries. The linearity here is
a direct consequence of the assumption in Eq. (5),
which is approximately true at best. Since the
mean-field transition temperatures 44.2 and 46.0 K
for x =0 and in Eq. (6) are well above the experi-
mental values of 23.6 and 24.7 K for pure FeClq and
CoCli, we normalize Eq. (6a) at x =0, and Eq. (6b)

where ap )0 &p )0. T~~ and Tj also depend on x
and represent the transition temperatures of M~~ and
Mi when there is no coupling between them (d =0).
Following the usual procedure of minimizing the
free energy in Eq. (3},it can be shown that there are
four sets of possible solutions representing the dif-
ferent phases of the system. They are the following:
(a) paramagnetic phase: M[~=0, Mi ——0; (b)
ordered phase: M~~ =V—a/2c, Mi =0; (c)
ordered phase: M~~ =0, Mi=v' b/2e; (d) —mixed
phase: M~~ =(bd —ae)/2(ce —d ), Mi =(ad bc)/—
2(ce —d ).

Depending on x and T, one of these phases will
have the lowest free energy. The possible phase dia-
grams resulting from this calculation are depicted in
Figs. 2(a)—2(d). They depend critically on the cou-
pling constant d.

(a) d =0 [Fig. 2(a)]: With no interaction between
the two order parameters, the phase boundaries are
just two smooth linm defined by a =0, b =0.

(b) d & 0 and d & ce [Fig. 2(b}]: Simultaneous or-
dering of M~~ and Mi is favored and the mixed-
phase region is expanded as compared to Fig. 2(a}.

(c) d &0, d &ce [Fig. 2(c)]: The two order
parameters are repulsive to each other; the mixed-
phase region is reduced compared to Fig. 2(a).

(d) d & 0 and d & ce [Fig. 2(d)]: M~~ and Mi are
strongly repulsive. They cannot order simultaneous-
ly and the mixed phase is unstable. The ~~- and j.-
ordered phases are separated by a first-order line
EM defined by a 2/c =b le. As with all first-order
transitions, there is a rnetastable region near this line
bounded by the two dashed lines in Fig. 2(d). As we
shall see in the following, phase diagrams predicted
by other theories generally fall into one of the above
categories.
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atx =1. This gives

Tl
I

——23.6—14.5x

Tj ——24.7—9.24(1 —x) .

(7a)

(7b)

C. Modern theory

As shown in Fig. 3, the phase boundaries calculat-
ed by MFT consist of four critical lines meeting at a
point, known as a tetracritical point. MFT predicts
that the phase boundaries intersect at the tetracriti-
cal point at finite angles. In pure systems taking
fluctuations into account generally modifies the
phase boundaries to meet tangentially at a multicrit-
ical point. ' ' However, for the random system
considered here, Fishman and Aharony (FA) argue
that the coupling between the two order parameters

20

The multicritical point is the intersection of these
two lines, which occurs at

x~ ——0.343,

T~ ——18.6,
where T~ is measured in K.

At T =0 the mixed phase occurs between
x =0.287 and 0.452 as shown by points D' and C',
the solid lines in Fig. 3. That this phase diagram is
similar to Fig. 2(c) and corresponds to the case of
weak repulsive coupling between the two order
parameters is quite reasonable, because in Eq. (4) the
components of (S ) and (S ) are always coupled.
Furthermore, it can be shown from MI's result that
the mixed phase is always physically stable over
some range of x at zero temperature.

is irrelevant. Therefore, near the multicritical point
(MCP) the phase diagram should have the topology
of Fig. 2(a) and consist of only two smooth lines
crossing at a so-called "decoupled tetracritical
point. "

Briefly, FA arguments are based on the observa-
tion that the coupling between Sll and S& has the
form of an energy-energy coupling. Near the phase
transition, it has a temperature dependence of

1 —a 1 —a&t ~lt ', where t is the reduced temperature and
the a's are the specific heat exponents for Sll and SJ.
If g is the correlation length (g -t "), then in d di-
mensions the coupling term for a correlated cluster
of size g is proportional to t ~"t 't ~~~. With
the use of the hyperscaling relationship dv=2 —a—(i/2)(a +a~)
one obtains a coupling term -t l~ '. Clear-

ly, if both all and uz are negative, the coupling ap-
proaches zero as t~O. Since it is commonly be-
lieved that a & 0 is always true in random systems,
FA conclude that the coupling is irrelevant, and the
two order parameters are uncoupled near the tetra-
critical point. However, several difficulties should
be noted. First, while the phase boundaries are
predicted to cross smoothly as in Fig. 2(a), the cou-
pling goes to zero only as t~O, and hence far below
the multicritical point the repulsive nature of the
two order parameters will lead to a reduced mixed-
phase region as in Fig. 2(c). Second, although the
specific-heat exponent for the random Ising model
(a~~) is negative, in the pure system a~ =+—,. Ac-
cording to the argument by Harris, the crossover
from pure to random behavior occurs only in the re-

1/a
duced temperature range t &[c(1—c)] ~, where c
is the concentration of broken bonds. In the best sit-
uation (c =0.5) this still requires t & 10 . There-
fore, it is doubtful that the decoupled behavior can
ever be observed experimentally. Finally, we em-
phasize that FA's theory is based on the simple di-
agonal exchange Hamiltonian in Eq. (1) and we shall
argue in Sec. V that additional off-diagonal terms
must be included for symmetry reasons.

IO

0.2 0.4 0.6
Co CONCENTRATION

0.8 I.O

FIG. 3. Magnetic phase diagram of Fe& „Co„C12. The
solid lines AM'C' and BM'D' are calculated by mean-

field theory; solid lines AMC and BMD are guides to the

eye constructed from experimental points; solid circles ob-

tained from susceptibility data, open circles from neutron

scattering (see text).

IV. EXPERIMENT

A. Magnetic susceptibility

To study the systematic variation of anisotropy
with composition, magnetic susceptibilities parallel
and perpendicular to the c axis (X~~ and X~) were
measured by the conventional Faraday's method.
Eight samples were measured altogether, covering
the composition range 0. 1 &x & 0.8.

