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The starting point of the present article is a careful analysis of the physical meaning of
the three deformation electron-charge-density maps for V3Si, VsGe, and Cr3Si [previously
presented by J.-L. Staudenmann et al., Phys. Rev. B+, 6446 (1981)]. Based on the signifi-

cant differences exhibited in these maps, it was shown that one can organize all the Debye
temperatures at 0 K from specific-heat measurements into five collections which were called

Debye classes. The findings here presented are not limited to 315 alloys alone, but rather
can be applied to any other family of compounds that satisfies the free-atom superposition

principle and the small-amplitude vibration hypothesis. It is shown that deformation elec-

tron charge densities depend only weakly upon structure and that they are mainly related to
physical properties. Furthermore, the use of deformation electron-charge density as a cri-

terion in setting the starting point for the three main Debye classes is justified a posteriori.
We point out that when one takes into account the consequences of the dielectric function,
the static or bonding electron charge density can only be extracted with great difficulty from

any experimental data. This certainly complicates any comparison between experimental

and computed electron charge densities. It is shown that the deformation and total electron

charge densities are the only well-defined inverse Fourier transforms. If the vibration am-

plitude of the valence-electron orbitals are non-negligible, the valence-electron charge densi-

ty, in contrast to the deformation and total electron charge densities, has no simple interpre-

tation. It has the same meaning, however, if the valence-electron orbitals are in a quasi-

static configuration. Moreover, in the case of a non-negligible vibration amplitude for the
valence-electron orbitals, the comparison between valence- and deformation-electron charge
densities leads to a qualitative separation between dynamics and statics for the valence-

electron orbitals. This observation is of fundamental importance in linking experimental

electron charge densities and inelastic neutron scattering measurements.

I. INTRODUCTION

In this article we consider x-ray diffraction tech-
niques for the study of the variations of the
electron-charge-density distributions (abbreviated as
ECD in the text and defined in Sec. II). Any dif-
fraction experiment consists of measuring the
Fourier transform of a value proportional to a densi-
ty. In the case of x-ray diffraction, the density is
that of the charge of the electrons in the unit cell,
and the Fourier transform of this density is
represented by an infinity of Bragg peak intensities.
The ECD distribution is then achieved by means of

the inverse Fourier transform of all observed struc-
ture factors. The larger the set of experimental
Bragg peaks included in the inversion process, the
smaller the truncation errors will be. The funda-
mental problems of the finite inverse Fourier
transform are clearly and comprehensively discussed
in the article of Auslander and Tolimieri, ' whereas a
tour de force on the relations between harmonic
analysis and symmetry are given by Mackey.

In the case of difference ECD maps one sees pri-
marily the location of the valence electrons which
hold the atoms together. In addition, the ECD
maps also reflect the vibrations of the valence elec-
trons superimposed on their static distribution. This
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vibrational effect on the static ECD is a smearing of
the static ECD. By static ECD we mean ECD dis-
tributions containing the bonding information alone.
It is well known that the vibrations of the atoms are
temperature dependent, and so is the smearing of the
ECD distributions. This means that the static ECD
can only be approached at a temperature where the
smearing effects are minimized. Coppens3 basically
proposed to use the lowest accessible temperature in
all cases. This, in fact, is valid only for normal
solids because the vibrations of the atoms are har-
monically reduced when the temperature is lowered:
The vibrations harden without any significant
anharmonic contributions. In order to choose the
temperatures at which the smearing effects are mini-
mized, one must assess the temperature factors and
thermodynamic properties very carefully, or, in a
cruder way, discuss the various domains that can be
seen on a plot of the Debye temperature as a func-
tion of the temperature as given from specific mea-
surements or from sound velocity measurements
(see Ref. 6 and Fig. I}. In this type of plot, a nor-
mal solid shows a very slow, steadily decreasing
curve when the temperature is increased. In the
latter approach, one can use Fig. 1 concerning V3Si
(Ref. 6) to illustrate the various temperature set-
tings.

One of the purposes of this article is to show that
the smearing of the ECD's provides information
about the dynamics of the valence electrons as well
as about chemicophysical properties weakly depen-
dent upon the structure. In the range where the
latter properties are constant or very slowly varying,
the dynamics of the valence electrons might be as-
sessed by making differences between two difference
densities at two different values of a physical con-
straint. By physical constraint we mean a tempera-
ture variation, or a pressure change, or the applica-
tion of a magnetic field, etc. A chemical constraint
would be a concentration change within an homo-
geneity domain, or the controlled adjunction of im-
purities (like hydrogen) in a host matrix (as hcp
scandium}. All of these constraints are at our dispo-
sal to modify in different ways the ECD distribu-
tions within the unit cell of interest.

Three final introductory comments: (a) We as-
sume that the various corrections such as Lorentz
and polarization effects as well as absorption and ex-
tinction have been done properly beforehand. Thus
they will not be discussed in the present article. (b)
The present study does not take into account physi-
cal effects which can arise when doing diffraction
experiments in the vicinity of absorption edges. (c}
Detailed procedure and results concerning the
analysis of the thermal parameters wi11 be published
elsewhere.
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FIG. 1. Plot of the Debye temperature as a function of
the temperature for V3Si from Ref. 6 as determined from
sound velocity measurements on single crystals (courtesy
of Dr. L. R. Testardi). The descriptions of the five tem-
perature ranges are as follows. (a) T & 120 K or room-
temperature regime. Although this range already exhibits
a softening —opposite behavior to the one described in the
text for normal solids —the smearing effects are probably
minimized at -120 K with respect to the one at 300 K.
(b) 50 & T & 120 K or intermediate regime. Based on Ref.
30 and Table III, anharmonicity is beginning to play a sig-
nificant role at -120 K in the dynamics of the valence
electrons. Consequently, until diffraction experiments are
done in this range, the best temperature setting in deter-
mining the static ECD remains an open question. (c) 22
& T & 50 K or premartensitic regime. In this range -50
K is probably the temperature which should minimize the
smearing effects because -22 K represents the tempera-
ture at which the martensitic transition takes place. (d) 17
& T & 22 K or presuperconducting regime. This regime is
probably the most erratic of all and no guesses are possi-
ble here since the two transitions are probably related. An
interesting test for coupling and competition between the
two transitions should be performed in Nb3Sn where they
are farther apart: -45 and 18 K, respectively (Ref. 41).
(e) T &17 K or superconducting regime. Here, clearly,
the lowest possible temperature is the one which will min-
imize the smearing effects. This does not mean, however,
that this temperature can be conceded for all of the above
regimes, because ECD distributions are not only signifi-
cantly different from the ones at room temperature but
also exhibit a different type of ECD (Ref. 33). Similar
comments can be made on Si and Ge (Ref. 5).
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II. ELECTRON-CHARGE DENSITIES

The density of the electron charges p(co, r ) at a lo-
cation r within the unit cell, at a given temperature
T, and other external conditions can be written as

l ao ao ao

p(o) r)= —g g g F(co H)
V h =—ao k= —ao I= —ao

Xexp( —2n.iH r} .

