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Experimental and theoretical determination of the Fermi surface of V3Si
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The Fermi surface of the A15 compound V3Si has been determined by reconstruction
from two-dimensional angular correlation of positron annihilation radiation. The Fermi
surface is compared to the one obtained from ab initio self-consistent linear muffin-tin orbi-

tal band calculations and generally good agreement is found to within 2 mRy in the band

structure. The results are compared with other experimental and theoretical data.

I. INTRODUCTION

The A15 compounds are the subject of various ex-
perimental and theoretical studies mainly due to
their sometimes very high superconducting transi-
tion temperatures. Much insight has been obtained
from several electronic structure calculations per-
formed by several different groups during the past
few decades. ' ' On a fine energy scale there are
not so many experimental possibilities to test a
theoretically determined band structure, especially
not away from the Fermi energy E+. However, the
states at E~ can be probed with a high degree of ac-
curacy, and efforts have been made to map the Fer-
mi surface (FS) for some A15 compounds by means
of de Haas —van Alphen (dHvA) measurements"'
and positron annihilation experiments. ' ' The
electron states at EF are very important for super-
conductivity, structural transformations, and other
properties characteristic of the A15 compounds. It
is thus very interesting to be able to directly test a
calculated FS with that obtained from an experi-
ment.

In this paper we present calculated and measured
FS for the high-T, A15 compound V3Si by use of
the self-consistent linear muffin-tin orbital (LMTO)
band method and positron annihilation measure-
ments, respectively. Earlier results and descriptions
of our methods can be found in Refs. 3 and 16; here
we have improved the analysis and focused on the
comparison of the FS. Sections II and III describe
the band theory and the positron annihilation pro-
cedures, respectively, and the result and discussion
are presented in Sec. IV.

II. ELECTRONIC STRUCTURE
CALCULATIONS

The band structure of V3Si has been determined
by using the LMTO band method. ' Detailed

descriptions of the method of calculation have been

given earlier ' for LMTO applications on A15
structure calculations. Here we will only mention
some important points about the calculations, but
especially note and describe differences and im-
provements over the earlier LMTO calculation of
A15 compounds.

The calculations are performed self-consistently
using spherically symmetric potentials in a geometry
of overlapping atomic or Wigner-Seitz (WS) spheres.
The basis set is corrected for the overlapping sphere
geometry by inclusion of the "combined correction
terms"' which are of importance for itinerant band
states. The basis set includes up to 1=2 for all
atomic sites, with the three center terms including
also 1=3. Thus with eight atoms per A15 unit cell
the Hamiltonian and overlap matrices are of rank
72, while the structure matrix which includes also
1=3 is of rank 128. In contrast to the earlier A15
calculations the f content (1=3) in the wave func-
tion is now extracted as intersite tail contributions
by using the f terms of the structure matrix.

In a test calculation, a reduced basis was tried by
using only s and p basis for the Si sites (I &1) to
reduce the eigenvalue problem from rank 72 to 62.
However, on a fine energy scale (-5 mRy} the re-
duced basis is not sufficient. In particular, the Fer-
mi surface differs from that obtained in the "72-
basis" calculation in that the peak in the density of
states (DOS} originating froin the flat I i2 band is
about 4 mRy below the Fermi energy (E~), while
about 2 mRy above otherwise.

The radial wave functions for the valence states
are calculated semirelativistically including all rela-
tivistic terms except the spin-orbit coupling terms. '

The core states are fully relativistic and recalculated
in each self-consistent iteration. In the earlier calcu-
lations the core states were taken from an atomic
calculation and frozen throughout the interations.
The local density functional of Hedin et al. ' is used
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to determine the exchange and correlation contribu-
tions to the potential.