The large susceptibility of Fei „Co„C12 makes
possible the use of relatively small samples which in
turn reduces the problem of composition gradients.
The samples were small platelets typically 20 mg in
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weight and 2.5&(2.5X1.0 mm (w&&I &&t) in dimen-
sion. The detail of sample preparation is described
elsewhere. The average value of x of each sample
was analyzed by atomic absorption spectropho-
tometry accurate to 0.001. Monotonic variation of x
across the sample was estimated to be 0.005 max-
imum. Since these materials are quite hygroscopic,
most of the handling was done inside a glove bag.
After weighing, the crystals were coated with a thin
layer of Apiezon AP 100 grease to protect them
from moisture.

A single-crystal sample, with its c axis oriented
vertically, was suspended in an inhomogeneous mag-
netic field. The vertical force on the sample was
measured by a Cahn RG microbalance. The gra-
dients dH~~/dz and dH&/dz were determined by a
reference sample of known susceptibility. X~~ and Xj
could be measured in absolute magnitude by apply-
ing the field either vertically or horizontally. In
both cases the gradient dH /dz was of order 10
Oe /cm and H was not more than a few hundred
gauss, well within the sample's linear response re-
gion. The sample was p1aced in a copper holder and
suspended by a fine tungsten wire (0.8 mil). The
typical measured force was in the range of 0.1—1.0
mg, giving the susceptibility less than 1% error.
Two indepdently powered nichrome heaters and a
copper-Constantan differential thermocouple helped
to control the temperature and its gradient. Near
the sample a vertical gradient of less than 0.1 K/cm
was maintained throughout the experiment. The ab-
solute temperature uncertainty at the sample posi-
tion is estimated to be -0.1 K.

There are several difficulties and limitations in
our measurement that should be mentioned. First,
the sample was oriented only to within an estimate
error of a few degrees. One can easily show that for
an angular error 0 the subsequent error in P~~ or PJ
is only

~ X~~
—X~

~

sin 8. For 8 & 5', this is not signi-
ficant. Second, the applied field always has a slight
horizontal gradient in addition to the vertical one
and tends to move the sample sideways. We reduced
this movement by using a copper sample holder ap-
proximately 30 times the weight of the sample. The
maximum horizontal displacement was about 1 mm
and judged unimportant. Finally, one must also
take into account demagnetization effects. Since X
is quite large for Fe~ „Co„C12, especially near the
Neel transition, such effects can be of the order of
10'%//. Unfortunately, since the samples do not have
a simple geometry and further can rotate horizontal-
ly in the magnetic field, it is difficult to correct
quantitatively. for this effect. We stress, however,
that the conclusions we shall draw from the data are
based on the qualitative shape of X(T) and hence not
sensitive to these details.

Molar susceptibilites between 4.5 and 80 K were
obtained in this experiment. We find the high-
temperature data (X & 0.3 emu/mole) to be quite ac-
curately fitted by the Curie-Weiss form

(9)

The fitting parameters are summarized in Table II,
along with the samples' compositions and their tran-
sition temperatures.

Typical results between 4.5 and 50 K are shown in
Figs. 4(a)—4(h). We note that the data for the
x =0.0977 sample in Fig. 4(a) is similar to that of
the pure FeC12 measured by Brandt and Trapp
dX~~/dT is sharply peaked indicating spin ordering
in the c direction. On the other hand, the data of
the x =0.8011 sample in Fig. 4(h) is similar to that
of the pure CoC12 measured by Hsu'; dX&/dT is
sharply peaked, indicating spin ordering in the a-b
plane. At intermediate compositions there is a clear
systematic variation. Figs. 4(c)—4(f) show peaks in
both X~~ and Xq. The ones at high temperature (TH)
are quite sharp indicating well-defined phase transi-
tions and good sample homogeneity. In contrast,
the ones at lower temperature (TL ) are always very
broad, not at all typical of a second-order transition.
For pedagogical purposes it is useful to remember
that near phase transitions the magnetic susceptibili-

ty of an antiferromagnetic is a measure of the order-

ing energy. Hence the temperature derivative of the
susceptibility is proportional to the magnetic spe-
cific heat. The behavior observed in the samples
of intermediate concentration suggests that when
one spin component (either S~~ or Sz) is ordered,
it forces the other component to form antiferromag-
net spin clusters (or domains). The loss of entropy
as these clusters grow is a gradual one and is remin-
iscent of the Schottky-type behavior of the specific
heat of a spin-glass. More will be said about this
later.

If we define the transition temperature by the
maximum in dX/dT regardless of how rounded it is,
a phase diagram can be constructed, as depicted in

Fig. 3. The phase diagram clearly resembles the
tetracritical phase diagrams discussed in Sec. III. In
what follows we will define the temperature of the
upper transition lines AM and MB as TH(x) and the
lower lines MD and MC as Ti(x). We reiterate,
however, that the low-temperature lines are not well

defined and correspond only to a gradual ordering
process.

B. Neutron scattering

Neutron-diffraction experiments were carried out
at the High Flux Beam Reactor of the Brookhaven
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FIG. 4. Temperature dependence of the molar magnetic susceptibilities parallel (g~~) and perpendicular (g&) to the c axis
in eight samples of different compositions.
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TABLE II. Summary of susceptibility results. '

Sample

FeCl b

1

2
3
4
5
6
7
8

CoC12'

Co
concentration

(+0.001)

0
0.0977
0.1625
0.2641
0.2863
0.3995
0.4591
0.6035
0.8011
1.000

23.6
21.4
20.0
16.8
16.2
17.2
18.1
20.1

22.4
24.7

6.0
12.0
6.0

Transition temperature
upper lower

TH (K) TI. (K)
(+0.1 k) (+1.0 K)

Curie
temperature

Tll (K) T (K)

-26.0 —8.0
21.85(34) 9.51(19)
19.75(34) 9.66(20)
18.33(35) 11.40(19)
19.30(47) 11.68(21)
15.51(32) 13.69(16)
13.31(20) 14.84(19)
9.64(24) 15.41(11)
1.02(14) 17.20(10)