A given structure is represented by a unique set of
Bragg reflections. Each compound belonging to this
particular structure is characterized by intensity
changes within the set of Bragg reflections. The
uniqueness of the inverse Fourier transform is only
valid for centrosymmetric structures. Therefore
the following, as well as future studies, will be strict-
ly limited to materials with centrosymmetric struc-
tures. Three main inverse Fourier transforms are
usually discussed.

The co dependence is kept to indicate that the mea-

surement has been done at a given frequency and
that some electronic effects might be frequency
dependent. Here V is the volume of the unit cell;
h, k, l are the Miller indices defining the static re-

ciprocal vector H such that H=ha~+kb*+lc*
where a*, b*, and c* are the unit-cell reciprocal
vectors. F(co,H) is the structure factor and its value

can be obtained by Fourier transforming Eq. (l}:

F(AH)= V f f f p(cur}

X exp(2m iH r )d r,
(2)

where d r =dx dy dz. Equation (2) is too complicat-
ed for practical computation. Furthermore, one
cannot use

A. Total electron-charge density

One has

p„,(co, r)= —QF,b, (co,H)exp( —2miH r), (5}tot &

V
0

H

where F,b, (co,H) represents the experimental data.
This ECD must be positive in the complete unit cell.
It reveals extremely strong peaks at the locations of
the atomic positions. But, owing to the magnitude
of these atomic peaks, small deformations indicating
bonds and/or asphericities in the immediate sur-
roundings of the atoms are impossible to see. There-
fore this well-defined inverse Fourier transform is
mainly used for structure determination.

B. Valence electron-charge density

p(ro, r)= gp.„...(~o, r)+p,.i(oi, r), (3) One has

where the summation represents the superposition of
the electron cores and p„,&(co, r) is the valence ECD
of all valence electrons in the unit cell, because
p„~(ro, r ) needs a true and realistic electronic struc-
ture calculation to be properly computed. Therefore
Eq. (2} is simplified once more by using the simple
superposition of the free spherical atoms forming
the unit cell:

F(co,H) = g f„(H)exp(2iriH x„)T„(co,H), (4)

where n is the index running through all the atoms
shaping the unit cell, f„(H) is the scattering factor
of the nth atom usually computed for a spherical
distribution of the electrons around the nuclei ';
x„ is the position vector indicating the exact crystal-
lographic location of the nth atom; T„(co,H) is the
thermal parameter or Debye-Wailer factor of the
nth atom. The superposition of free atoms has the
advantage of the simplicity but, unfortunately, it
does not account for electronic anisotropies. They
affect the electronic shells around atoms, including
core polarizations, created by bonding and by charge
transfers between atoms (see below).

p„,&(co, r )=—g [F,b, (co,H) —F„„(e,H)]YR &

V
H

Xexp( 2niH r)—,
.

where, according to Eq. (4), one can write

F„„(co,H) = g f„„„(H)

Xexp(2niH x„)T„(co,H)

with f„„„(H) being the scattering factor (or
"form" factor) for the core electron of the nth atom
(set: Fig. 2 for V„„,for instance and see Figs. 6 and
8 as examples of valence ECD's). This ECD, con-
trary to the previous one, does reveal deformations
with respect to spherical atom electron cores. It is
mainly a positive density in the whole unit cell un-
less the core-electron shell has been deformed by
bonding or by some other excitations. It allows an
easy detection of delocalized electrons as well as any
deformation from spherical symmetry.
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where, according to Eq. (4), one has

F~phe~(~ H)= Xf.(»
20- Xexp(2niH x)T„(co,H)

15-
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with f„(H) being the scattering factor for all the
electrons of the nth atom (see Fig. 2 for V taken
as an example). f„„„(H)and f„(H) are usually
computed for spherical symmetry and given in the
form of tables. ' As a consequence, the two above
difference ECD's mainly exhibit the delocalization
of the valence electrons with respect to an hypotheti-
cal spherical symmetry distribution of the electrons
around the atomic positions. (See Figs. 7 and 9—11
as examples of deformation ECD's. } In "perfect"
cases—that is, when extinction, scale factor, and
other corrections can be properly applied —the de-
formation ECD must be slightly negative at the
atomic positions. It also allows easy detection of
any asphericities around atomic positions as well as
the locations of bonding electrons. It is also used to
locate hydrogen atoms. Like the total ECD, the de-
formation ECD is a well-defined density in any cir-
cumstance.

~lcore0=
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FIG. 2. Plot of the number of electrons responsible for
the scattering process as a function of the momentum
transfer expressed in terms of sin8/A, . The examples
shown here are vanadium and silicon taken from Fuka-
machi (Ref. 9). The upper curve represents the scattering
from the vanadium electrons while the lower curve indi-

cates the scattering from the silicon electrons. The
dashed curves show the scattering from the core electrons.
The differences between two curves corresponding to one
atom are the effects of the valence electrons for this atom.
For sin8/A, &0.7 A ' there are fluctuations in these
differences which are very difficult to assess by the exper-
iment (see Table I). Consequently, by cutting the inverse
Fourier transform in the vicinity of the beginning of these
fluctuations, details around atomic sites are neglected
while the details in the surroundings of the bonds are em-

phasized.

C. Deformation electron-charge density

One has

p«f(ro, r ) =—g [F,b, (co,H) —F»„«(co,H)]e
H

)& exp( —2n-i H. r ),

D. Valence versus deformation ECD

These two are complementary when the valence
orbitals are in quasistatic configurations. In these
cases they cannot contradict one another. We shall
see below that the knowledge of each leads to funda-
mental insights into the dynamics of the valence
electron orbitals. Since x rays are diffracted by all
electrons, it is only possible to deduce experimental
form factors f„(H} [see Ref. 11(a}] from the
observed structure factors F,b, (ro, H).