A fast canonical band scheme used in the initial
stage of the self-consistent procedure gives good
starting potentials for the more costly LMTO
scheme. Still, one needs usually three or more
LMTO iterations to obtain good self-consistent con-
vergence. In these V3Si calculations about six itera-
tions resulted in a convergence of 2 mRy for states
below EF. The iterations initially used 10 k points
in the irreducible Brillouin zone (IBZ), later 20 k
points and finally in the last calculation 120 k
points. The LMTO calculation working in double
precision uses 11 min CPU time per k point on a
VAX-780 computer without array processor or
floating point accelerator. The compact and
energy-independent LMTO basis makes the compu-
tation requirements modest compared to other band
methods.

From an earlier test of the basis-set convergence
in V3Ga (Ref. 3), it is estimated that the basis used
here gives bands below EF accurately converged to 7
mRy or less. In addition, we have the self-
consistence convergence of about 2 mRy. However,
these values are given in absolute energy; for the FS
topology and structures in the DOS it is the relative
energy shifts at different k points which are impor-
tant. Taking this into account we arrive at smaller
uncertainties in the band structure because the major
part of the two effects mentioned alter the bands
similarly throughout the Brillouin zone BZ. Thus
we find that the FS and related band-structure prop-
erties have maximum convergence errors of about 2
mRy due to the basis set and self-consistency. On
top of this, the band structure has unknown errors
due to the use of spherically symmetric potentials,
the local-density potential approximation, and the
linearization of the band-structure problem. Esti-
mates of these errors are difficult to make. It is
through comparison with the positron annihilation
data that the accuracy of the obtained band struc-
ture will be tested.

The major improvement of this V3Si band result
compared to the earlier LMTO A15 calculations is
that now the band structure has been determined at
120 k points in the IBZ compared to 35 k points
earlier, and that improved k-point integration is
used to determine the DOS. This makes it possible
to give DOS values within 2 mRy resolution corn-
pared to 10 earlier. Two independent methods of
k-point integration have been employed: (i) The
volume of the IBZ has been divided into tetrahed-
rons using the ab initio 120 regularly spaced k
points, and the DOS and number of state functions
have been derived analytically for each tetrahedron.
This is the commonly used "tetrahedron k-point in-

tegration method, " based on the assumption that
the bands are linear within each tetrahedron. (ii) A
27-point quadratic interpolation has been used to lo-
cally describe the bands analytically around each of
the 120 ab initio points. From this the energies
have been determined in 2024 points in the IBZ fol-
lowed by a k-point summation to determine the
DOS (a 7-point interpolation method interpolating
along the x, y, and z directions independently result-
ed sometimes in poor description of the bands along
the [100] and [111]directions). The 27 points are
chosen regularly around each ab initio k point. At
the surfaces, edges, and corners of the IBZ the
points are reflected accordingly. The method is con-
venient to use for any type of structure or BZ, and
the band velocities are easily obtained in each point
by deriving the analytical expressions for the band
structure. It should be mentioned that band cross-
ings have not been considered in the analysis of the
band structure.

The A15 structure consists of two formula units
equal to eight atoms per unit cell. There are two
inequivalent WS potentials, one for the six V atoms
and one for the two Si atoms. The WS radii differ
slightly from what was chosen in the earlier A15 cal-
culations and here are 0.307a for V and 0.320a for
Si, where a is the lattice constant 8.923 a.u. These
radii give almost the same potential value at the two
WS boundaries. Within a reasonable range of WS
radii, the band structure is not very sensitive to dif-
ferent choices. The method of calculation em-

ployed here has recently been applied to the six V
and Nb A15 compounds with Ir, Pt, and Au as B ele-
ments. ' The same structure matrices have been
used in all these calculations and can be used for
other A15 materials.