—18.5

-5.0
5.91(6)
6.40(6)
5.72(6)
5.55(7)
5.09(4)
4.75(2)
4.07(2)
3.25(1)

-4.5
5.72(3)
6.49(3)
6.35(3)
6.81(4)
6,61(3)
6.25(4)
6.46(2)
6.62(2)

-4,9

Curie constant
gll

-6.32
6.87
7.16
6.76
6.66
6.38
6.16
5.70
5.10

-6.00
6.76
7.20
7.13
7.38
7.27
7.07
7.19
7.27

-6.26

Effective Bohr
magneton

7he composition x is determined by atomic absorption analysis. T& and Ti. are determined from the maxima of dpll/dT
and dP&/dT in the data. The last six columns are the results of least-squares fits to the high-temperature data.
'Value of TH is taken from Ref. 15. TJ~, CII, and pII are derived from the data listed in Ref. 23. Tc, C', and p are derived

from the data of Ref. 24.
'Value of T& is taken from Ref. 25. Tc and p~ are derived from the data of Ref. 13.

National Laboratory using 13.6-meV neutrons. All
measurements were made on a triple-axis spectrome-
ter, set for elastic scattering. Angular collimation of
the beam varied depending on the comparative needs
of intensity and resolution.

The samples were mounted with their a*-c' axes
in the horizontal scattering plane; this oriented the
cylindrical growth axis approximately vertical. The
samples were then masked in such a way that the
neutrons illuminated only a small vertical fraction
of the sample; within the illuminated volume the
variation in concentration x was typically 0.5 at. %.
The concentration to be studied could then be varied
continuously by moving the position of the mask
vertically. The range of x for each sample was

determined by atomic absorption spectrophotometry
and the average concentration x for each measure-
ment was estimated according to the mask position.
However, since the positional relationship between
the mask and sample could not be established exact-
ly, the absolute value of x can have an error as much
as 0.01. The mosaic distribution of the a &plan-es is
typically 1' full width at half maximum, asym-
metric, and multiply peaked. Most samples consist
of two crystalline domains with a common c axis
but rotated by 60' about it. The scattering geometry
together with the magnetic and nuclear reciprocal
lattice points (rip) in the a*-c* plane are shown in
Fig. 5.

The magnetic neutron scattering cross section for
energy-momentum transfer co and q is given by

q(II ct) q (II a„")

k

—x10

(a) (b)

O
R2

o(o,o, l2)

~ (0,0, e)

(0,0,6)

~ (l,O, II)

.(l,0,8)

~ (l,O, 5)
~ (0,0, 3)

0.18IX & h

o (l,0,2)
Oli

2.032)( '
I I 0 I )

~ (0,0,3)

o (2,0, I0)

~ (2,0,7)

o (2,0,4)

~ (2,0, l)

o (2,0, 2)

FIG. 5. Magnetic (0) and nuclear (0) reciprocal-lattice
points of FeC1~ and CoC12 in the a -c* plane.
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FIG. 6. Peak intensity vs temperature for concentra-
tion x=0.275.
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TABLE III. Summary of neutron scattering results from sixteen measurements of six different samples. The composi-
tions are estimated from atomic absorption analyses made on different parts of each sample. T& and T& are determined
by the peak and wing intensity data. P, D, and T, are the result of least-squares fits to the peak intensity data. The last
two columns are the conditions of the fit.

Sample
number

10

12

13

14

15

16

17

19

20

21

22

23

24

0.275

0.266

0.255

0.400

0.295

0.340

0.360

0.369

0.350

0.335

0.315

0.291

0.293

0.258

0.275

0.286

16.40
+0.05
16.80

+0.10
17.35

+0.10
17.20
+0.05
15.60

+0.05
15.70
+0.10
16.10

+0.05
16.35

+0.10
16.15
+0.15
15.75
+0.05
15.30

+0.10
15.95

+0.05

+0.10
17.10

+0.10
16.50

+0.10
15.90

+0.10

8.0
+0.5

7.0
+0.5

12.5
+0.5
12.0
+1.0
11.0

+0.5
9.5

+0.5
11.5

+0.5
13.0+0.5

11.5
+0.5
15.70

& 5.0

7.5%1.0

11.0
+0.5

0.290
+0.010

0.265
+0.01

0.310
+0.01

0.327
+0.02

0.322
+0.015

1.41
20.10

1.34
+0.10

1.27
+0.10

1.3
+0.1

1.3
+0.1

TG

16.36
+0.02

17.28
+0.05
17.19

+0.02

16.16
+0.05
15.72
+0.05

Temperature
range (t)

0.004—0.15

0.009—0.13

0.004—0.016

0.004—0.14

0.003—0.11

1.2

1.4

1.5

1.4

d 0'

8N lg

2

l-, +(q)l'
2meC

3

X g (&~p —q~ qp)W~p(q, co), (10)
O, ,P=1

where P'~p(q, co) is the Fourier transform of the
space-time spin-spin correlation function

A tt( r, t) = (M (0,0)Mp(r, t) ) .

For elastic scattering, co=0. The coherent part
(Bragg scattering) is proportional to the square of
the order parameters M)I ~=gll ~sll(q& ~~ and
Mj [=gj (Sj(qs ) )], where qz is the Bragg wave
vector. The incoherent part (diffuse scattering) is

+0.008&'~(q) .
Thus the Bragg intentisy (Iz) gives

Ig(0, 0,9) ccIg(0,0, 3) ccMi,

Ia(1,0, 1) cc 0.992Mii+0. 504M/ ™ii+ —,M f .

(1 lb)

(12a)

(12b)

In most cases, only the peak intensity of each reflec-

related to the wave-vector —dependent susceptibili-
ties X~tt(q), etc. Most of our data were taken at rip
(0,0,9), (0,0,3), and (1,0,1).'7 With the use of Eq.
(10), the intensity gives

I(0,0,9) I(0,0,3) W (q)+W„(q), (1 la)

I(1,0, 1) oc 0.992&'~(q)+P'zz(q)
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FIG. 7. Integrated intensity vs temperature for concen-
tration x=0.291.

FIG. 9. Peak intensity vs temperature for concentra-
tion x =0.360.

