
PHYSICAL REVIE% B VOLUME 27, NUMBER 7 1 APRIL 1983

Microscopic determination of the self-energy of He
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From Planck's constant, the mass of a He atom, and the "Hartree-Fock dispersion 2"
potential {which describes He quite well) we calculate the ground-state energy and the com-

plex self-energy of liquid 'He. The calculations are performed within the framework of
correlated-basis-function theory. The starting point in this method is an optimized Fermi

hypernetted-chain calculation. Improvements on the wave function are incorporated

through nonorthogonal perturbation theory. For the energy, we include corrections of
second and third order in the effective two-body interaction as well as second-order terms in

the effective three-body interaction. Second- and third-order perturbative corrections to the

self-energy of a He atom reveal a rapid variation with both energy and momentum in the

vicinity of the Fermi surface. This effect is shown to be due to the attractiveness of the ef-

fective interaction in the spin channel. Our results are in quantitative agreement with

phenomenological determinations of the self-energy based on the experimental specific heat.

I. INTRODUCTION

Thc Iap1d varlRt1on of thc specific heat of 11qu1d
He at low temperatures and the related question of

the effective mass is currently a subject of inten-
sive theoretical study. ' The paramagnon picture
is a qualitative description of the effect; under cer-
tain assumptions semimicroscopic arguments allow
the self-energy and hence the energy-dependent ef-
fective mass to be extracted from the experimental
specific heat. Common to all these pictures is a rap-
id variation of the effective mass of a He atom
close to the Fermi surface.

The enhancement of the effective mass in the vi-
cinity of the Fermi surface is, by itself, a well-
known effect in nuclear physics. Thc fact that this
enhancement effect is substantially stronger in He
is usually attributed to thc soft mode of spin-density
fluctuations.

Microscopic studies of the effective-mass
enhancement in nuclear matter have been performed
on the basis of 6-matrix and variational ' calcula-
tions. However, no attempts have yet been made to
derive the energy (or momentum) dependence of the
effective mass of liquid He from the interatomic
potential. In the present paper we show that the
correlated-basis-function {CBF)approach provides a
simple microscopic explanation and a semiquantita-
tive determination of the effect.

The CBF theory' is presently the most powerful
and efficient formalism which leads from a micro-
scopic interaction to quantitative results for the

properties of cold matter. It starts with a variation-
al ansutz for the wave function which describes the
average correlations between particles. State depen-
dence is included through nonorthogonal perturba-
tion theory. CBF allows a clean separation between
state-dependent effects and the gross geometrical
correlations induced by the core exclusion in a
strongly interacting system. The inherent power of
CBF was recognized about fifteen years ago by
Feenberg and collaborators. ' '" In the last decade
enormous improvements in the variational theory
have tended to overshadow the CBF theory. More
recently, the growing awareness of the limitations in
the purely variational approach has led to a fruitful
union.

One attractive feature of the CBF-Jastrow ap-
proach is the close correspondence between its dia-
grams and those of ordinary perturbation theory.
This means, however, that the "pedestrian" ap-
proach of calculating individual diagrams must rely
hcav1ly on a rap1d convcrgcncc of the series. Thc
strength of the CBF theory is the weakness of the
effective interaction.

%e present in this paper essentially the most com-
plete evaluation of CBF-perturbation corrections
which can be achieved with reasonable numerical ef-
fort in this pedestrian approach. For the ground-
state energy we compute second-order corrections in
the two- and three-body effective interaction and
third-order corrections in the two-body effective in-
teraction. In addition, we compute second- and
third-order ring-diagram contributions to the (com-
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plex) self-energy of a 'He atom.
Our paper relies heavily on recent work on the

ground-state energetics of helium and deuterium
Fermion fluids. ' The reader is urged to consult this
paper for notational matters and a general outline of
the optimized Fermi hypernetted-chain —CBF
(FHNC-CBF} approach. In the next section we only
outline the variational computation of the ground-
state energy and its improvement by nonorthogonal
perturbation theory. Explicit expressions are given
for the second-order energy correction involving the
two- and three-body effective interaction and the
third-order term in the two-body interaction.