III. ANALYSIS OF THE POSITRON
ANNIHILATION DATA

Positrons entering a solid annihilate mainly by
emitting two y rays in nearly opposite directions.
The measurements of the lifetime of the positron
prior to its annihilation is related to the overlap of
the electron and positron wave functions, but in
practice it is difficult to extract precise information
concerning band structure from such a measure-
ment. On the other hand, the angular correlation of
the positron annihilation radiation (ACPAR) is a
powerful tool to investigate electron momentum dis-
tributions in solids. '

If p "(p) is the momentum density of the photon
pair, the basic relation at T=O is

p r(p)=+el(p)gn~(k) fd'«" 'f+(r)
2

Xgkl(r)
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In this expression nl(k) is the occupation number
of the state k in the band, I, P+(r) is the positron
wave function, and gk ~( r ) is the electron wave func-
tion. ei(p) represents a many-body enhancement
which might, according to Ref. 22, vary strongly
with the degree of localization of electron states,
especially in d metals and alloys. However, the
enhancement effects do not change the positions of
the FS breaks in p "(p); thus they will be neglected
in this work.

Some positron annihilation experiments on V3Si
were previously reported. The first ones were per-
formed using the standard "long-slit" technique,
where one component of p is resolved (with a typi-
cal resolution of 0.1 a.u.}. In this case the measured
curve is given by

N(p, ) ~ f f dp„dip'r(p) . (2)

The first measurement, ' using a single crystal,
showed marked anisotropies. The results were inter-
preted as hole pockets in the FS and were compared
with the prediction of the linear-chain model.
Later, a long-slit measurement' in the [100] direc-
tion was performed. Based on a very elaborated sta-
tistical analysis and using a folding procedure
equivalent to the Lock, Crisp, and West (LCW) pro-
cedure (see below), the authors conclude that planar
sections in the FS are present. They discuss their re-
sults in the light of the coupled linear-chain model. '

With modern machines the measured quantity
N(p„,p~) is the two-dimensional (2D) projections of
p'r(p):

N(p„,py }~f dp, p'r(p) . (3)

It is only recently that these 2D ACPAR measure-
ments have been introduced, and now high
resolution (0.035 a.u. ) is obtained2 in both the detec-
tion of p„and pz. These improvements confer new
possibilities to the positron annihilation method
which are useful in many fields of solid-state phys-
ics.

There are two sets of 2D ACPAR measurements
reported on V3Si.' ' Both outline clearly the very
large advance obtained by the positron annihilation
technique with the use of either multicounter sys-
tems or position sensitive y-ray detectors. Reference
15 reports the results obtained in six crystallograph-
ic planes with a geometrical resolution (excluding
the smearing due to the residual thermal momentum
of the positron) of 0.07X0.21 a.u. These authors
reconstruct the momentum distribution and com-
pare it with the FS obtained with the augmented
plane-wave (APW) method. The agreement is fair-
ly good but it has to be kept in mind that in one
direction the experimental resolution at full width at

half maximum (FWHM) is equivalent to 58% of the
I to X distance, which probably causes a smearing
of some structures in the FS topology. These au-
thors have proposed a simple geometrical model for
the FS. It consists of two nested hole cylinders
along the zone edges and an additional electron den-
sity centered about the X point on the zone face; this
electron sheet can be either a rectangular box or a
cylinder that meets the I to R line.

In Ref. 16 we reported 2D ACPAR for two crys-
tallographic planes of V3Si using a high-resolution
apparatus: 0.09&(0.10 a.u. at FWHM in which a
Gaussian component of 0.05 a.u. at FWHM is in-
cluded due to the thermal motion of the positron at
77 K. Owing to the small size of the BZ (the edge
of the cube is 0.71 a.u.}, the increased resolution of
these measurements represents an improvement. We
want now to describe two analyses used to compare
our 2D ACPAR data with the results of the band-
structure calculation described in Sec. I.

F(p,p~)= g N(p +&,p, +&,), (5)

where P are the reciprocal-lattice vectors expressed
in the laboratory coordinate system, i.e., where P, is
parallel to p„ the integration direction in Eq. (3).
This procedure was first introduced by LCW and
first used for 2D ACPAR in Ref. 15.