+0.008X„„(q )

=X}~(q)+Xj(q) . (13b)

tion was measured, but in some very thin samples
( & 1 mm thick), in which we noticed a slight shift-
ing of mosaicity with temperature, the intensity was
integrated over P scans.

The diffuse scattering intensity (ID) is much
weaker than Iz below the transition. It must be
measured at a wing position far enough away from
the Bragg peak to give the behavior of X( q), e.g. ,

ID(0,0,9, +5) ~X (q)+X»(q) =2X,(q),
(13a)

ID(1+g,0, 1)~ 0.992X~(q)+X»(q)

Here q is a wave vector slightly away from qs; i.e.,
q=qs+5q. Thus for measuring Xj in Eq. (13a),
5q was in the direction of c*, while for measuring

Xq+X}}in Eq. (13b), 5q was in the direction of a*.
This was to avoid the Bragg contribution due to the
poor sample mosaicity

A total of nine samples were surveyed. Data we. e
taken from several different segments of each sam-
ple. In Table III we list sixteen cases from six sam-

ples which were studied in detail. In Figs. 6—10 we
show the temperature dependence of the scattered
intensity at the (1,0,1) and (0,0,9) [or equivalently

(0,0,3)] magnetic reflections for five different sam-

ples. In Figs. 6 and 7, where x =0.275 and 0.291,
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FIG. 8. Integrated iritensity vs temperature for concen-
tration x =0.350.

FIG. 10. Peak intensity vs temperature for concentra-
tion x =0.400.
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FIG. 11. Wing intensity vs temperature for concentra-
tion x=0.291.
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FIG. 13. Wing intensity vs temperature for concentra-
tion x =0.360.

respectively, I(1,0, 1) increases sharply where
I(0,0,9) was negligibly small. According to Eqs.
(12a) and (12b), this indicates the ordering of S~

~

at a
temperature we have defined as TH. The small
amount of rounding at TH is primarily due to criti-
cal scattering and shows little smearing of the tran-
sition due to composition gradient. The increase of
I(0,0,9) below Tz is very slow; it has an inflection
point at TL, , which is also visible in I(1,0, 1) and
suggests some ordering of Sz. But the smoothness of
this data, at TL, like the X(0) data (Fig. 4) is not
typical of a second-order phase transition. For
x )0.3 the features associated with S~~ and Sj are re-
versed. In Figs. 8 and 9, where x =0.350 and 0.360,
respectively, both I(1,0, 1) and I(0,0,9) increase
rapidly below TH thus indicating the ordering of S~.
The smooth inflection point at Tl is seen only in
I(1,0, 1), but not in I(0,0,9). This therefore sug-

-0.5
SCA'N

h(o )

0 0.5

4000 800

gests some ordering of S~ . In Fig. 10, where
x =0.400, there is no sign o a lower transition and
the ratio I(1,0, 1)/I(0, 0,9) is approximately con-
stant down to 5 K due to the ordering of Sz alone.

At the wing position of a magnetic reflection
where Bragg scattering is negligible, the intensity
normally originates in the diffuse scattering and
gives the wave-vector —dependent susceptibilities
X~~(q) and Xj(q) according to Eq. (13). In Figs.
11—13 we show the temperature dependence of the
wing intensity for those samples on which the data
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FIG. 12. Wing intensity vs temperature for concentra-
tion x =0.350.

FIG. 14. Comparison of the nuclear and magnetic line
shapes for concentration x=0.275.
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in Figs. 7—9 were taken. At x =0.291 (Fig. 11),
X11(q ) is sharply peaked at TH, while Xz( q) shows a
broad maximum at Tq. At x=0.350 and 0.360
(Figs. 12 and 13), Xz(q) is sharply peaked at TH,
while X11(q) has a broad maximum at TL. These
features match well with those in Figs. 7—9; but
more surprisingly, Xj(q) in Figs. 12 and 13 show a
gradual steplike decrease below T&, which seems to
suggest a reduction of fluctuation in Sj when S11 be-
comes more ordered. Careful viewing of Fig. 9 re-

CD

C3
E
C)

veals a very weak inflection in the corresponding
peak intensity data; in Fig. 8, this is masked by the
larger statistical error.

The values of TH and Ti. determined from the
maximum in either ID or ! dI+ IdT! (the former is
usually more accurate} are listed in Table III and
plotted as the open circles in Figure 3. The agree-
ment with the susceptibility data is obviously excel-
lent. The MCP was found to be at x =0.307 and
TM ——14.92 K. For x &xM, as the temperature
is lowered, the system first enters the "S11-ordered"
phase at TH and then the "mixed" phase at T~. For
x &xM, the system will first enter the S~-order
phase.

The smooth temperature dependence observed at
Tz in both the magnetic susceptibility and neutron
scattering data suggest behavior which is quite un-
like that observed at normal second-order phase
transitions. In this context it is important to deter-
mine whether or not Tq corresponds to a tempera-
ture associated with the development of long-range
magnetic order. If the range of magnetic coherence
is less than the neutron spectrometer resolution a
broadened intensity profile will be observed. Be-
cause of the poor mosaicity of our sample, it is best
to compare the profile of a magnetic reflection with
that of a nearby nuclear reflection. In Figs. 14 and
15 we show the results of a detailed study on the
x =0.291 sample, on which the data in Figs. 7 and
11 was taken; the lower transition is associated with
Sz and (0,0,9) is the magnetic reflection of interest.
In Fig. 14 we compare its intensity profile at 4.S K
to that of the (0,0,6} nuclear reflection. The P scan
and 8-28 scan are in the directions a' and c*,
respectively; they are related to the average range of
coherence in the a-b plane and along the c-axis,
respectively. Evidently, these profiles are resolution
limited and the coherence in this case is at least a
few hundred angstroms. In Fig. 15 we show the

8.9 9.0
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FIG. 15. Logitudinal line shapes at different tempera-
tures for concentration x=0.291.