Section III discusses the single-particle excitation
spectrum and its CBF corrections to the same order.
Our numerical results for the Hartree-Fock disper-
sion 2 (HFDHE2} potential of Aziz et al. ' are
presented and discussed in Sec. IV. Two appendixes
discuss the Monte Carlo integration of the 3p-3h di-
agrams and our approximations for the CBF effec-
tive interactions.

II. CBF COMPUTATION OF GROUND-STATE
PROPERTIES

We deal with a Jastrow-correlated wave function

I A& =I"
I A&~&A I

+'I'
I
0o&'", += gf(;, ),

0= 5H00

51nf (r)
(2.2)

in a suitable approximation for the variational ener-

gy expectation value

(2.3)

[With a "suitable" approximation we mean one
which preserves properties of the exact variational
problem' as far as they are important for the deter-
mination of the optimum Jastrow function f(r}.] In
practice, the four nonlinear FHNC equations' are
extended by a set of linear equations (the so-called
FHNC' equations) which are generated from the
FHNC equations by linearization and use the in-
teraction as the driving term. ' A simplified
Newton-Raphson algorithm' or a suitable adapta-
tion' of the working formulas of the "paired-
phonon analysis (PPA)" technique' ' allows itera-
tive improvement of the Jastrow correlation func-
tion until convergence is reached.

(2 1)

where
I pp) is the usual ideal-gas Slater deter-

minant. To choose the f(r), we follow the "opti-
mized FHNC" route described in detail in Ref. 12.
In short, one solves the variational problem

and (2.7}

of the Hamiltonian and the unit operator.
In terms of the (off-) diagonal quantities

(2.5)—(2.7) the first terms of the perturbation expan-
sion for the ground-state energy in the correlated
basis (2.4) read"

E=Hpo —QHp H'
p

m mm 001, 1+ +Ho~ H'„H„'p .
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(2.&)

Explicit application of the perturbation expansion
(2.8) requires the specification of the number d of
orbitals in which the states

I P„) and
I P„) differ

from each other and from the filled Fermi sea
I Po).

We will be concerned only with the cases d =2 and
In this case, we can write Hmn and Nmn in the

form of plane-wave matrix elements of (nonlocal)
two- and three-body operators. In the 2p-2h case,

The variational estimate (2.1) of the ground-state
energy may be improved by using the correlation
operator F to generate a correlated, nonorthogonal
basis of the A-particle Hilbert space through

I W. &=1..'"I Iy. &, I,=&+. Iz'FIy. &.
(2.4)

Here, I I P ) I is a basis of the corresponding sys-
tern of A noninteracting particles; we use a plane-
wave basis ( I P ) I. For convenience, we let

I Pp&
denote the noninteracting ground state, let

I /ps)
denote the lp-1h excitation apas I Pp), etc.

In the nonorthogonal basis (2.4) we calculate ma-
trix elements of the Hamiltonian and the unit opera-
tor. Diagonal matrix elements of K define the vari-
ational single-particle spectrum. For a 1p-1h corre-
lated state

I /ps ), the diagonal element

Hpa, ps Hoo= &Cps IH I Cps & &fo IH I Po)

=e(p) —e(h)+O(A '} (2.5)

is exactly the difference between the variational par-
ticle and hole energies. The single-particle spectrum
e(k) is divided into kinetic and potential terms as
follows:

e(k)=fPk /2m+u(k) . (2.6)

The variational self-energy u (k} is the analog of the
Hartree-Fock self-energy in ordinary perturbation
theory. Similarly, we define off-diagonal matrix-
elements (m&n)
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and
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In this decomposition, the non-Hermitian operator P is expressed in terms of the Hermitian operators P"and
(Th.e subscript a indicates antisymmetrization. ) The effective two-body interaction in the pp and hh chan-

nels may also be constructed from these operators. Inspection of higher-order terms in the CBF perturbation
expansion leads to the definition of a general energy-dependent two-body interaction

&ij
~

P (12 E)
~

kl) =&ij
~

M(12)
( kl)+{ 2 [+e(i)+e(j)+e(k)+e(l)]+Ej&ij~M(12)

~
kl) . (210)

In Eq. (2.10) the positive sign is taken for particle states and the negative one for hole states. In a given
Goldstone-type diagram of the CBF perturbation series, the external energy E is the sum of all particle energies
minus the sum of all energies at the "same time. " In other words, the effective two-body interaction "knows"
about the energy carried by the background at the same time. In general, we will drop the energy variable
when we refer to E =0. For the case d =3, we similarly have

& fp(p2p3h(k2h3 ~ f& = &p(p2p3 ~
~(123)

~
h(h2h3 ) (2.11)

and
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The straightforward generalization of the effective three-body interaction to other selections of particle and
hole labels is unnecessary for our purposes.