With the use of Eq (4a) the .F(p„,p~) superposi-
tion can be expressed as

F(p„,pz)= f dp, g g gnl(k) ~Bk &(6)
~

P k, l G

X5(p+P —k —G) .
(6)

A. p- to k-space remapping

The first approach consists in reducing the mea-
sured distributions from p space to k space. If one
assumes that the positron wave function is constant
and if the many-body effects are neglected, p2"(p)
reduces to p(p}, the electron momentum density
which is, within the independent particle frame-
work, given by

p(p)=g gnI(k) ~B-„,(G) ~'5(p —k —6),
k, 1 G

(4a)

with

B-„&( 6)= dre '"+ "P-I(r),
E 7k, I

where G are the reciprocal-lattice vectors.
The p- to k-space remapping is obtained by con-

structing the following superposition,
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The infinite integration on p, has been replaced by a
sum over all P, of an integral along 9'„ the total
path through one Brillouin zone in the considered
direction. This equation can be simplified because
the B k l(G) coefficients vanish at large G. Intro-

ducing H=P —G one obtains finally,

F(p„,pz) ~ f& g g ni(k)5(p+H —k)dp»
H k, l

(7)

where the normalization condition has been explicit-
ly taken into account,

g ~8q i(G)
~

=C,
G

where C is a constant.
The advantage of constructing the F(p„,p~) func-

tion from the measured 2D ACPAR is clearly re-
flected by Eq. (7}: We obtain a periodic function
which is constant for the filled bands or which re-
flects the FS topology for bands crossing the Fermi
energy.

The main assumption in the p- to k-space remap-
ping is for one to consider that the electron momen-
tum density p(p ) [Eq. (4)] can be deduced from the
momentum density of annihilation of photons
p r(p) [Eq. (I}]. However, it is well known, both
theoretically and experimentally, that the low
momentum part is more pronounced in p r(p) and
in positron spectra in comparison with p(p) and
Compton profiles (see, e.g., Fig. 6 of Ref. 29 for
iron}. Similar effects may be expected in other tran-
sition metals and their alloys. Moreover, even by in-
clusion of the positron wave function in the in-
dependent particle model, the low momentum part
of the 1D ACPAR curves is underestimated. How-
ever, the position of the FS breaks should be
preserved and therefore we assume that, for V3Si,
the FS topology can be brought out by such an
analysis. It is, nevertheless, not proved that
discrepancies between the measured FS and the cal-
culated one are not due to the assumptions involved
in the p- to k-space remapping procedure. Particu-
larly, the positron wave function may have some in-
fluence on the result but this effect is not known yet;
the positron wave function has not been calculated
for V3Si.

The result of this p- to k-space remapping has al-
ready been reported for our positron annihilation
measurements in V3Si.' In this work we compare
these experimental F,„~,(k„,k„), where k„,k„are the
p„,p~ values defined within the BZ only, with the
model distributions F,h(k„,k„), calculated according
to Eq. (7), using the occupation number nl(k) ob-
tained from the band-structure calculation. Both

F,„z,(k„,k» }and F,h(k„,kz) will be presented and dis-

cussed in Sec. IV.

R= QA„[~„[Fl,i, i]I,
h, k, l

(9)

where R denotes the reconstructed density distribu-
tion, A„ the back-projection operator, and ~„the
band-limited filtering operator. Let Fs i, i(rl, () be a
two-variables projection. Fzi, i(rl, g) is defined as
the integral of R( k ), the (unknown) density distribu-
tion, in the crystalline direction [hkl ]. In our nota-
tion, (g,g) are the variables in the plane of the par-
ticular projection. The first step of the algorithm
consists of applying W, the filtering operator, to
each Fs i, i(rl, g). This operator takes first the
Fourier transform of Fs i, i(7),g), then multiplies the
Fourier components by a 2D band-limiting convolu-
tion function (Ref. 30), co being the frequency limit
and, finally, takes the inverse Fourier transform.