FIG. 16. Wing intensity as a function of temperature
in samples with (a) x=xM —0.0025, (b) x=xM, and (c)
x =xM + 0.0025.
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normalized 8-28 profile of the same sample at ten
different temperatures below TH, which demon-
strates how the magnetic correlations evolve with
temperature. We note that even at 14 K (which is
well above TL), the width is only approximately
30% above instrument resolution, and at all tem-
peratures below TL, it is resolution limited. These
results imply that significant correlations exist in Sz
immediately below TH when Sll 1s ordered. Similar
conclusions can be inferred from the temperature
dependence of the magnetic susceptibility. Thus we
see no well-defined temperature where long-range
order sets in but rather large magnetic correlations
(or domains) which gradually increase past our in-
strumental resolution. Unfortunately, a similar
study in samples with x ~ x~ is not possible, since
I(~10,1) is always resolution limited below TH due
to S& ordering.

It is quite clear that the results described in this
section are in strong disagreement with the simple
theoretical arguments given in Sec. II. Most impor-
tant, the lower transition lines are either nonexistent
or at least drastically altered by the existence of
long-range order in the other spin component. This
is most clearly illustrated in Fig. 16 where we
display the wing intensity in the immediate vicinity
of xM(=0.307) where the upper transition lines
meet. Note that at xM (middle panel) the critical
scattering associated with both Sll and Sz is relative-
ly sharp. However, at xM —0.0025 (left panel) the
phase transition associated with Sz is broadened
while at xM+0.0025 (right panel) the transition as-
sociated with Sll is broadened. Thus the lower tran-
sition is broadened independent of whichever corn-
ponent orders at TH, or concomitantly, independent
of whether the broken symmetry is discrete (S ~

) or
continuous (Sr).

It is quite clear therefore that Sll and Sl are not
decoupled and do not behave independently. The
magnetic susceptibility data in Figs. 4(c)—4(f) show
Xz to have a bump at T& where Sll orders andgll to
have a bump when Sz orders; neutron scattering data
in Figs. 6, 7, and 11 show substantial intensity at
both (0,0,9) and at (0,0,9.2) between TH and Tr, and
Fig. 16 shows convincingly that the prior existence
o ng r g order ~n e~th~r Sl

I
Sj ha a drama

effect on the lower transition. Figure 3 further
shows that even given the uncertainties in defining
TL, the line DM is not a smooth extension of line
BM, in disagreement with both the theoretical pre-
dictions of FA (Ref. 4) and the experimental con-
clusions of Tawaraya and co-workers. ' In the
section that follows we discuss the nature of the Sll-
Sz coupling and show how off-diagonal terms in the
Hamiltonian lead to the failure of the theoretical
predictions of Sec. III.

V. NONDIAGONAI. EXCHANGE
AND RANDOM FIELDS

In the theory of Fishman and Aharony a diago-
nal pseudospin Hamiltonian

~""= —g &~j[S (i)S„(j) +S~(i)S~(j )]
&~j)

+J)qS, (i)S,(j ) (14)

was used as the starting point. This assumes impli-
citly a cylindrical symmetry about the z axis and a
reflection symmetry across the x-y plane. Recently,
Mukarnel has pointed out that since the crystal
structure of FeC12 and CoC12 is rhombohedral rather
than hexagonal, additional higher-order terms are
allowed by symmetry. Specifically, for the space

5 ~3
group D3d, a quartic term of the form S~~S& may
occur. The effects of such a term are clear. For
x &x~ ——0.307 and T & T~ this term will generate
an effective longitudinal magnetic field proportional
to (Sr) acting on the

~~ component of the spin.
This in turn will cause the

~ ~

transition to be round-
ed so that there will be no true phase boundary
corresponding to the ordering of S~~. For x &x~
and T & T~, this term will generate a cubic term Sz
with a magnitude proportional to (S~~). This then
places the l transitions in the universality class of
the three-component Potts model which is expected
to have a weak first-order transition.

In order to assess the importance of the SllS& con-
tribution it is, of course, necessary to estimate its re-
lative magnitude. Mukamel has suggested a
mechanism for generating such a term which is a
pure fluctuation effect and which decreases to zero
like T at low temperatures. On the other hand, . we
find that the rounding of the

~ ~

transition for x &x~
increases with decreasing temperature so that the
Mukamel mechanism cannot be dominating our ex-
perimental results. The SllS& term may also arise
directly from crystal-field effects. We emphasize,
however, that this term is rigorously absent in the
S(Fe)= 1,$ (Co) = —, spin-Hamiltonian approxima-
tion and therefore can only contribute via off-
diagonal coupling to the higher-lying crystal-field
levels. Indeed such effects have been observed
directly in pure FeC12. "' We conclude, therefore,
that from crystal-field effects alone such a term will
occur and it will alter the

~ ~

and J. phase transitions
as discussed above. It is clear, on the other hand,
that this will not explain the experimental results.
First, it seems unlikely to us that the term, since it
only occurs in higher-order perturbation theory, can
ever be large enough to explain the severe rounding
we observe in the low-temperature

~ ~

transitions for
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x &xM. Second, for x &xM this term generates a
weak first-order character in an otherwise sharp
second-order transition in Sz. From the long corre-
lation lengths experimentally observed for
TL &T&TH with x &xM we would expect the
first-order jump to be quite small. Instead, we find
that the Sq transition for x &xM is extremely round-
ed. Further, the general behavior of the Sj transi-
tion for x &xl is similar to that found for the S~~

transition for x &xM. It is clear therefore that it is
necessary to identify an alternate mechanism to ac-
count for the observed behavior.

Our mechanism rests on the observation that al-
though globally the symmetry is D3d, locally there is
no symmetry at all. Thus locally a number of bilin-
ear off-diagonal coupling terms will occur. These
terms may be as large as the exchange coupling
terms in Eq. (1). We now proceed to discuss the ef-
fects of local off-diagonal coupling on the
Fishman-Aharony phase diagram.