E. Errors in electron charge density distributions

In x-ray diffraction, diffracted intensities result
from all the electrons occupying a unit cell. Conse-
quently, the errors in ECD maps reflect the errors
(or standard deviations) of all the crystallographic
variables applied to all the electrons occupying the
unit cell. Hence the magnitude of the densities at
the nuclear positions are found to be very important
for the A15 compounds and so are the errors at
these particular points where all error contributions
accumulate. Rees' initiated a computation of er-
rors in ECD maps, and Table I shows how large
these errors can be at the atomic positions.

On reanalyzing the V3Si experimental data, ' Ho'
found humps located at -0.25 A on each side of
the V sites in agreement with the theoretical result
of Mattheiss and Hamann. ' These humps, however,



4190 J.-L. STAUDENMANN, B.DeFACIO, AND C. STASSIS 27

0
TABLE I. Computed ECD errors in eA ' for V3Si

(Refs. 13 and 33) and for Cr3Si (Ref. 34) according to the
procedure published by Rees (Ref. 12). The various mea-
surements on V3Si were of comparable quality and conse-
quently the V3Si column is valid for the 13.5 and 300 K
sets of data. A represents either the V or the Cr atom and
"A-I-A" designates the middle point between two consecu-
tive A atoms on a chain.

A atom
A atom + 0.35-A radius
A-I-A

Si atom
0

Si atom + 0.3-A radius
Everywhere else

Cr3Si
(e A-')

6.5
0.08
0.08
4.3
0.08
0.04

V~Si
(eA 3)

7
0.1

0.1

45
0.1

0.05

III. DIELECTRIC FUNCTION OF CRYSTALS

A. Preliminaries

This section is devoted to the connection between
ECD's and the generalized electronic susceptibility
function X{co,H). According to Ashcroft and Mer-
min' and Madelung, ' the limit X(co, O) describes
collective excitations such as phonon modes and sur-
face plasmons. This limit is a justification for
small-angle scattering experiments. The other ex-
trerne, X(O,H), describes the electrostatic screening
of the electron-electron, electron-lattice, and
eLectron-impurity interactions in crystals. This
second limit is difficult to envision without extrapo-
lation in diffraction experiments, because one always
measures X(co,H) at constant co.

%'hen discussing all of the known A 15 alloys, it is
not possible to use any single approximation for the
entire family. It is necessary in many cases to treat
the electron-electron and electron-phonon interac-
tions together. Under some conditions, such as nar-
row bands with wide gaps or broad bands with nar-

fall within the errors (see Table I) and, consequently,
cannot be experimentally proven by ECD methods
alone. But Ho's work definitely ruled out the possi-
bility that these humps can be found as far as
-0.55 A from the V sites as computed by I.am and
Cohen. ' Experimentally, comparisons between corn-
puted and observed ECD's can only be made at dis-
tances greater than -0.4 A from any nuclear posi-
tion whereas, from the band theory point of view,
the comparison should be made within a radius of
-0.5 A.

row gaps, approximations can be made where
electron-electron and the electron-phonon interac-
tions can be treated separately {Mahan' ). It seems
that most of the A 15 compounds have broad bands
with narrow gaps, but the thermal properties are so
widely different that no single approximation can
describe all of these differences. The connections
between X(co,H) and x-ray diffraction have been
developed by James ' and by Batterman and Cole,
but these two articles are restricted to the static first
term in the expansion. In the following, discussions
of more general cases are presented.

Crystals are three-dimensional periodic arrays of
atoms. The core-electron orbitals are distributed
around the nuclei with small departures from spher-
ically symmetry distributions. On the other hand,
the valence ECD is highly anisotropic becasue of
bonding and contributions from physical effects. In
the case of alloys, chemical differences among com-
ponents may also appear in the valence ECD. This
can be expressed in terms of a dielectric function
which can be written as an inverse Fourier
transform over the reciprocal lattice is exactly the
same manner as that of the ECD's. In a future arti-
cle, we plan to show how the dielectric susceptibil-
ity formalism applies to present sets of data to give
a microscopic description of the processes under dis-
cussion.

B. Dielectric function of the electron gas

In the following, we neglect surface effects such
as changes in the phase of the x-ray wave. The sur-
face consists of a few atomic layers (about 10 A)
compared with spherical crystals of -10 A in di-
ameter. This implies that the various effects which
are due to the surface of the sample, such as x-ray
photoemission, and which are translated by the
photoemission, and represented by a structure factor
F,„~, (co,H) can be neglected as well as the corre-
sponding ECD. Note that the following treatment
can be started in the reciprocal space as well as in
the direct space; we have chosen to follow the route
of Jameszi and Batterman and Cole.

The incident x-ray beam carries on an electric
field E(co,H) which induces an electric displacement
field D(~,H). In the hypothesis of small electronic
displacements the field D(co, H) can be written as

D(co, H) =eoE(co,H)+P(co, H)

=X{a),H)eoE(ro, H), (10)

where eo is the permittivity of the vacuum. X(co,H)
is the dielectric function or relative~ermittivity; it is
a tensor of rank 2: that is, D and E need not be col-
linear. P(co,H) is the polarization per unit volume
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1
cc F(co,H—}+ (12)

and

divE(co, H) cc [F(co,H—)+F+(co,H)], (13)
E'p

where F+ (co,H) is the form factor due to all possible
effects contained in the susceptibility function as
listed above. By Fourier transforming Eq. (13), one
gets

divE(co, r) =div g E(co,H)exp( —2miH r)
H

(14a)

cc —g [F(co,H)+F+(co, H)]
E'p

H

X exp( —2m.iH r)

of the crystal, that is, a polarization density. As the
core electron orbitals exhibit an almost spherical
symmetry and also because they are locked in by the
Pauli exclusion principle, their contributions to
P(co,H) can be neglected and, therefore,

P(co,H)- —g eH
J

valence

(11)
e N„,iE(co,H)

Nl CO

is certainly valid for most of the atoms with the ex-
ception, perhaps, of the ones occupying the first two
rows of the Periodic Table (N„,i is the total number
of valence electrons in a unit volume of the sub-
stance ). Furthermore, Eq. (10) leads to

divD(co, H) cc div[X(co, H)eoE(co, H) ]

In each case the proportional factor contains 1/V
where Vis the volume of the unit cell. The Eqs. (14)
and (15}must be satisfied term by term. Therefore,
dividing one by the other one gives

F+ (co,H )
X(co,H) =

F(co,H)+F+(co, H)

and

p+(co, r )
X(co, r)=

p(co, r }+p+(co, r )

(16)

These relations show that it is possible, in principle,
to extract X(co, r) from ECD maps when a physical
constraint is applied because p+(co, r) is inodified by
it. In a subsequent article we plan to show what
excitation types are needed in order to extract useful
physical information from the F+(co,H} or the
p+(co, r ). Our present goal is not to discuss in detail
all of the effects described in Sec. IIIA but to point
out that they are all present in ECD maps.