B. 3D reconstruction of the occupation number

From Eq. (3} one sees that a 2D ACPAR is the
projection of the two-photon momentum distribu-
tion in one direction (the normal of the plane con-
taining p„and p~}. By starting from a set of such
projections it is possible to reconstruct the 3D distri-
bution. This problem is encountered in many fields
and has been specially investigated in details in nu-

clear medicine for tomography. Reconstruction
from 1D ACPAR is a widely used technique. '

In our application, the problem consists of recon-
structing the 3D object, i.e., the FS, from its projec-
tions on different planes. It is possible to reduce the
3D reconstruction to a set of independent 2D recon-
structions by dividing the 3D space in a set of paral-
lel slices and to reconstruct for each of them in-

dependently. This procedure, properly speaking, is
not a 3D reconstruction, but simplifies the comput-
ing effort needed to perform the reconstruction and
has already been used successfully. Nevertheless,
it imposes a condition to the directions in which the
projections may be measured: All these directions
must be in a plane. If not, it is not possible to
decompose each projection in a set of parallel strips
(each strip being uniquely related with one of the
slices) defined during the partition of the space
where the reconstruction has to be performed.

We have developed a 3D reconstruction technique
which avoids this restriction and considers each 2D
ACPAR as a function of two variables. Our algo-
rithm is an extension of the usual filtered back-
projection operators. It has been explicitly adapted
to the case of a crystal with the cubic symmetry.
This algorithm can be written as
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FIG. 2. Reduced-zone representation of 2D ACPAR in V3Si for two symmetry planes. Upper part (100) plane. Lower

part (110)plane. The experimental part (at left) is from Ref. 16.

The second step consists in applying A„, the back-

projection operator. The index n denotes the num-

ber of crystalline directions equivalent to [hkl], the

back projection is done for each of these n direc-
tions. Thus the filtered back-projection algorithm as
expressed by Eq. (9) leads us to assume that R, the
reconstructed density distribution, is a good estimate
of R, the true density distribution.

We have used this reconstruction scheme to re-

cover the occupation number within the first BZ,
starting from a set of two projections F~kr(g, g),
where [hkl] are [100] and [110]. These projections
were calculated from N(p„,p~), the measured 2D
ACPAR, according to Eq. (5). Within the two ap-
proximations discussed above concerniny Eq. (7),
this procedure leads us to a distribution R(k) for all

k within the BZ. A constant part can be attributed
to the core electrons and to the filled valence bands,
but, as the overlap of the positron and electron wave
functions has not been calculated, it is not possible
to use this constant part of R(k) to scale the recon-
structed occupation numbers. Consequently, we

—+

have normalized the maximum anisotropy in R(k)
to the same value as the maximum anisotropy in the

corresponding theoretical distribution: n( k ), which
is the total occupation number obtained from our
band-structure calculation.

IV. RESULTS

A. Band structure and Fermi surface

The V3Si band structure is shown in Fig. 1, with a
close-up 50 mRy around EF at the bottom. The fig-
ures are drawn directly from 134 ab initio points
corresponding to 19 intervals between I and X, with
no band crossings considered. From the close-up
one sees that several bands cross E~ thus making the
FS quite complicated. At X 20 bands are filled,
with 17 at M. At this point a doubly degenerate
state is 0.5 mRy below Ez. At I, M, and R some
bands fall very near E~ making the FS sensitive to
small shifts of Ez. Near I the band is flat and
makes a large contribution to the DOS because it
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covers a large volume. Another extremely flat band

coincides with the R-M line and EF but moves away
from EF as it leaves the R-M region.