In the present calculation for the ground-state energy we included the second- and third-order diagrams.
Thus, the total energy is expressed in the form

E=Boo+(5E)',"+(5E)',"+(5E)',",
where Hoo is the variational energy expectation value, and

(2) ( I &p(p21~(12) Ih(h2&u I2
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The third-order contribution consists of ring diagrams and particle-particle and hole-hole ladders,

(5E)3 ' (5E}pp+(5E)sl, +——(5E)ps,

with
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and
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The third-order contributions are the only ones in which the energy dependence of the effective interaction ap-
pears explicitly.

III. SELF-ENERGY

The perturbative expansion for the on-shell value
of the self-energy may be generated from the CBF
perturbation series through the Landau prescription

e(k}= QE
(3.1)

5n(k

In leading order, i.e., for the variational-energy ex-
pectation value, we obtain the variational spectrum
(2.5). The variation of the second-order CBF correc-
tion, Eq. (2.14), leads to an expression which is for-
mally identical to the on-shell value of the second-
order self-energy.

The variational construction (3.1} of the self-

energy generates a priori only its on-shell value,
which is consistent with the definition of the "sta-

tistical single-particle energies"' and adequate for
the specific heat. In view of recent discussions on
the energy and momentum dependence of the self-

energy we wish to generalize the expressions of Ref.
8 to off-shell energies. Within the present frame-
work this is most easily done "by inspection, " i.e.,
by considering higher-order CBF diagrams which
have the second-order self-energy insertions as sub-
diagrams. We find that the full self-energy X(k,E)
must be calculated with the effective interaction tak-
en at the off-shell energy E. Adopting the notation
of Ref. 7, where subscript PO denotes polarization,
and subscript CO denotes correlation,

X(k,E)=u (k)+Xpo(k E}+Xco(k,E}, (3.2}

where

~
(pk

~

M(12)+ —,[e(p)—e(k) —e(h) —e(h')+2E]M(12)
~

hh'),
~

2

Xco(k,E)= —, g E+e(p}—e(h) —e(h') i5— (3.3)
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~
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The arguments presented here for the second-
order contribution to the self-energy are readily ex-
tended to higher-order corrections. Owing to the
formal similarity between the CBF expansion and
conventional perturbation theory, we neither repeat
our reasoning for higher-order diagrams nor display
them explicitly. The situation becomes somewhat
different if we consider fourth-order diagrams.
There, one actually observes some cancellations be-
tween the energy dependence of the two-body in-

teraction and reducible contributions to the four-
body interaction. However, these cancellations af-
fect only the terms linear in the energy and do not
contribute to the structure around the Fermi sur-
face.

Numerical application of the formalism necessi-
tates further discussion. With the full energy- and
momentum-dependent self-energy available, one
might think of solving a Dyson equation for the

I

single-particle energies,

e(k)=iri k /2m+X(k, e(k)) . (3.5)

IV. NUMERICAL APPLICATION
AND DISCUSSION

We have performed variational calculations for
the HFDHE2 potential'; Ref. 12 describes the op-

This generates effectively higher-order contribu-
tions to one of the energies in the propagator. Such
a procedure is inconsistent unless a fully renormal-
ized propagator is used. For this reason we consider
the on-shell definition of the effective mass

fi k/m ~(k) =A k/m+(d/dk)X(k, e(k) } (3.6)

(in contrast to the distinction between "k mass" and
"e mass" ), the adequate one in our perturbative cal-
culation of the self-energy.
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timization procedure and outlines the sampling pro-
cedure for the Monte Carlo integration used to com-

pute the perturbation corrections. The 3p-3h term
(2.15) involves the computation of an additional 15-
dimensional integral; a discussion of the sampling
algorithm may be found in Appendix A. For the ef-
fective three-body interaction we used a generalized
convolution approximation, as described in Appen-
dix B.

