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Finite-size analysis of first-order phase transitions: Discrete and continuous symmetries
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First-order phase transitions are characterized by 5-function singularities in thermo-

dynamic quantities. The way in which these singularities develop in taking the thermo-

dynamic limit is qualitatively different for finite systems and systems infinite in one direc-

tion only. The corresponding crossover behavior, which we predict in detail with a
renormalization-group analysis, is a unique feature of first-order transitions and is suggest-

ed to be of considerable utility. Both systems with discrete and continuous symmetries are
discussed. For the latter we verify our results for the two geometries within the spin-wave

approximation.

I. INTRODUCTION

A wealth of information about critical behavior of
infinite systems can be derived from a study of their
finite counterparts. Research in recent years has
most vividly borne this out. Both finite-size scaling
and phenomenological renormalization have been
very successful in this respect. ' 4

The usual, physically appealing, argument on
which finite-size scaling relies invokes the scale in-
variance of a system with an infinite correlation
length, i.e., a critical system. In the critical region
the properties of the system depend only on the ratio
of the finite size and the correlation length: the di-
rnensionless combination of the only two physically
relevant length scales. For a system with a first-
order transition the correlation length remains finite
and the scale invariance is lost. So is finite-size scal-
ing, along this line of reasoning.

Alternatively, finite-size scaling can be considered
to be an application of renormalization-group
theory. The essence of this formulation is as fol-
lows: (l} The renormalization-group equations are
those of the infinite system; and (2} an additional
relevant scaling field, viz. , the inverse linear dimen-
sion, is responsible for the finite-size behavior (the
corresponding scaling index equals one). These two
assumptions account for the dominant finite-size
singularities.

The rcnorrnalization-group formulation of finite-
size scaling is the more general and powerful onc.
For cxaxnple, it immediately yields Suzuki s exten-
sion of finite-size scaling to critical dynamics. Not
unusual for first-order transitions, it has recently
been suggested that also finite-size sealing for first-

order transitions can be understood in terms of a
zero-temperature, discontinuity fixed point. ' '

The purpose of this paper is twofold. First, we
want to stress that thc unique finite-size signature of
a first-order transition is the qualitatively distinct
behavior of finite systems and systems infinite in
one direction only. Since the latter arc intractable,
e.g., in simulations, we consider in detail the cross-
over between the two geometries and the corre-
sponding data collapse. The analysis of first-order
transitions suggested —where finite-size dependence
is exploited rather than carefully avoided —is defin-
itely morc elegant. Moreover, it may very well be
more powerful, as indeed it is in the case of continu-
ous transitions.

Second, we present a calculation that corroborates
the conclusion based on the discontinuity fixed-
point analysis. This suggests that the renormaliza-
tion arguments, crude as they might be, apparently
capture the correct physics.

II. SCALING THE HYPERCUSIC PRISM

%e consider a finite system on a d-dimensional
hypercubic lattice: a hypcrcubic prism with periodic
boundary conditions. The prism has linear size n in
d —1 dimensions and m in the remaining dimension.

For definiteness take a p-component Heisenberg
model with reduced Hamiltonian (i.e., a factor
—kg T is included):

m=lt g s;.s, +h gs

where (i,j) runs through all nearest-neighbor sites
and s; =(s;, . . . , s, ) is a p-dimensional unit vector.
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For K &K, the system spontaneously orders, say,
along the (1,0, . . . , 0} direction. Equivalently, the
corresponding susceptibility has a 5 function con-
centrated at h =0. In a finite system the 5 function
will be approximated oy a smooth peak of ever in-

creasing height as the system tends to the thermo-
dynamic limit. We are interested in this height as a
function of system size.

Sufficiently close to the discontinuity fixed point
the renormalization equations, corresponding to a
length rescaling factor L, are

T'=L ~T, h'=Ldh,

where T =K ' and

n'-'mr —exp( —2n'-'IC)m

n

X(T,n ', m--')= '

] m(p —1)
n mX

2n K

(10)

This is our main result: X/n 'm depends only on
a combination of the two parameters m and n. The
scaling functions X as obtained within our approxi-
mation are given in the Appendix. Note that from
Eqs. (10) one immediately recovers the previously
reported results

(1 la)

d —1 forp=1,
d —2 for p g1 and d &2.