In Fig. 2 we show the reduced-zone representation
of the 2D ACPAR in V3Si for two symmetry
planes. They were obtained by applying the p- to
k-space remapping discussed in Sec. III. All the ex-
perimental details can be found in Ref. 16. In the
same figure the equivalent distribution calculated
according to Eq. (7) is shown where the occupation
numbers n(k) have been taken from the band-
structure calculation. The agreement is quite good,
the general shapes are the same, and this shows al-

ready that the LMTO calculation and the positron
annihilation results are closely correlated: The
depression near I in the XMI plane reflects a hole
pocket in the center of the BZ. The large minimum
observed at M in the MXI plane indicates the ex-
istence of large hole sheets along the edges of the
BZ. Nevertheless, there are two notable differences
between the theory and the experiment: Firstly, in
the XMI plane the size of the hole pocket centered
at I is smaller than in the former. Secondly, in the
RMI plane the amplitude of the theoretical distri-
bution of the reduced 2D ACPAR is smaller at M
and at I . The points I and M are equivalent here
because the integration in Eq. (7} projects these two
points at the same positions in the (110) plane.
These discrepancies will lead to some differences be-

tween the calculated FS and the reconstructed one.
In Fig. 3 we show at left the reconstructed posi-

tron results where the total yield has been divided

into four appropriate levels corresponding to four
band crossings with the Fermi energy. In these 3D
views we have used the FS plotting routines of Ref.
34. These reconstructed positron results can then

directly be compared with the four FS obtained
from the band-structure results, shown in the right
column of Fig. 3, with that from band 17 at the top
to that from band 20 at the bottom. The latter FS is
drawn as electrons, the other as holes. In the band-

structure FS figures, the Fermi energy is 0.598 Ry
as was obtained from the tetrahedron DOS program.
However, for band 17, EF is raised by 2 mRy, which
is sufficient to disconnect the M-centered hole ellip-

soids from the R points. At 0.598 Ry there is a nar-

row connection to the R point so that the holes form
a thin jungle-gym structure similar to band 18. This
very sensitive behavior is due to the very flat band
between M and R. Band 19 shows, apart from a
jungle-gym structure along the MR edges, a large
hole pocket, a box with rounded faces centered
around I with approximate radius 0.35a, where a is
the reciprocal-lattice constant. The corresponding
"box" is seen in the positron data but is somewhat
smaller. On the band structure the box is due to the

degenerate band at I close to EF which slowly raises

in energy and splits as one goes towards X, turns

over, and crosses EF at about 0.7 of the I -X dis-
tance

~

I X
~

which is —,a. Experimentally, the turn-

over seems quicker (closer to I } due to the smaller
dimension of the box. From I' towards M only one
branch crosses EF at about 0.4 of

~
I M ~, turns, and

again crosses EF together with two other bands
closer to the M point. This gives hole pockets
around M (part of the jungle gym} of approximate
radius 0.12a. Almost circular electron pockets from
bands 19 and 20 are found centered at X in the XRM
plane with a diameter of about 0.6a, while from the
experiment the diameter is smaller, about 0.4a. The
dimensions of these orbits can also be read from the
band plot as the first EF crossings around X in the
M and I directions.

In the band structure FS of band 20 there are
"holes" below the M points, as seen in the figure,
and they are connected to each other like caves.
(They also extend towards I' and join the box there. )

It is not easy to visualize the band behavior behind
this structure not seen in the positron data. A band

gap due to a neglected band crossing may be the ori-

gin. The structure from band 20 has a box around
I such as for band 19, both in the positron and band

data, but in the electron surface plots it is obscured

by other structures.
At the I point an increase of EF relative to the

bands of only 1 mRy will produce an electron pock-
et not seen in the positron data. On the other hand,
a decrease of EF of less than 1 mRy gives additional
hole pockets at M which might make the hole there
too deep in comparison with the positron yield.
However, the additional hole would have a very
small radius and would be difficult to resolve in the
positron data.