Table I presents our results for the ground-
state —energy contributions from the variational-

energy expectation value and the distinct perturba-
tive corrections. This breakup essentially reflects
the consequences of the Jastrow ansatz (2.1) for the
wave function. The smallness of the third-order pp
and hh ladder diagrams simply means that the
short-ranged correlations are generated adequately

by the Jastrow wave functions. The second- and
third-order ring diagrams describe the influence of
(spin-) density fluctuations, propagator corrections,
and "backflow" correlations. We will demonstrate
later that the spin-density fluctuations are the most
important. Finally, the 3p-3h term reflects the in-

fluence of three-body correlations.
We believe that the three-body correlations are

somewhat overestimated by the 3p-3h term. Some
reduction of this term and the third-order diagrams
is to be expected from the inclusion of "elementary"
diagrams in the FHNC calculation of the effective
interaction, essentially caused by a reduction of the
normalization factors (B13) at very small momen-

ta. ' Since the inclusion of higher-order three-

particle diagrams, either pedestrian-wise or achieved
through CBF-Bethe-Faddeev calculations, seems to
require a forbidding numerical effort, we feel that
the inclusion of explicit three-body correlation fac-
tors in the variational calculation is called for. The
inclusion of these correlations leads to an additional
binding energy ' ' of roughly 0.4 K at the experi-
mental equilibrium density when backflow is also
included. It should largely eliminate the 3p-3h term,

justifying thereby the further approximations made
below. The variational Monte Carlo energy at the
equilibrium density with backflow and three-body
correlations is —1.91 K. At this same density the
pure Jastrow FHNC/C energy (—0.71 K) is 0.37 K
higher than the corresponding Monte Carlo result.
The discrepancy is due to the neglect or approxima-
tion of elementary diagrams in the FHNC/C
scheme.

Some care in handling the summation of higher-
order CBF diagrams is required by an impending in-
stability of the Jastrow wave function {2.1) against
spin-density fluctuations. ' ' ' This instability is not
cured by introducing local spin-dependent correla-
tions, and will eventually show up as a divergence
of the sum of all CBF ring diagrams. The problem
will disappear if (1) instead of using the bare effec-
tive interaction as the driving term of the ring-
diagram summation, we would, at higher orders, use
particle-hole irreducible combinations of CBF dia-
grams, or (2) we would improve upon the Jastrow
form {2.1) of the correlation operator by including
three-body or momentum-dependent correlations.

We expect that neither of the suggested improve-
ments would have significant effects at the level of
our present calculation. The reason for this is that
our effective two-body interaction should not be
identified with the quasiparticle interaction, but
rather with an approximation to the general vertex
function which also contains "particle-hole reduci-
ble" terms. These and the energy dependence dis-
cussed above tend to overshadow the particle-hole
irreducible term at all but very low momentum
transfers. Moreover, the dominant contributions to
our perturbative corrections come from regions of
moderate momentum transfer, kF &q & 2kF.

It is a general feature of the Jastrow variational
ansatz that the spin-polarized system turns out to
have a lower energy than the normal system, as
demonstrated, for example, by Lhuillier and
Levesque. While formally the methods employed

TABLE I. Ground-state energy per particle for 'He interacting via the HFDHE2 potential.
Column 2 shows the variational-energy expectation value and columns 3—7 show the pertur-
bative corrections described in the text. Column 8 gives the total energy and column 9 gives
the standard deviation of the Monte Carlo integration.

.P
(A )

Ho
(K)

(5E)2 ' (5E)2 ' (5E)~
(K) (K) (K)

(5E)pp
(K)

(5E)ia
(K) (K) (K)

0.0076
0.0112
0.0130
0.0142
0.0148
0.0166
0.0180

—0.85
—1.19
—1.19
—1.12
—1.05
—0.71
—0.33

—0.24
—0.40
—0.49
—0.56
—0.64
—0.81
—0.94

—0.07
—0.22
—0.41
—0.55
—0.70
—1.07
—1.53

0.03
0.17
0.27
0.35
0.40
0.57
0.73

0.02
—0.01
—0.03
—0.05
—0.06
—0.08
—0.10

0.01
—0.05
—0.08
—0.10
—0.12
—0.17
—0.22

—1.10
—1.70
—1.93
—2.03
—2.17
—2.27
—2.39

0.01
0.02
0.03
0.03
0.05
0.06
0.08
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here are applicable, there is a problem. The optimal
FHNC/C calculation gives a single-particle spec-
trum u(k} which indicates that the uncorrelated
ground state is not a suitable starting point for this
calculation. The results of Ref. 23 indicate that per-
turbation corrections to the energy of the spin-
polarized system are likely to be small, but we do
not at present feel justified in calculating them with
the methods used here.