In any x-ray diffraction experiment the valence
electrons are more or less close to a resonance state
with the x-ray frequency. This means that the co

dependence of most of the above relations is more
complicated than it seems at first sight. Instead of a
proper analysis of the real and imaginary parts of
X(co,H) (see, for instance, Madelung"), this is
translated in x-ray work by considering the structure
factors and, consequently, the form factors as com-
plex and wavelength dependent: f„(H)+df„' (A, }
+iaaf„"()i,), where hf„'(A, ) is the real part of the
form factor and correction due to the proximity of
the resonance for the nth atom, and hf„"(A,) is the
form factor correction due to absorption phenomena
near the edge of the nth atom.

~ —[p(co, r )+p+(co, r }],
E'p

(14b)
IV. CONNECTIONS BETWEEN PHYSICAL

AND CRYSTALLOGRAPHIC APPROACHES

divD(co, r)=div QX(co, H)E(co, H)exp( —2miH r)

(15a)
1

cc —gF+(co, H)exp( 2niH r)—
E'p

H

1
cc —p~(co, r) .

E'p
(15b)

where p+(co, r ) is the ECD due to F+(co,H). Equa-
tion (14b) is very important because it shows that
any experimental ECD is a superposition of static
ECD plus dynamical and correlation effect ECD's.
Similarly the Fourier transform of Eq. (12}gives

From the ECD's at room temperature shown in
Ref. 20 for the A 15 alloys V3Si, V36e, and Cr3Si,
one can easily see that these three ECD's present
three different types of ECD within the A 15 crystal
structure. The matter discussed there is based on
the assumption that these various types of ECD are
related in complicated ways to the physical proper-
ties such as anharmonicity and, to a lesser extent, to
the superconducting transition temperature. The
variations of the magnetic susceptibilities as a func-
tion of the temperature for the above three com-
pounds ' also seem to agree with the hypotheses
of Ref. 20. In other words, interactions between
atoms are not only responsible for the crystal struc-
ture but are also important aspects of the physical
properties.
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TABLE II. Selection of x-ray single-crystal harmonic vibrational amplitudes to show that
the small vibration amplitude hypothesis is reasonable even if perturbative anharmonicity con-
tributions may double or triple the percentage given in column 6. Column 2 indicates the per-
centage of valence electrons with respect to the number of core electrons. The —sign means
that a chemical average has been made on the vibrations of the various atoms composing the
unit cell along the main axes. Numbers between parentheses are the standard deviations for
the last digit of the main preceding number. The (+) sign means that the room-temperature
lattice parameter has been used to compute the vibration percentage.

Metal or
compound

Be

Cr
CU

Graphite

Ho

Si

V
AlN

Cr3Si

MgF2

MgSn2
Nb3Sn
TiC

V3Ge

V3Si

33
4

300
50

300
300

24 300

28
67

92.2
293.2
300
300

34
114

300
300

10
12
40
19

30

300
300
300
300
300

13.5
78

300

Valence/
core

electron
ratio
(%)

100 300

Lattice
constants
a and c

(A)

a =2.2858(2)
c =3.5843(3)
a =2.8841(1)
a =3.60350(5)
a =3.61496(2)
a =2.461(4)
c =6.706(2)
a =3.5773
c =5.6158

a =5.43044
a =3.0257(4)
a =3.1114
c =4.9792
a =4.564
a =4.628(5)
c =3.045(3)
a =6.7638
a =5.294
a =4.328
a =4.782
a =4.783
a =4.719(2)
a =4.718(1)
a =4.7240(5)

Mean atomic
Harmonic
vibration

(A)

0.087
0.083
0.064
0.046
0.087

-0.056
-0.118

0.110
0.111
0.054
0.076
0.087

-0.060
-0.60
-0.061
-0.087
-0.075
-0.105
-0.072
-0.067
-0.071
-0.072
-0.043
-0.057
-0.074

Ratio of
the mean

atomic
vibration

to the
lattice

constant
(%)

3.80
2.31
2.21
1.38
2.41

-2.28
-1.76

3.09
1.97
0.99 (*)
1.41
2.88

—1.91
-1.20
-1.33
-1.87
-2.46
-1.56
-1.36
—1.54
-1.49
-1.51
-0.91
-1.21
-1.56

Reference

11(a)

58
59
60
61

62

63

64
65

34
66

67
68
69
68
70
33
70

13,33

In this section we bridge the physical description
of a system with its crystallographic approach; that
is, we connect the collective modes approach (see
below) with the vibrations of individual atoms
linked by the symmetries of the system. In doing so
we like to follow the clear discussion of Reif where
it is said that the study of a few excited states above
the ground state is usually sufficient to explain most
of the physical properties. When the whole system
is considered, these excited states represent collective
modes, rather than the motion of the individual par-
ticles {atoms and electrons). The crystallographic
approach describes a system in terms of a time aver-

age of the individual atom motions. The collective
modes of motion of a system of -N,„atoms in a
solid include the possible sound waves which pro-
pagate through the solid; when they are quantized,
they exhibit particlelike behavior and act as weakly
interacting quasiparticles called phonons. They
represent, of course, an important component of the
dielectric function. Since experiments are always
performed at given temperature and wavelength, the
problem will always consist in solving systems of
truly interacting particles; that is, diffraction is af-
fected by the behaviors of the dielectric function The.
dielectric function, in fact, represents the bridge be-
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tween the physical and crystallographic approaches
because the behaviors of the first excited states are
playing a major role in the features of this function.
Therefore the Hamiltonian discussion which follows
and the analysis of the dielectric function are inter-
changeable.