Looking at the occupation numbers in the MRX
plane, one sees a quite circular electron pocket
around X with a radius 0.3a on top of another
squarelike electron pocket two bands below. All this
is founded on a larger squarelike electron pocket two
bands further down in which the last almost reaches
the zone boundary. A better way of describing this
is to say there are narrow-hole jungle gyms' extend-

ing along the MR edges. The mentioned features
can be followed on the band plot; for example, along
XR two doubly degenerate bands cross EF approxi-
mately halfway. At R four bands are degenerate
and coincide with EF to within 0.5 mRy. Along
MR the very flat degenerate band follows EF very

precisely and produces a weak "ridge" at about —,

~

RM
~

from R. (This ridge is avoided by rising E~
2 mRy as in Fig. 3 for band 17.)

The reconstructed positron data show the same
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structures as the calculated occupation numbers.
The hole jungle gyms for bands 19 and 20 are thick-
er than in the band results, which in the band struc-
ture would require band crossings with EF closer to
the X point for these bands. A quantitative compar-
ison is difficult to make away from the symmetry
points. In addition, we have to realize that this
comparison between theory and experiment does not
include positron electron matrix elements. Such an
inclusion may affect the levels in which the total
yield was divided into four FS pieces.

In this context we should also compare our results
with those obtained from dHvA measurements. The
high T, in V3Si makes a complete FS mapping by
means of dHvA measurements difficult, but re-
sults" using pulsed high fields give at least one or-
bit. This orbit, which is supposed to be an M-
centered ellipsoid, is very small, corresponding to an
average radius of about 0.07 a.u. '. The M-centered
ellipsoid from band 17 has a corresponding extent
towards X and I while towards R it is larger and
also sensitive to small shifts in EF (A 2-m. Ry EF
shift was required to form the ellipsoids from the
band structure. ) Similar dHvA measurements' on
the low-T, A15 compound Nb3Sb showed that the
earlier LMTO calculation for this compound was
essentially in agreement with the observed orbits ex-
cept for a 30-mRy band deviation at the M point.
The detailed FS of Nb3Sb is quite different from
that of V3Si, due to one additional filled band mak-
ing Nb3Sb a "low-DOS" material. However, shifts
of the order of 30 mRy in the calculated V3Si band
structure would cause considerable changes in the
FS and be inconsistent with the positron data. Mag-
netothermal oscillation measurements on the
isoelectronic 215 compound V36e (Ref. 35) have in-
dicated the presence of three sets of barrel-like
sheets oriented similarly to band 17 in Fig. 3. Such
structures would result from a lowering of the states
at R, relative to the situation in V3Si, so that the
jungle gyms (bands 18 and 19 in Fig. 3) will be
disconnected from the R point to look similar to
band 17.

By inspecting published band structures of V3Si
obtained by other groups one sees qualitatively that
the bands of Refs. 5 and 8 (where the latter is fitted
to the former) are similar to ours concerning the
hole box around I . The bands of interest M and R
are a few mRy higher relative Ez than our results
which may lead to different FS details, such as
larger hole pockets, in this region. The bands of
Ref. 2 result in a different FS structure, most not-
ably in an electron pocket around I . The states at R
coincide with EF while at M no states are within 10
mRy from EF. In Refs. 4 and 6 band structures for
other A15 materials are presented. The bands near

EF for Nb3Al of Ref. 6 do not look very different
from ours for V3Si, while those for Nb3Sn of Ref. 4
show an electron pocket around I . However, due to
the sensitivity of the FS structures, we do not believe
that rigid band models or even comparing different
isoelectronic A15 band structures are accurate ways
of FS determination. An example of this is the FS
of isoelectronic V3Si and Nb3Sn in which the differ-
ences are of physical importance. In Ref. 9 the ef-
fects of nonspherical corrections to the potential
were studied for V3Si. A reversal of the two states
near EF at the R point was found, otherwise only
small effects on states near EF from nonspherical
potential corrections could be found. The reversal
of the bands at R so that the fourfold degenerate
state is above that of sixfold degenerated differs
from most other band results, even those with non-
spherical potential corrections. ' The large disper-
sion of the bands involved near R gives probably
only small effects on the FS of such a reversal of
states.