Let us now turn to the discussion of our numeri-
cal results for the self-energy. In this calculation we
have retained only the contributions due to the
second- and third-order ring diagrams. The third-
order ladder diagrams were omitted due to the
smallness of their contribution to the energy. Those

arising from the 3p-3h interaction would, in our
conviction, be strongly overestimated by the omis-
sion of three-body correlation factors in F. We ex-
pect that the inclusion of a three-body correlation
factor would essentially eliminate the 3p-3h contri-
butions to the self-energy but will not modify the
two-body effective interaction enough to noticeably
alter the second- and third-order ring diagrams.

Figure 1 compares our CBF single-particle ener-

gies and the on-shell self-energy in second and third
order with the "schematic model" calculation of
Ref. 6. At and above k~ we find excellent agree-
ment with the phenomenological fit of Ref. 6. It is
also worth noting that our variational single-particle
energies are in good agreement with those of Ref. 6,

20 s s I

m

I g ~

10-

0-

-10
0.5 1.0

I s a

1.5 2.0
k/kF

FIG. 1. Real part of the single-particle spectrum e(k) =Pi k /2m +X(k,e (k) ) at p =0.0166 A is given as a function

of momentum k/kq. Solid and long-short dashed lines display our third- and second-order CBF results. The long-dashed

curve displays the variational spectrum e (k), whereas the short-dashed curve represents the self-energy fitted to the specif-
ic heat (Ref. 6).
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which include explicit backflow correlations. At
this juncture we stress that the effective mass ob-

tained from the variational spectrum must not be
confused with the so-called "k mass, " which also
obtains substantial corrections from the higher-order

self-energy diagrams.
Figure 2 shows the imaginary part of the self-

energy coming from second- and third-order ring di-

agrams. While this is not experimentally accessible,
the size of the imaginary part determines the quasi-

particle lifetime and hence the range of validity of
the quasiparticle model. The convergence appears
good in the vicinity of the Fermi surface,
0.75k~ ~ k & 1.5k'. At higher momenta, the second

energy denominator in the third-order ring diagram
generates a secondary minimum. One can expect
this minimum to be filled out somewhat by higher-

order ring-diagram contributions, but it indicates a
flattening of the imaginary part at higher momenta.
We should also note that the real part of the self-

energy cannot be obtained from the imaginary part
using a Kramers-Kronig relation: Upon canceling
all energy numerator terms occurring in the effec-
tive interaction against energy denominators, one is
left with a remainder which does not have an energy
denominator at all. This term is real and of the
same diagrammatical structure as the variational
single-particle energies.

Figure 3 shows the effective mass obtained from
the on-shell differentiation of the second- and
third-order self-energy as a function of momentum.
To consider m ~ as a function of energy, the momen-
tum k must be related to an energy using the spec-
trum of Fig. 1. It becomes clear that a kink in the

10 I I I I I I I I I I I s I I I I I I I

—- —- - SECOND ORDER
THIRD ORDER

i

l

l

0
0.5 1.0 1.5

I I I I I I

2.5

k kF

FIG. 2. Imaginary part of the self-energy in second- and third-order CBF s is given as a function of momentum. Con-

ventions are the same as in Fig. 1.
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I
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VAR.
—- —-. SECOND ORDER

THIRD ORDER

0
0.5

k k

l.5 2.0

FIG. 3. Effective mass obtained from the variational single-particle energies and in second- and third-order CBF s is

plotted as a function of momentum (lower scale). See Fig. 1 for further explanations.

spectrum around the Fermi surface substantially
compresses the enhancement peak of the effective
mass when m~ is considered as a function of energy
instead of momentum. In other words, a large effec-
tive mass, even if it extends over a momentum re-

gion comparable to kF, is always transformed into a
narrow enhancement peak as a function of energy.