V. HYPOTHESIS FOR DESCRIBING
THE PHYSICAL APPROACH

We stress that we restrict the discussion to the
case of small vibrations for compounds where the
square roots of the mean-square displacements
represent a few percent of the dimensions of the unit
cell (see Table II). This means that we only consider
perturbative anharmonicity to explain the observed

data even though anharmonic contributions may in-

crease the results given in the sixth column of Table
II. In doing so, we justify power-series expansions
of the potential energies. It is known that a genera1

anharmonic model invalidates the superposition
principle and that it has to be replaced by models
such as those proposed by Matsumoto and
Umezawa or by DeFacio and Hammer. Further-
more, X(co,H) can contain coherent components
from many unit cells. If x; is the vector indicating
the position of the ith atom of mass m; such as
x ' (X' ] X]2 X13) where x;a (a = 1,2,3), then the mea-

sure of the displacements g;a for the ith atom along
the a component from its equilibrium position is de-

fined as g;a—=x;a —x a', where a=1,2, 3.

VI. HAMILTONIANS AND ELECTRON-CHARGE DENSITY DISTRIBUTIONS

The kinetic energy of vibrations of all atoms in the solid is

N 3 N 3

K= —, g gmx; = —, g /m); (17}
i=1 a=1 i=1 a=1

Since only small displacements from equilibrium are considered, the potential energy
V= V(x]],x]2,x]3 x2] ~ ~ ~ x]v3) can be expanded in Taylor's series:

av i a'v a3v
VO+ g (la+ i g kiakyp+ 4 g ~ Cia 0jp0ky

ia 0 i,~ ~Xia Xjp 0 X)~ Xjp Xky

j,p j,p
k, y

1 a'v
+~4X ~ ~ ~ ~ -jp&y

g g Xca XJP Xky X15 0
j,p
k, y
1,S

(18}

where i =j=k =I =1 to N and a=p=y=5= 1, 2, or 3. V0 is simply the potential energy in the equilibrium

configuration of the atoms. That is, Vo represents the potential energy given by the positions of the atoms in

the unit cell. Vo then contains the structure of a given arrangement of atoms within a proper space. The sub-

script zero on the partial derivatives means that the successive derivatives are evaluated at the equilibrium posi-

tions. For a stable solid, the potential energy must be a minimum, consequently (8 V/4)x; )0 ——0, which implies

that the forces acting on any atom must vanish. Therefore, the lattice Hamiltonian (or energy) Hq associated

with the vibrations of the atoms in the solid has the form

HL =It + V = i g ~ilia+ VO+ ] gaia jp0ia0jp+ 4 g~iajpky0ia0jp0ky+ 24+ iajp, ky IS'hkjpkkykls+
i,a i,a

j,p
i,a
j,p
k, y

i,a
j,p
k, y
l, 5

where A; jp is the dynamical matrix in the harmon-
ic approximation, A jp k~ represents the dynamica1
matrix for the third-order anharmonicity, and

Ai~ jp ky I~ is the dynamical matrix for the fourth
order anharmonicity. The last three sums in the

I

above expression reflect the fact that the atoms do
interact. That is, atoms in a solid do not behave like
independent particles. An i11ustration of these last
three terms is given by the nonzero slope observed
for V3Si when the ratio of the structure factors at 80
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and 300 K are plotted as a function of (sin8/A, ) .
This relatively simple experimental procedure shows
that the harmonic approximation should be aban-
doned even though it always gives good least-
squares reliability factors. They are a measure of
the goodness of the fit. Once the hypothesis of
small-amplitude vibrations is fulfilled —which is al-
ways the case for the materials listed in Table II—
then good reliability factors will always be found
with simple harmonic models. The crystallographic
approach at the harmonic level does not contain any
physics, it is purely geometrical since it is based on
the superposition of free spherical atoms and sym-
metry. Furthermore, harmonic anisotropy least-
squares treatment of small-amplitude vibrations will
take care of very small deviations, which, as has
been shown for V3Si, represent not harmonic an-
isotropy but anharmonicity. On the other hand,
difference ECD s do contain chemicophysical infor-
mation directly related to the last three terms of Eq.
(19) because the inverse Fourier transform involves
the difference between the observed and the calculat-
ed structure factors, the chemicophysical content be-
ing part of the observed structure factors. As it was
very well explained by Ashcroft and Mermin' and
on a somewhat different level by Daughton and De-
Facio, ' one cannot stop the development of the po-
tential energy in power series at an odd-power term
(third, fifth, . . . ). As an illustration, the analysis of
V3Si at 78 K has shown that the quartic term dom-
inates the cubic one and that the nonzero slope,
mentioned above, is mainly due to the quartic term
alone (Ref. 30 and Table III). This example clearly
shows the need for a more thorough analysis of any
data even when the small vibrational amplitude as-
sumption is a good one (see Table II).

The problem is not solved by only taking into ac-

count the above lattice Hamiltonian. It is necessary
to include H„which represents the electron-electron
interaction including correlation effects from elec-
trons belonging to different atoms (the electron-
electron interaction within an atom is, in principle,
taken care of by the form factor; see Fig. 2), and
H pQ which represents the interaction between elec-
trons and phonons. H, ~q has expressions of at least
comparable magnitude as the cubic or quartic
anharmonicity and, in the case of superconductivity,
it may qualitatively change the system. Therefore,
if one includes anharmonic terms, it is necessary in

principle to add H, „q. In the simplest cases it is the
correlation between one electron and one phonon.
The magnitude and the impact of such an effect on
a difference ECD can be locally enormous. In this
respect the analysis made for V3Si at 78 K (Ref. 30
and Table III) is incomplete and more work is need-

ed to gain a better understanding of the softening
and the incipient instability and related electronic
properties. Finally, the total Hamiltonian within the
framework of the small-amplitude vibration hy-

pothesis and the superposition principle can be ex-

pressed by a superposition of independent terms of
the form

H =HL, +H~+He-pg+ (20)

When a Fourier transform is performed on the
differences between the observed structure factors
and the calculated ones, the results depend very

strongly upon the model used to compute the calcu-
lated structure factors. On the assumption that the
superposition principle is adequate to treat anhar-
monic vibrations, it follows that the computation of
deformation ECD maps would be, in fact, a conse-
quence of the following residual Hamiltonian Hz ..