It has long been known that exchange interactions
between ions with orbital degeneracy are not neces-
sarily well represented by the usual Heisenberg
form —JS&'S2. The charge distribution of these
ions is spatially anisotropic; their overlap (exchange)
depends not. just on wheter the spins are parallel or
antiparallel but also on the relative orientation of the
charge cloud to the displacement vector R&2. The

pseudospin vectors S~ and S2 are coupled to the
charge cloud of the two ions; the electronic ex-
change interaction is represented by an interaction
between S~ and S2. For the same S~ S2, the amount
of charge overlap is different for different ri2
(riz—=Riql

~
Ri2~). Quite generally, one must in-

clude at least two additional terms in the Hamiltoni-
an. In the molecular-field approximation there
should be three independent components of the
molecular field acting on S& in the directions of S2,
r iz, and (S2 X r i2), respectively. In a three-
dimensional space, this exhausts the possibility of
bilinear scalar coupling between Si and S2. If the
charge clouds are isotropic, the extra terms are un-
necessary. For ions with large spin anisotropy, the
charge cloud is by necessity anisotropic; hence in-
stead of Eq. (14) the Hamiltonian should have the
form

4 = —g JJS(i) S(j)+KJ[rj S(i)][rj S(j)]
&ji)

+GJ[S(j)X r,i] S(i), (15)

where K,
&

and G,J are coupling constants. Equation
(15) can be separated into diagonal and nondiagonal
parts

4 ~=g[J~~+(r J) KJ]S„(i)S„(j)+[JJ+(r",J) KJ]S„(i)S„(j)+[JJ+(r';.)2K; ]S,(i)S,(j),
&Ij&

(16a)

4 " = —+2K& [rzrJS„(i)S~(j )+rf~r'JS~(i)S, (j)+rjrJS,(i)S„(j)]+GJ[S(j)X r, ] S(;) (16b)
&Jj&

In classical magnetism where the mean-field approximation is aiways assumed, 8 " is usually zero in pure
systems by symmetry requirements. For example, in FeClz or CoClz, the z axis is a threefold axis giving

~fg~Tg) =~T)]fg~ =~I'IJI"g~ =0 .X P ~ g 2 ~ z x

J J J

With (S(j)) identical for all j, the molecular field on S(i) due to the K~ term in Eq. (16b) is zero. The G;1
teim can also be neglected because g. r,j ——0 in any crystal. Therefore, no molecular field can result from

in a pure system and only A needs to be considered. By noting that (rj) =(r,J) +(r;~) in the present
case we see that 4 will take the form of 4 " if we replace (r,z) and (r"z) by their average. In random sys-
tems like Fe~ „Co„C12the above arguments are invalid since the spins are not all equivalent; P " is then in-
sufficient to describe the interaction and all the terms in Eqs. (15) and (16) must be considered. In the absence
of any theory to deal with these terms exactly we shall make the simple molecular-field approximation to ap-
preciate their significance. As described below, this leads to drastic changes of all the phase-transition proper-
ties, especially those associated with the lower transition.

At the lower transition, since one spin component is already ordered, we can make the mean-field approxi-
mation on that component alone and see how it affects the other component. For example, if S~~ [

—= (O, O,S, )]
is ordered, we replace S,(i) by (S, ) in Eqs. (16a) and (16b), and obtain the Hamiltonian for Si [=(S„+~,0)]

A i———QJ~S&(i).S&(j)+KJ[rz Si(i)][r J Si(j)]+GJ[S&(i)XSi(j)]r*;J —+hi(i) Si(i) (17a)
&~j& l
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where

hi(i)=2+KJ[r', J (Sll j
J

+GJ(S)((J))Xr ~j (17b)

Similarly, if Si is ordered first, we replace Si(i) by
(Si(i)) and the Hamiltonian for S~~ becomes

= —g[J J+KJ(r,"J) ]S()(i).S(((j)
{SJ'&

h~~(i) S~~(i), (18a)

where

hll(i)=2+K, ,[r J"(S,(j)))r;,.
J

+G;J(S (j))Xr; (18b)

Clearly, with random KJ and GJ, hi(i) and h~~(i)
are random in both directions and magnitude at
every site. They are coupled to Si(i) and S~~(i), as a
static site-random applied field.

Random-field Hamiltonians have been studied ex-
tensively in recent years. It is now generally
believed that in continuous symmetry systems in the
limit that the random field is less than the exchange,
the field lowers the effective spatial dimensionality
by 2. In other words, the upper marginal dimen-
sionality d„(above which mean-field theory is valid)
changes from d„=4 in zero field to d„=6 in a ran-
dom field. Similarly the lower marginal dimen-
sionality d, (below which no order exists) shifts
from d, =2 to d, =4. For discrete symmetry sys-
tems the d~d —2 rule is more controversial.
It is generally believed on theoretical grounds that
the application of a random field to Ising model also
shifts d„ from 4 to 6. Experiments on Coi „Zn„F2
and RbCoi „Mg„F4 suggest that d, shifts from 1 to
3. ' However, more experiments need to be done to
prove the case.

For pedagogical purposes it is useful to think of
the random field in terms of the domain arguments
by Imry and Ma. For d(4 it is energetically
favorable for a continuous symmetry system to take
advantage of spatial Auctuations in the random field
by breaking up into domains; the energy gain within
the domain compensates for the exchange cost of
generating a domain wall. For Ising spins the argu-
ments are more complex but for small enough d
the results are the same: domain formation with no
long-range order. It is perhaps also useful to recall
that a random field is the field conjugate to the
Edwards-Anderson spin-glass order parameter.
Hence at any finite temperature some fraction of the

spin entropy is lost with the spins partially freezing
into static domains. In FeI „Co„C12when S~~ or-
ders, it generates a random field on Sz which
changes the lower marginal dimensionality for Sj to
d =4. We expect, therefore, no long-range order in
Si at any temperature; the range of order (or domain
size) is determined by the strength of the random
field compared to the exchange. Similar arguments
should hold for the case where Sj order prevents S~~

order, should d, prove to be 3 for Ising spins.
Insofar as the neutron scattering cross-section is

concerned, since there is no long-range order associ-
ated with the lower transition, there should be no
Brag g component. Instead there should be a
pseudo-Brag g component related to the
[(S;) (SJ.)], correlation which is due to the domi-
ans. The form of the scattering cross-section associ-
ated with the pseudo-Bragg component is expected
to be a squared Lorentzian with momentum space
width giveri by the inverse domain size. ' ' On the
other hand, there is also Lorentzian diffuse scatter-
ing associated with spin fluctuations [(5S;.5SJ )]„
where 5S;=S;—(S;). With this background all the
important features in our data can be qualitatively
understood as follows:

(i) Immediately below T~, where one spin com-
ponent orders, it generates a random field on the
nonordering spin component and induces the forma-
tion of domains (in that component). This then
should lead to an anomaly in the dc susceptibility.
In fact, as shown in Fig. 4, a kink is observed in the
dc susceptibility of the nonordering spin component.