Compared with recent experimental data, our ef-
fective mass looks somewhat like the one obtained
experimentally at higher pressures. To some extent
this may be attributed to the fact that our model is
in a sense a "high-pressure" calculation. Note that
the experimental equilibrium density p0-0.0166
A at which our calculation was performed is
above the variationally calculated equilibrium densi-

ty po"-0.013 A . Some computed effective-
mass-ratio approximations at the Fermi surface
range from about 2 to 16 as the density increases

from 0.011 to 0.020 A . It is difficult to know
how to assign pressures to these for comparison with
Ref. 24. Our values of the effective mass at kF are
also affected by the continuing steep rise before kz,
which makes a quantitative, purely microscopic
determination very difficult.

In order to trace the source of the large effective
mass and its rapid variation, we have computed
separately the polarization diagram Xpo(k, e(k)) in

the density and in the spin-density channels (Fig. 4).
We find that the corrections to the spectrum come
almost entirely from the spin-density channel. This
had to be expected since density fluctuations are al-

ready included in the FHNC calculation of the CBF
spectrum; the perturbation corrections reflect essen-

tially propagator modifications.
The rapid variation of the spectrum is found to be

mainly due to the drop of the correlation-diagram
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Ep(FULL)
Ec(FULL)
Ep(P+C)
E, (O F )
E(OF)
E (OF)

-2
0.75 1.00

k/'kr

I I

1.25

FIG. 4. Full polarization and correlation diagrams and the contributions, labeled by DF due to density fluctuations are
shown near kF. Sum of the polarization and correlation diagrams are labeled by X(P +C) and g(QF).

equation (3.3) at and above kF. The effect may be
understood as the concerted action of phase-space
effects and the finite range of the effective interac-
tion: As the momentum of the incoming particle in-
creases, the interaction has to carry more and more
momentum. The decrease of the interaction with
growing momentum transfer, together with the
growing energy denominator, acts to suppress entire-
ly the correlation diagram within 0.5kF.

Assuming the single-particle spectrum to be in-
dependent of the temperature, we may calculate the
specific heat per particle C„(T)with the relation

3 I ~ dk k x exp(x)

kF o [1+exp(x)j
x =[a(k)—e(kF))/(k~T) . (4.1)

The results of this computation for the variational,
second-order, and third-order ring diagrams are

shown in Fig. 5, along with the "experimental"
curve from Ref. 6. It almost went without saying
that the low-temperature specific heat is extremely
sensitive to minute changes in the slope of the
single-particle spectrum when that slope is nearly
zero. That slope has changed very little (Fig. 1) in
going from second to third order, but results in an
appreciable change in the low-temperature specific
heat. The third-order corrections do seem to im-

prove the behavior of the specific heat at higher
temperatures.

Let us finally turn to the question of the energy
and momentum dependence of the effective mass.
Experience from studies of the self-energy in nuclear
matter have led to the conclusion that the variation
of the effective mass is essentially due to the energy
dependence. Since He is a completely different
physical system, one has to be careful in carrying
over such an assumption.
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FIG, 5. Specific heat obtained from the variational and the second- and third-order CBF spectrum are compared with

experiment. Dotted line shows the results of Ref. 24. See Fig. 1 for further descriptions.

To study the energy and momentum dependence

individually, we have computed the off-shell self-

energy in the second-order CBF approximation. A
contour plot is shown in Fig. 6. %e find that energy

and momentum variation of X(,k,Ej are comparable.
From this it should be clear that our model cannot

give justification for the assumption that one of the
two dependencies is dominant.

Note added in proof. After this work had been

finished, it was recognized that the coupling to the
zero-sound mode generates a secondary enhance-
ment of the effective mass above k =2k~. This ef-

fect, which comes from summing all CBF ring dia-

grams, is not included in the present work. By keep-

ing the full nonlocality of the exchange term, the
calculation presented here provides a more accurate
determination of the self-energy near the Fermi sur-
face.
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FIG. 6. Contours of the real part of X(k,E) in second-order CBF are shown as a function of energy and momentum.

Momentum k is expressed in terms of its associated kinetic ener t (k) =4 k /2m.