TABLE III. Comparison of the various atomic vibration amplitudes in V3Si as a function

of the temperature (Refs. 30, 33, and 70). The —sign means that an average has been made

on the various components of the thermal parameters for the V atoms. The second line (per

temperature) gives the thermal parameters for the Si atoms. For comparison they are all ex-
0

pressed in units of A. This shows that the quartic contribution is large but that its fourth

power is small enough for perturbative treatment (see text).

Harmonic

T
(K)

Lattice
constant

(A)

approx.
alone

(A)

Anharmonic treatment
Quadratic Cubic

(A) (A)

Quartic
(A)

13.5

78

4.719

4.718

4.724

-0.0416
0.0465

-0.0562
0.0594

-0.0729
0.0755

-0.0375
0.0595

-0.0547
0.0643

-0.0710
0.0772

(0.0215
none
0.0276
none
0.0311
none

0.0669
0.0790
0.0865
0.0853
0.0865
0.1026
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Hg ——H, +H, ph+ (21)

When the harmonic approximation is employed in
the computation of such maps then one has to add
the contribution of HL ~ to the above residual
Hamiltonian where HL, ,~ is the anharmonic part of
the lattice Hamiltonian [see Eq. (19)] containing ex-

plicitly Apz jpky and AfzjpkyQ The fact that Vo is
absent in HI. ,~ [see Eq. (19)] is very important be-

cause it means that a deformation ECD map is only
weakly structure dependent and can be mainly asso-
ciated with and compared to physical properties. The
weak dependence from the structure comes from the
fact that Eq. (21) may contain structural effects.
This means that almost identical deformation ECD
maps for another structure should result in very
similar physical properties. The fact that deforma-
tion ECD's are mainly related to physical properties
is very well-illustrated by the three deformation
ECD's published in Ref. 20 and also by the figures
of this article. It also justifies, a posteriori, the usage
of the various types of bonding in setting the start-
ing points for the three main Debye classes.

Furthermore, the dynamics of the electronic orbi-
tals have been, in principle, eliminated by the differ-
ence process. As already underlined, Eq. (20) is
simpler to analyze than X(co,H) within the postulat-
ed hypotheses because the various contributions to
the ECD can in principle be identified and isolated.
By and large, however, Eq. (20) is not as general as

X(co,H), and one has to be very careful with con-
clusions that can be drawn from it. In addition, one
notes that since the bonding type depends on physi-
cal properties and only weakly upon the structure,
the technique of comparing ECD's from one struc-
ture to another without considerations for the physi-
cal properties is a possible source of confusion.

The discussion of valence ECD is more compli-
cated because the valence electrons have been re-
tained in the difference process. They can be split
into two different categories: Those located around
the atomic positions and those showing delocaliza-
tions and bonds. The localized valence-electron or-
bitals have a distribution similar to the one of the
core electrons and, therefore, strongly contribute to
the enhancement of the densities near the atomic po-
sitions (see Figs. 6 and 8). The delocalized valence
electrons responsible for bonding and/or physical
properties should have the same ECD distribution as
that of the ones exhibited by deformation ECD's.
This means that the ECD contributions given by Eq.
(21) should be the same in the valence ECD as well
as in the deformation ECD. Therefore a valence
ECD expresses the superposition of localized
valence electrons and ECD contributions from Eq.
(21). When deformation and valence ECD maps

tend to disagree, one can invoke the fact that the su-

perposition of the localized valence electrons and
ECD contributions from Eq. (21) represents a dif-
ferent spatial ECD than deformation ECD which is
a representation of Eq. (21). When this discrepancy
becomes important, chemists often employ the ter-
minology of "diffuse orbitals. " In other words,
these diffuse orbitals add some relatively constant
density on top of the localized valence-electron den-

sity. This means that compounds characterized by
diffuse orbitals exhibit almost flat deformation ECD
(see Cr3Si), while others having well-characterized
orbitals show deformation ECD with contrasted
features (see V3Si). This says that the electronic or-
bitals have a higher vibration amplitude in Cr3Si
than in V3Si and that their time-averaged contribu-
tion to the ECD is spread over a larger volume than
in the case of well-characterized orbitals. This is
opposite to what would be expected if valence orbi-
tals followed the thermal parameters of the cores. It
further means that valence orbitals in V3Si are in
quasistatic configurations. That is, the valence-
orbital motions are largely synchronized with the
core vibrations. In this sense, the comparison be-
tween deformation and valence ECD's is extremely
useful in pointing out sites where possible dynamical
behaviors of electronic orbitals occur. As suggested

by Bertaut the application of the superposition prin-
ciple to bonds is not limited at all by the behavior
of electronic orbitals and their thermal parameters
represent a measurement of the vibration amplitude
of the valence-electron orbitals.

VII. CHARGE INTEGRATION

Examinations of the published ECD's' ' ' and
Figs. 6—10 show that there is much less density at
the Si sites than that at the V or Cr atomic posi-
tions. Free Si atoms have four valence electrons, V
atoms have five, and Cr atoms have six. In the as-
sumption of no charge transfer the density around
the Si positions should be almost as important as
that observed in the surroundings of the U atoms or
the Cr atoms. From these observations one directly
concludes that the Si atoms are giving electrons to
the V atoms in V3Si and to the Cr atoms in Cr3Si.
The issue becomes the assessment of the magnitude
of the charge transfer from Si to either V or Cr in
these two A 15 alloys. "As plausible as it seems at
the outset to assign a definite charge, we must real-
ize that even if we knew precisely the charge distri-
bution at all points in the crystal, there is no unique
way to divide it up and associate different parts with
different atoms. Thus there is no unique atomic
charge. " Since ECD maps are usually computed
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for planes orthogonal to one of the main crystallo-
graphic axes, the simplest volumes that can be cen-
tered around atoms and attributed to each of them
are subvolumes of the unit cell: cube for cubic
structures and so on. The first attempt to assess the
charge transfer from Si to V has been made by in-