(ii) The pseudo-Bragg scattering from the
domains (Ii'i) produces intensity profiles that are re-
latively narrow since the domains are of finite size.
As temperature decreases, the domains should grow
bigger and the profiles become narrower and eventu-
ally become resolution limited, as we observed in
Fig. 15. Unfortunately, the resolution of the neu-
tron spectrometer together with the irregular
mosaicity of the samples vitiated the observation of
finite spin-spin correlations at low temperatures, as
well as the unusual structure factors anticipated for
random-field systems.

(iii) Since the domains are large, the peak intensity
at a Bragg position is due primarily to domain
scattering (Iz). The smooth temperature dependence
we observed in Figs. 6—9 is thus a manifestation of
the fact that a random field exists at all tempera-
tures below T~.

(iv) The wing intensity at the lower transition con-
tains contributions from both Is and ID. However,
at the upper transition it contains only ID. This
may account for the large difference in intensity in
Figs. 12 and 13.

It is important to remark that the explanations
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given above are valid for both x &xsr and x &x~
data; regardless of whether Sii or Sz orders at TH, it
will produce a random field on the other spin com-
ponent. This is in accord with essentially all of our
experimental observations.

032—

~ 028

0.24

VI. MULTICRITICAL
AND CRITICAL BEHAVIOR

16.0—
(b)

It is clear from the discussion in the preceding
section that the existence of a random field is able to
account qualitatively for much of the observed
behavior along the lower transition line TL . Because
of the off-diagonal local coupling we might also ex-

pect important effects for the upper critical lines
near xIIr. Indeed, Mukamel has argued that off-
diagonal coupling can make the point xM, TM a
Heisenberg bicritical rather than a tetracritical
point. The crossover exponent for a Heisenberg bi-
critical point is P =1.25. Reasonable estimates for
the range of validity of coupled Heisenberg behavior
can be obtained by relating the anisotropy parameter
(g:D/J) to—the concentration M (= Ix —x I).
One finds coupled behavior for t & 10 ' when
M & 0.06. Therefore, it is possible to observe effec-
tive isotropic behavior in the normal critical region
(t &10 ') if the sample concentration is within a
few atomic percent of xIIr. With this motivation we
reexamine the behavior in the vicinity of the mul-
ticritical point xM.

The MCP in Fig. 3 was studied in some detail us-

ing the "moving mask" method described in Sec.
III. In one of the samples we surveyed (not listed in
Table II), x varied approximately from 0.256 to
0.316, containing the multicritical value of
xM ——0.307. The sample was 1.25 in. long and x was
determined for five equally spaced segments along
its length; the result is shown in Fig. 17(a}. The
upper transition temperature for different segments
of the sample was determined by measuring either
the peak or wing intensity as a function of tempera-
ture. The cadmium mask was moved vertically by
O. l in. or less for each measurement, while the open-

ing of the horizontal slit on the mask was only about
0.07 in. The result of TIr as a function of mask po-
sition is shown in Fig. 17(b). By properly matching
the positional scale between Figs. 17(a) and 17(b),
TH as a function of x was determined. This was
achieved by matching the TH ——16.15 K data point
in Fig. 17(b) to the x =0.284 data point in Fig. 17(a);
it is in fact by this method that we determined

x~ =0.307. Combining Figs. 17(a) and 17(b), we ob-
tained the result shown in Fig. 18(a), where TH is
plotted against x near the MCP. By taking the data
points for x &xM, except the one closest to xM, we
plotted M vs hT on a log-log scale

l4.0
-0.6 -04 -0.2 0 0.2

h(inches}

I

0.4 0.6

FIG. 17. Concentration and transition temperature vs

position of mask along the sample.
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FIG. 18. Transition temperature vs concentration for x
near x~.

(6x—:
I
x —xsr I

~?'—:I?H Tsr I ) —in Fig. 18(b)
and obtained a straight line with slope equal to 1.22.
In other words, close to the MCP the upper phase
boundary for x &xM fits well to the equation

hx ~ET&,

where /=1.22 (a similar test for x)xIIr has not
been made). Slightly different matching of Figs.
17(a) and 17(b) would undoubtedly modify this re-
sult, but in several different attempts, we found that
the log-log plot of M vs b T was always quite linear
and gave P in the range of 1.2—1.4, which implies
that the upper phase boundaries are asymptotically
tangential at the MCP. This result seems to support
the conjecture that the MCP behaves effectiuely like
an isotropic bicritical point with S~~ and Sz coupled
in the experimentally accessible temperature range.
However, this agreement must be viewed with some



P. WONG, P. M. HORN, R. J. BIRGENEAU, AND G. SHIRANE 27

reservation since there are many uncertainties in the
procedure we used in finding TH(x). Furthermore,
we note that any amount of concavity in the phase
boundaries in Fig. 18(a) would lead to a value of P
greater than unity. Therefore, this result should not
be regarded as proof of bicritical behavior, rather, it
is only suggestive.