APPENDIX A: THE 3p-3h MONTE CARLO INTEGRATION

The desired integral (2.15) requires integration over three-particle and three-hole momenta with an overall
momentum-conserving 5 function. Letting q; =p; —h;, the integral becomes

dqi dq2 d3q3 3 d3h; ~( ), ~

(E)p '= ——„f 5(qi+q2+q3) ff f 8(kF h;)8(
I
h;+—q'

I
kF)

(2m ) (2m )3 (2n )3 (2m )

The q; are first drawn from a density

p(qi q»q3)=g(qi)«q2)g( I qi+q21+(qi+q~+q3)

First choose q~ with relative weight

This may be done most easily by considering
00 00 @i+f2f d'qid'q, d'q3p(q„q„q, )=8+f q, g(q, )dq, f q, g(q, )dq~ f, tg(t)dt .

I

Next choose t =
~ q i+ q2 ~

with weight

(Al)

(A2)

(A3)

p(qi) qig(qi)[g'Q](ql), (A4) p(t
~ qi, q2) a:tg(t) . (A6)

and direct it in the z direction. The "e"denotes a
convolution. Given q~, then choose q2 with the rela-
tive weight

The proportionality factor in (A5) depends on qi,
while the factor in (A6) depends on both qi and q2.
Letting t =q~+q2, we have

I %11+02 I

p(q2lqi)~q2Q(q2) f tg(t)«. (A5) t =qi+q2+2qi q2,
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which may be solved for the angle between q~, qz.
The azimuthal component of qz is arbitrary. Final-

ly, q3
———( q i+ qz}. Then the h; are drawn indepen-

dently from the distributions

e(kr —h;)8(
~
h;+q;

~

—kr)

according to the algorithm of Ref. 12. The matrix
elements and energy denominators may then be cal-
culated. The function Q is chosen empirically to ac-
celerate convergence.

APPENDIX B: EFFECTIVE TWO-
AND THREE-BODY INTERACTIONS

The basic building blocks for the effective two-
and three-body overlap and Hamiltonian matrix ele-
ments are provided by the optimized FHNC/C cal-
culation of the variational energy. The reader is re-
ferred to Refs. 12 and 15 for the definition of the
relevant quantities; as usual we denote the three-
dimensional Fourier transform with a tilde. The
raw material (I'dd, I ~,X„,u) obtained from an (op-
timized} FHNC calculation must be combined to
generate the required matrix elements of M(12),
M(123), P"(12), and M(123). We start with the
two-body operator M(12). This has the structure'

(ij ~M(12)
~

kl&=Dz '(ij ~M (12) ~kl&, (Bl)

(lJ ~M (12)
~
kl&=[1+E„,(i,k)](ji~ I (r)

~
ki&

(B3)X [1 +E ,(j,i}] .
These elementary diagrams are approximated by a
polynomial fit, in the region 0&

~ p —p» ~
&2k~

where they are nonzero, which is determined by
their values at the boundaries,

c(i k) y [SF( I pi p» I
) —1]

X[X„(p;)+X„(p»)]. (B4)

Here Sr(k} is the static structure function of a
noninteracting Fermi gas. Note that the elementary
diagrams cancel the normalization factor Dz in the
Landau limit. The inclusion of these diagrams is
important since the long range of the optimal corre-
lation functions would otherwise lead to divergences.

The calculation of the spectrum

e(k)=iri k /2m+u(k) (B5)

Here, and further below, we denote with p; the
momentum carried by the plane-wave orbital i. The
simplest local approximation to M (12} is the
FHNC quantity I'ed(riq). However, in order to as-
sure the correct Landau limit

~ p; —p» ~
~0, we

have to include additional "elementary" diagrams':

with Dz given by

D =[[1—X..(p )]ll —X:(pJ}]
X[1—X„(p»)][1—X„(pi)]j' (B2)

I

requires the solution of an additional set of linear
equations, the so-called FHNC' equations. These
are implicit in the optimization procedure. Similar
to (Bl), M(12) inay be written as

( J /
~(12)

/
ki& =D ' [(jf ~ (12) '/ ki&+ —,[ (p;)+ (p, )+ (p )+ (p )](j/~ (12)

/

'ki&
I .