Note that y differs for systems with a discrete' or
continuous" symmetry. The free energy in units
k&T per site f satisfies

f(T,h, n ', m ')

=L f(L «T,L h, Ln ',Lm ') . (4)

Note that a background term in the free energy was
ignored. The exponent d associated with h is the
discontinuity exponent' which gives rise to a
nonzero order parameter. Equation (4) implies that
the susceptibility X=8f/ dh in zero field satisfies

X(T,n ', m ')=L X(L «T,Ln ', Lm ') .

for a system of n X. . . )& n sites, and

n "exp(2n~ 'l(. } for p =1
2d-22d —2 forp )2 ( 1 lb)

X(T n ', m ')=n " X(T„1nlm)

2)7] —d mK=n A +Bexp

(12)

for the semi-infinite case of 00 X n X Xn sites. '

It is illuminating to contrast the behavior for a
first-order transition [Eqs. (10}] with the corre-
sponding result for a continuous transition. Using
arguments similar to those employed above in the
latter case one obtains

, 1 for x &&I,
2/x for x &&1 .

Since

for p =1
K= '

—,(p —1)T for p & 1,
it then follows that

(9)

With the choice L =n one obtains

X(T,n ', m '}=n"X(n «T, l,nlm},

which expresses the susceptibility of a d-dimensional
system of n 'm sites in terms of that of a one-
dimensional chain of length l =m/n. If we now
parametrize the latter in terms of its inverse correla-
tion length ir rather than T, we find (see the Appen-
dix)

X(a, l ')=1X(ls),

with

where yI, is the magnetic critical exponent and A, B,
and K may be obtained by calculating a one-
diinensional susceptibility. Comparing Eqs. (10}and
(11}one sees that the difference between first-order
and continuous transitions in the m =n region may
be arbitrarily small if yI, (d. However, a clear dis-
tinction is always found in principle for m &&n.

In the derivation above we have assumed that T is
sufficiently small that the renormalization equations
(2) hold. To extend the validity of the analysis one
replaces T and h by the appropriate scaling fields.
The only implication is that EC in Eqs. (10}and (11)
becomes an unknown constant. Equations (10}and
(11) are also expected to apply to the peak in the
specific heat for a system with a latent heat. In a
renormalization-group context the temperature devi-
ation from the transition couples to an ordering field
at the discontinuity fixed point and thus plays the
role of h above. ' We caution the reader that in a
system with a continuous symmetry the latent heat
may very we11 be associated with a T=O coexistence
of phases separated by a finite energy gap. In that
case the p=1 analysis applies.
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III. FINITE-SIZE BEHAVIOR:
THE SPIN-WAVE APPROXIMATION

As in the preceding section we consider here the
p-component Heisenberg model on a hypercubic lat-
tice. We shall establish the finite-size behavior as
predicted by the renormalization-group analysis for
the n X )(n and 00 Xn X . Xn geome-
tries [cf. Eqs. (11)]. For this purpose a spin-wave
approximation is employed.

At low temperatures, and for d&2, the spin-spin
correlation function can be approximated by'

( s(r) s(0))-exp[(p —1)[G(r)—G(0)]I,

with r=(ri, . . . , rd) and 0=(0, . . . , 0) labeling lat-
tice sites. For the infinite system

and nonpositive off-diagonal elements (proportional
to 2 and —1 or 0, respectively). For the susceptibili-

ty X„one obtains

+exp[ —(p —l)G„(0)]&X„&g 1 .

As n~ ao one has G„(0)~G„(0),which is finite.
Therefore, a constant c, independent of n, exists
such that

exp[ —(p —1)G„(0)]& c &0 .

It then immediately follows that

X„-n as n~op,d

which verifies Eq. (11a).