As discussed by a number of authors, ' the ex-
istence of nondiagonal terms in the Hamiltonian
could conceivably affect the nature of the upper
transition not only at xM but also along the entire
upper transition line. Indeed, Mukamel and Grin-
stein have suggested that the transition along line
MB (in Fig. 3) should be either first order or
smeared. Since these transitions are all essentially
continuous in our experiments, it is of interest to
determine the associated critical exponents. The ex-
ponent P, which is related to the order parameter by

M(T) ~ t~,

where t =
I
(T T, )/T, —~, can be readily determined

from our intensity data. This is accomplished by
least-square fitting Is(T) below the upper transition
to the form

Is( T)
Is(0)

If x &xM, Is(T) at (1,0,1) gives P~~, which is associ-
ated with M~~,'if x &xM, Is(T) at either (0,0,3) or
(0,0,9) gives Pi, which is associated with Mi. How-
ever, one must first obtain Is(T) by subtracting the
critical diffuse scattering ID from the measured in-
tensity I. This is achieved by the following method:
For every temperature T below TH, we find a tem-
perature T+ above TH such that the wing intensity
at T and T+ is approximately equal; by assuming
the wing intensity is purely diffuse and
Iz(T ) =ID(T+) at the peak position, we have

Is(T ) =I(T ) ID(T )—
=I(T ) ID(T+) . —

By restricting ourselves to the use of only the data
in the approximate reduced temperature range
10 '&t&10 for the least-squares fit, we found
the critical scattering correction is generally less
than 2%; it becomes much more important when
t &10 . In using Is(1,0,1) to find P~~, the Bragg
scattering due to Sj must be subtracted, which can
only be estimated from I(0,0,9) at each temperature
of interest. This prevented us from determining P~~
in samples with x very close to xl, in the ones for
which analyses were made, the correction was less
than 1% of I(1,0, 1). In the actual analysis both the
raw data I and the corrected data Iz were fitted to
Eq. (16); several different ranges of t were tried for
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FIG. 19. Sublattice magnetization vs reduced tempera-
ture (t =T, —T!T, ) for concentration x=0.275.

each fit. By observing how 7 changes with the fit-
ting range, an optimum range can be decided; within
this range, X is generally less than 2 but greater
than 1. The resulting values of P, T„and D are
given in Table III; they represent the average of the
many different fits to the data. The error limits
represent the difference among the many fits and
not the result of any particular fit, which is usually
much smaller. Figures 19 and 20 show two exam-
ples of these fits; they are obtained with the data
shown in Figs. 3 and 7 (x=0.275 and 0.400, respec-
tively) with proper subtractions. Although P~~ and
Pi were determined to unrealistically small uncer-
tainty in these examples; they are undoubtedly sensi-
tive to the sample's composition gradient, the sub-
traction procedure, and the choice of temperature
range. The results given in Table III show that in
different samples we have obtained the P~~ range
from 0.25 to 030, and Pi from 0.30 to 0.35; they
thus agree approximately with the theoretical values

P~~
——0.32 and Pi ——0.35 for d =3 Ising and XY tran-

sitions, respectively. The results associated with
the S~~ transition (x &xM) are also consistent with
those obtained for pure FeC12 (@=0.29+0.01 and
D=1.47+0.02) by Yelon and Birgeneau. ' There-
fore, within our many experimental limitations, we
do not detect any significantly different new ex-
ponent close to the MCP. If the MCP is bicritical,
it should have d =3' Heisenberg-model critical ex-
ponents. Unfortunately, the theoretical value of
P=0.37 for the d=3 Heisenberg model is too
close to the 0.35 for the XF model, impossible to
distinguish experimentally, and P~~ very near the
MCP could not be determined for reasons men-
tioned above. Hence we can only conclude that the
upper transitions are consistent with the behavior of
a pure d =3 Ising (if x &xM) or XY (if x &x~) sys-
tem. No evidence for either a first-order or a
smeared transition has been found.
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Over the last fifteen years mixtures of antifer-
romagnets with competing anisotropies
have been extensively studied. Examples
include K2Mn& „Fe„F4, K2Ni& „Fe„F4,
R12Co) „Fe„F4, Fe) „Co„C122H20, '

Ni„Co~ „C12.6H20, DyP & V,O4, and
CsMn& „Co„C132H20. These experimental stud-
ies have been supplemented by numerous theoretical
papers with the greatest emphasis being placed on
mean-field calculations of the type given in Sec.
III B. ' It is not possible to review anthologically
the literature here. In brief, essentially all the phase
diagrams predicted using mean-field theory are
tetracritical as shown in Fig. 3. Furthermore, the
agreement between theory and the general features
of the measured phase diagrams appears to be quite
good. In hindsight this agreement is rather surpris-
ing given the importance of the off-diagonal cou-
pling between the competing spin components. As
we have shown above, the lower transitions of the
tetracritical phase diagram do not even exist due to
random molecular fields. This feature should be
true for all the experimental systems listed above.
We believe that the general agreement between ex-
periment and theory reflects the fact that often the
random field is small6 and there is therefore some
remnant of the lower phase boundaries.

One of the most direct demonstrations of the ex-
istence of the random-field-induced domain phase is
the Mossbauer study of Fe& Co C12 2H20 by Ito
et al. They found that just below the upper transi-
tion both the ordering and the nonordering spin
components are frozen on the Mossbauer time scale.
In contrast, neutron-diffraction studies of the same
system found long-range order in only one spin corn-
ponent. Presumably the nonordering spins are
frozen by the molecular field of the ordering spins.
Another manifestation of the low-temperature
domains is illustrated in Fig. 21. Here we show the

FIG. 21. Peak intensity vs temperature for concentra-
tion x =0.295.

existence of low-temperature thermal hysteresis for
a sample with x near x~. Similar behavior is ob-
served for samples with concentrations in the range
0.29&x &0.35. This hysteresis is accompanied by
extremely slow relaxation phenomena with time
scales often over 20 min. This behavior is typical of
magnets which have both a magnetoelastic coupling
and a competition between various domian phases.

Finally we return to the phase diagram of random
anisotropy magnets. As discussed above, the lower
phase boundaries in the tetracritical phase diagram
are destroyed by the random fields generated by the
ordered spins. What then is the nature of the phase
diagram at low temperatures? By symmetry there
must be some type of phase boundary separating the
regions of Ising order from the regions of XY order.
We believe that the most likely natue of this boun-
dary is a line of first-order transitions resulting in a
bicritical phase diagram as shown in Fig. 2(d). Un-
fortunately, the long correlation lengths associated
with the nonordering spins, as well as the large hys-
teresis region mentioned above, make identification
of a unique first-order line essentially impossible.
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