The dominant term of M (12) is, again, a local function,

(12}=I'~(r)+(A 'tJ /4m)l ~(r),
but to ensure the correct Landau limit, we have to include elementary and kinetic-energy diagrams,

Dz(ij
~

M(12)
~

kl & =[1+E„,(i,k)][1+E„,(j,l)](ij
~
Mi~(12)

~

kl &

+ [ [1+E„,(i,k}][U,'„(j,l)+ T,(j,l)]

+[1+E„,(j,l}][U,'„(i,k)+ T„,(i,k)]j (ij
~

I (12)
~

kl &,
with

T„,(i,k) = (fi'/4m) [ —( p; —p» ) [p,. Y(p, ) —p» Y(p» }1+pi p» Y(p; ) Y(p» ) ]

and U', (i,k) being a combination of separable and elementary contributions

2U~, (i,k) =[u (p;)+u (p»)][1+E„,(i,k)]+2E,'„(i,k),
which is approximated as

2U', (i,k) =Sp(
I pi —p» I )[u (p;)+u (p»)] .

(B6)

(B7}

(B8)

(B9)

(B10)

(B11)

Again, the approximation (B11)originates from studies of the exact properties of E,'«(i, k) for large momenta



4234 E. KROTSCHECK AND R. A. SMITH 27

and in the Landau limit. Note that the separable (second) term in Eq. (B6) is included in U,'„(i,k). The func-

tion Y(p) is defined in Ref. 12.
Extending the analysis of Ref. 12 to the three-body operators, we are led to a decomposition of M(123) in

the form

(ij k
~

M(123)
~

Imn ) =D3 ' (ij
~

M (123)
~

lmn ),
where

(B12)

D3 = [[1—X„(p;)][1—X„(pl)][1—X„(pk )][1—X„(pi)][1 X—„(p~ )][1 X—„(p„)]]' (B13)

and the local portion of M (123}is the connected part of the three-body distribution function I'~( r i, r2, r3).
In order to guarantee the correct Landau limit we must again include the factorizable elementary diagrams

[Eq. (B3)],

(ijk ~M (123)
~

Imn) =[1+E„,(i,l)][1+E„,(j,m)][1+E„,(k,n)](ijk
~

I ddd(ri, r2, r3)
~

lmn ) .

In the actual calculation, we have used a generalized convolution approximation' for I ddd(r i, r2, r3),

I ddt(ri, rq, rs)=[I dd(ri2)I'dd(ris)+c. p. +p J d r4I d (ri4)I d (rzq)I'd (rs4),

with

I'd (k)=I' (k)S (k)

(B14}

(B15)

(B16}

and c.p. a cyclic permutation. The modification of the last term by the factor St;(k) takes the exchange effects
at the internal point r4 approximately into account. Owing to the long range of the correlations this inclusion

of exchange terms is necessary to guarantee the finiteness of the matrix elements.

Finally, the three-body term (ij k
~

M(123)
~

lmn ) has the form

(ijk
I
~(123)

~

lrnn) =Ds ' [(ijk
I
~ (123}

I
lmn)

+ —,
'

[u(p,. )+u(p )+u(pk)+u(pi)+u(p )+u(p„))(ijk ~Ms(123)
~

lmn) ),
(B17}

with the "local" terms

(ijk
~

M~ (123)
~

lmn) =(ijk
~

I'ddd(123)
~

lmn)

—(tit /8m)[(p; —pi) +(p, —p )'+(pk —p„) ](ijk
~

I ddd(123)
~

lmn ) . (B18)

The three-body term I'ddd(123) is defined diagrammatically by the prescription that each bond I'dd(r) in
I'ddd(123) has to be replaced, in turn, by a function I'dd(r). This also defines our convolution approximation
for I ~. Including the necessary elementary diagrams, the final representation of the three-body operator
K (123) is

D3 (ijk
~

X (123)
~

lmn ) =[1+E„,(i,l)][1+E„,(j,m)][1+E„,(k, n)](ijk
~
M) (123)

~

lmn )

+ [[1+E„,(i,l)][1+E„,(j,m)][U', (k, n}+T,'„(k,n)]+c p J(ijk
~

I ddd. (1.23)
~

lmn ).
(B19)

In order to confirm the adequacy of the convolution approximation we mention that the third-order term of
the convolution approximation contributes at the highest density an energy of the order of 0.1 K.
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