tegrating the total ECD within disconnected cubic
boxes of identical volume attributed to each of these
two atoms. This method showed that —1.2+0.4
electrons have been found on the Si atom compared
with the neutral atom and +0.4+0.2 electrons for
the V atoms. If one assumes that the volume of
the unit cell must be completely distributed among
volumes attributed to atoms composing the unit cell,
then this simple method can only furnish the lower
limit of the charge transfer. On the other hand, if
one wants to compare experimental integraiions
with results given by integrating theoretical charges
according to the muffin-tin spheres method, then
the experimental method described above should
give a higher charge transfer than the ones comput-
ed by Klein et al. In their Table V, Klein et al.
give a charge of 21.2 electrons inside of the muffin-
tin sphere for V, 12.3 electrons inside of the
muffin-tin for Si, and 14.2 electrons outside of the
two above muffin-tin spheres for V3Si. One notes
directly that the calculated charge on Si is inter-
mediate between the results given in Ref. 13 and the
ones published in Ref. 36. This is no surprise, be-
cause the ECD's are quite Aat in the vicinity of Si
atoms. The disagreement comes f.om the compar-
ison for V atoms. Apparently the densities comput-
ed by the self-consistent augmented —plane-wave
method have less structure than the densities deter-
mined experimentally. Although we understand
some of the reasons why the band theorists choose
the muffin-tin —sphere approximation, we believe
that describing a two-atom system with three dif-
ferent volumes does not give a clear picture of the
charge transfer within such a system. Therefore it is
simpler to interpret a charge transfer when the
volume of the unit cell is divided into the same
number of volumes as the number of atoms compos-
ing it and when the volumes assigned to the atoms
completely fill the volume of the unit cell. Thus,
the generalization of the %igner-Seitz cells seems
(see Fig. 3) the best way to treat this problem.

From Fig. 4 we note that there are no significant
differences between the integrations of the deforma-
tion ECD and the valence ECD for V3Si. ' Further-
more, the integration on the total ECD also gives
the same result. 3 For Cr3Si, however, one im-
mediately sees from Fig. 5 that there are significant
differences between the integrations of the deforma-
tion and the valence ECD's. Unfortunately, for
financial reasons, the integration of the total ECD
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FIG. 3. (a) shows how a portion of ECD (usually a
small subset of the unit cell) is attributed to the atom 3 or
8 depending on the ratio of the respective distances with
respect to the ratio of the van der Waals radii. (b) Gen-
eralized Wigner-Seitz cells for V3Si where Rv/Rs; ——1 and
corresponding to the first plateau of Fig. 4. These cells
are similar to the one published in Ref. 13 and computed
with the method described in Ref. 38(b).

has not been computed for Cr3Si. Before explaining
the reasons for such differences, we would like to
point out some discrepancies between the results
shown here in Fig. 4 and Fig. 1 of Ref. 13 on one
hand and Fig. 5 of the present publication and Fig.
2 of Ref. 34 on the other hand. They are entirely
concerned with the values on the axis representing

R~/Es; where A is either V or Cr. Somehow and
for reasons not yet fully understood, the computer
program used in Refs. 13 and 34 shifted all Eq/Rs;
positively by about 0.4. As a consequence of this
shift, irrelevant digressions have been made about
ionic radii in V3Si (Ref. 13) and Cr3Si. The excel-
lent agreement between the integrations in the three
types of ECD for V3Si on the one hand and the poor
agreement for the two types of ECD in Cr3Si on the
other hand underline the point about the dynamics
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FIG. 4. Plot of the atomic charge integrations for the
deformation, the valence, and the total ECD's in V3Si ac-
cording to the method reported in Ref. 38(b).

Rc, /R~,

FIG. 5. Plot of the atomic charge integrations for the
deformation and the valence ECD's in Cr3Si according to
the method reported in Ref. 38(b).

of the valence electrons orbitals made above (see Sec.
VI). The integration of the deformation and valence
ECD's is consequently very important in determin-
ing the possible dynamical effects for the valence-
electron orbitals.

VIII. DESCRIPTION OF Cr3Si
AT ROOM TEMPERATURE

Figure 6 shows the valence ECD of Cr3Si at room
temperature and Fig. 7 exhibits the corresponding
deformation density. By comparing these two maps,
one sees that they are different despite earlier discus-
sions based solely on valence ECD for Cr3Si. Our
fundamental knowledge is now sufficient to explain
these differences and replace supposed static situa-
tions by static and dynamical ones. The pileup of
charges between two consecutive Cr atoms on a
chain in Fig. 6 and the low density shown in Fig. 7
or the absence of charge at the same point is a
strong indication that a dynamical compression is
occurring between relatively unperturbed valence-
electron shells on a Cr chain in Cr3Si. This
compression is in good agreement with the ideas
developed by Frank and Kasper even though they
were based on geometric (static) considerations.
There are also some details along curved lines be-

tween Si and Cr atoms which are apparent in Fig. 7
and nonexistent in Fig. 6 and the closest ones from
the Cr sites could be attributed to consequences of
Eq. (21). The pileups of charges around the Si atom
are exaggerated in Fig. 6 as compared with their
small counterparts in Fig. 7. This also indicates im-
portant dynamical contributions from the part of
the Si valence electrons which are not perturbed by
the bonding.

IX. DESCRIPTION OF V3Si
AT 300 AND 13.5 K

The crystal of V3Si studied was a transforming
one. We already mentioned the difficulties in refin-

ing the crystallographic parameters. Although
we did not properly treat the static displacements,
we showed that below the martensitic transition the
cubic approximation gave a better fit than any at-
tempted noncubic groups (see Table IV).

After measuring the (111), (300), (003)„(110),
(101), (200), and (002) reflections in Nb3Sn at 33 K
and the (300) reflection as a function of the tempera-
ture below the martensitic transition temperature
(-45 K), Shirane and Axe ' concluded that the
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FIG. 6. Valence-electron charge density map of Cr3Si at 300 K in the (001) plane according to Ref. 34. It shows one

and a half faces of the unit cell in order to better illustrate the shape of the ECD contours around a Cr chain. Contours at

0.1 e A interval below the 1.0 e A ' level and at 0.2 e A ' interval above the 1.0 e A level. Negative densities are

shaded. Reflections up to sin8/A, =0.6 A are included in the inverse Fourier transform.

space group for the low-temperature structure of
Nb3Sn is P42/mme. From the literature it appears
that some physicists hold that the low-temperature
structure of V3Si is the same as that of Nb3Sn (Ref.