Case 2: A system infinite in one dimension

and of linear size n in d —1 dimensions

G(r)=G„(r }

eik r

g (2—2cosk;}
i=1

(14)

Assume the system to be infinite along the 1

direction. One now replaces in Eq. (14)

dk
" (2~)d

the integral being over the first Brillouin zone:

~
k;

~

&m. For finite systeins or systems infinite in
one direction only, the integral above has to be
modified appropriately, as discussed in detail below.
For an infinite system or a finite system with
periodic boundary conditions the susceptibility is
given by

I= g (s(r) s(0)) . (15)

We now treat the following two geometries.

by

dk&, , rf,.
k~

(19)

where kz; ——0, +2m. /n, . . . . Denote by G„ the
Green's function obtained in this way. Note that, as
opposed to (16), the term ki ——0 is included in the
sum. Treating this term separately we write

G„(r)—G„(0}=G„'(r)—G „'(0)+F(z)ln

(20)
where

Case 1:A hypercube of length n all d dimensions

The pertinent Green's function, denoted by G„(r ),
is obtained from Eq. (14), making the substitution

(16)
(2n) n

ik ~ r

and

1 dkl
G „'(r)=. —,„, , rJ.. .

g (2—2cosk;}

(21)

where the sum is over k; =0,+2~/n, . . . . The fol-
lowing inequality holds:

0&G„(r)&G„(0) .

1 ~ dk e' —1F(z)=
2E I-~ 2' 2 —2cosk

1

4Z

(22)
(17)

The right-hand side of this relation is obvious. The
physics contained in the left-hand side is also clear:
6„ is the correlation function of ferromagnetically
coupled Gaussian variables. To prove this side of
the inequality exactly, one applies a theorem by
Stieltjes and Ostrowski': G„&0 being the inverse
of a positive-definite matrix —the eigenvalues are

d
i (2—2cosk;), k&0—with positive diagonal

Taking the appropriate limit in the inequality (17)
one obtains

0&6'„(r)&G „'(0), (23)

noting that the ki=0 terms in Eq. (21}give rise to
corrections of order n ' in the nonzero elements of
the inverse of G„', so that the Stieltjes-Ostrowski
theorem still applies. Hence the susceptibility 7„
satisfies
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exp[ —(p —1)G „'(0)]g exp
4Kn , ~z

~
&X„&+exp p —1

4K. — '~ (24)

Once again G„'(0)~G„(0) as n~ao, so that
exp[G„'(0)] & c for positive constant c independent of
n. Furthermore,

I

temperatures

X(a,l '
}=lX(l«},

with

(A2)

g exp—
4Kn

~z
~

=4n d K/(p —1)
X(x)= 2(1—e ")

x(l+e ') (A3)

and
(25)

The function X indeed satisfies Eq. (8).
For p & 1 the correlation function in the spin-wave

approximation is

This, then, establishes our result in (1 lb).
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APPENDIX

&so s, &

I —1

Trexp iP, Kg—(P +,—P. )~

j=0
I —1

Trexp Kg (PJ—+,—P )~

j=0

where

Tr = f . f d((}i dPi

p —1

(A4)

exp( —«r) +exp[ —«(1 —r) ]
1+exp( —«1)

(Al)

with the inverse correlation length given by
x= —lntanhK=e for large K. By summing
over r one obtains the susceptibility, and for low

I

We derive Eqs. (8) and (9) and calculate the scal-
ing function X. As a by-product the integral in Eq.
(22) is evaluated.

Consider a chain of spins so, si, . . . , sI i with
periodic boundary conditions: sI=so. For p=1
(Ising chain) the correlation function is

Now introduce a transfer matrix,

T(P,f;K)=~K exp — (P f)——
2

(A5)

T (P,P;K)=T(P,g;K/m) (A6)

for any positive m. The correlation function (A4)
can then be written as

The eigenvalues and eigenvectors are exp( k~/2K)—
and [exp(ik ()(i] v/2n It then .immediately follows
that the transfer matrix to the power m satisfies

(so s, )—
' 1/2

I
K

ce K Kf dP, T Po,P, ; exp(ig, )T P—„,go, I

p —1

r (1 —r)-exp —(p —1)
4KI

(A7)

The inverse correlation length is

z=(p —1)/4K .
For large l the susceptibility can readily be obtained
and reads

X(«,l '}=IX(l«),

I

with

1

X(x)= f exp[ —y(1 —y)x]dy, (As)

which again satisfies Eq. (8). Equations (14) for
d=1 and (A7) for l~ ao immediately give Eq. (22).
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