B. Other calculated properties

In Fig. 4 we show the DOS for V3Si obtained
from the tetrahedron method. The peak originating
from the flat I i~ band is about 2 mRy above EF.
This is in agreement with the nonorthogonal tight-
Binding results of Mattheiss and Weber, who fitted
the bands to the APW bands of Klein et al. , and
showed the importance of the position of the I &z

state to explain the martensitic transition in V3Si.
The DOS at EF is 119+5 states per Ry cell and spin
within a 2-mRy energy resolution, which is about
20%%uo larger than that obtained by Mattheiss and
Weber. This may be due to the very flat band along
MR, which in our case is very near EF. The earlier
LMTO calculation using 10 mRy resolution and
using fewer (35 in the IBZ), k points resulted in
about 30% lower DOS value at EF. Our calculated
value for the Fermi velocity VF is 1.3+0.1X10
m/s.

Since we have all the ingredients available to
derive electron-phonon coupling A,, superconducting
transition temperature T„electronic specific-heat
coefficient y, and magnetic exchange enhancement
S, we will also present the values obtained. The de-
tails of the calculations are exactly the same as were
used for six other A15 compounds. ' The electronic
numerator in A, is determined using the Gaspari-
Gyorffy method, while the phononic denominator
has been derived into site contributions using experi-
mentally determined V3Si phonon moments of
Junod et al. and the ratio of the pure V and Si De-
bye temperatures. The superconducting transition
temperature is calculated from the McMillan formu-
la with co~,g from Junod et al. The exchange
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FIG. 4. Total DOS for V3Si obtained from 120 k points in —,of BZ using tetrahedron integration method.

enhancement S can be written as (l —S) ', where
the dominant contribution to S (as well as to A.)

comes from the V atoms.
The relevant quantities involved in the calcula-

tions are displayed in Table I together with the re-
sults obtained and experimental T, and y. The re-
sults for T, and y are slightly too low but good con-
sidering the approximations involved. The deduced
S, about 0.9, is evidently too high; a similar situation
was found also for other 315 compounds. Spin
fluctuations might be of some importance in V3Si
but probably less than in V3Ga and V3Au. ' '

V. CONCLUSION

The detailed comparison of the V3Si FS obtained
from the ab initio self-consistent LMTO band calcu-
lation and from 3D reconstruction of 2D ACPAR
measurements shows good agreement down to the
mRy scale. At several symmetry points where EF
falls near certain bands, it is shown that only 2—3-
mRy shifts of E~ lead to evident disagreements be-
tween theory and experiment. Such uncertainties
are expected from the LMTO results due to incom-
plete basis convergence, whereas this investigation

TABLE I. Site decomposed phonon moments co~ and ms;, electronic contribution to A, , the electron-phonon coupling, the
electron-electron interaction parameter p, electronic specific heat y, superconducting transition temperature T„and Ston-
er parameter S as obtained from the band results for V3Si. Experimental phonon moments co~,g and co~ si used in the calcu-3'
lations and experimental y and T, are taken from Ref. 37.

~log

expt.

186

~v si3

(K)
expt.

271 226 383

QA IB
(eV/A')

5.8 0.2 1.26 0.18

r
(mJ/K~ g-at)

calc. expt.

11.6

calc.

12.8

expt.

17 0.9
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has shown that other approximations used in the
LMTO calculation are not very important for the
FS of V3Si. The FS structure can be described from
the following. Around I there are two hole boxes
from bands 19 and 20, a small hole ellipsoid is creat-
ed by band 17 around M, and hole jungle gym struc-
tures originating from bands 18—20 envelop the MR
lines. The jungle gym is a multiband feature and its

details are very sensitive to small shifts in EF.
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