42) while others doubt but still use this structure.
Table IV presents the various models considered in

attempting to determine the true structure of V3Si
below the martensitic transition. Our results estab-
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FIG. 7. Deformation electron charge density map of Cr3Si at 300 K of half of a face unit in the (001) plane according to

Ref. 20. Contours at 0.05 e A interval. Negative densities are shaded. Reflections up to sin0/A, =0.6 A ' are included

in the inverse Fourier transform.
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TABLE IV. Least-squares (LS) refinements made on the 13.5-K data in order to attempt
the determination of the real martensitic structure of our transforming V3Si crystal .The
agreement factors R(F) and WR(F) are defined as follows: R(F)=[+ „(F~ —F~~s)'I
$„F~]',and Rs(F)=[ /„W(F~ —F~, )2I $„WF~)'+, where Wis the weight at-

tributed to a structure factor F(es, H) IT.C l means International Tables for X-ray Crystallog

raphy, Vol. 1 (see Ref. 10).

Type of
average made on

observed
equivalent
structure
factors
(global

symmetry)

Space
group
used

in the
LS

process

Independent
atoms and

crystallographic
positions

from ITC 1

Number of
independent
reflections

included in

the least-

squares
process

Agreement
factors
R (F)

WR (F)

Cubic

Tetragonal

Orthorhombic

Pm 3n

Pm 3n

P42/mmc

P4qmc

P42/m

P4g

Pmmm

Pmm 2

V
Si
V
Si
V1

Vg

Si
V1

Vg

Si
V1

V2
Si
V1

V2
Si
V1

V2

V3

Si,
Si2

V1

V2

V3

Si1

Si2

(6c)
(2a)
(6c)
(2a)

(4m)

(2e)
(2d)

(4j)
(2a)
(2c)
(4j)
(2e)
(2d)
(4d)
(2a)
(2c)
(2r)
(20)
(2j)
(1A)

(la)
(2A)

(2j)
(2e)

(ld)
(la)

155

432

432

432

432

0.0091
0.0078
0.0253
0.0308
0.0326
0.0308

0.0324
0.0306

0.0324
0.0305

0.0324
0.0304

0.0329
0.0354

0.0328
0.0353

lish that the low-temperature structure of V3Si is
probably not the same as that of Nb3Sn below the
martensitic transformation. Beside the cubic ap-
proxirnation every case listed in Table IV presented
major problems in refining the thermal parameter of
the Si atom in the anisotropic form even when the
chosen space group provides this possibility. The al-
lowed general positions for the V atoms also intro-
duced many difficulties into the refinements and
very seldom showed any significant displacement
from the cubic position. Based on the present data,
the structure of V3Si below the martensitic transi-
tion remains uncertain and, for the time being, the

best approximation is still the cubic A 15 structure
(see Table IV). Table 1 of Ref. 33 shows that the
real structure could be as complicated as monoclinic
in relative agreement with the work of Ullrich
et al. on plastically deformed V3Si single crystals.

In contrast to the Cr3Si ECD's at room tempera-
ture, the comparison of Figs. 8 and 9 and the results
of the charge integrations (see Fig. 4) for V3Si at 300
K show that the situation is fairly static, except
perhaps, the Si delocalized valence electrons at

1(- ~,0,0) and symmetry related locations. The
1 1

small difference ECD enhancement at -(—,, —,,0)
has no valence ECD equivalent. This could perhaps
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FIG. 8. Valence-electron charge density map for V3Si at 300 K in the (001) plane according to Refs. 13 and 33. It
shows one and a half faces of the unit cell in order to better illustrate the shape of the ECD contours around a V chain.
Contours at 0.1 e A interval below the 1.0 e A level and at 0.2 e A ' interval above the 1.0 e A level. Negative den-
sities are shaded. Reflections up to sin8/A, =0.6 A are included in the inverse Fourier transform.
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V Si sooK
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FIG. 9. Deformation electron charge density map for V3Si at 300 K of half of a face unit in the (001) plane according
to Refs. 13 and 20. Contours at 0.05 e A interval. Negative densities are shaded. Reflections up to sin8/A, =0.6 A
are included in the inverse Fourier transform.
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Vs Sl Is.5 K
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FIG. 10. Deformation electron charge density map for V3Si of half of a face unit in the superconducting state (13.5 K)
and in the (001) plane. This temperature is below both the superconducting transition (17 K) and the martensitic transfor-
mation (-22 K). Its corresponding valence electron charge density map is Fig. 2 of Ref. 33. Contours at 0.05 interval.
Negative densities are shaded. Reflections up to sinO/A, =0.65 A are included in the inverse Fourier transform.

be explained by a correlation contributions from Eq.
(21).

As far as the differences between the ECD's at
300 and 13.5 K are concerned, Figs. 9 and 10 show
that the biggest difference between the two maps is

that the pileup at (- 4,0,0) between the Si atoms
and the V—V bonds on chains does not exist at 13.5
K (Fig. 10). There seems to be slightly more density

( (
at ( —4, ——,,0) between two perpendicular chains at
13.5 K than at 300 K. Since this density enhance-
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ment is we11 within the standard deviations (see
Table I) there is, consequently, no clear evidence for
electronic interaction between two perpendicular
chains, in contradiction to some theoretical re-

sults ' but in qualitative agreement with more re-

cent theoretical works. ' ' ' Mattheiss and
Werner explain the role of the I ~2 subbands as be-

ing the consequence of a strong interchain coupling
and representing -3% of the valence electrons.

1 1

There are twelve equivalent -(—,, —,,0) positions in

an 315 unit cell. Therefore the integration of the
1 1

I'i2 subbands per —( —,, —,,0) point represents

-0.25% of the valence electrons which would give

an experimentally detectable charge density. The
1 1

experimental charge density at -(—,, —,,0} seems

to say two things: (a) Mattheiss and Werner overes-

timated the electronic population of the I &2 sub-

bands or (b) the way different chains are coupled to
each other is more complicated than explained above
and, therefore, experimental ECD cannot prove or
disprove the Mattheiss and Werner result about
the I &2 subbands.

The absence of charge density at (-—,,0,0} in the

superconducting state shows that the V atom chains
behave more independently below the martensitic
transition than at room temperature. The deforma-
tion ECD (Fig. 10) exhibits peculiar significant pro-
turberances around the V-V interaction and, of
course, around the V atoms in the same chain.
These deformations surround the V—V bond as two
rings and can be seen more easily in Fig. 11. These
rings do not exist at 300 K (see Fig. 9) and could be
related to the disappearance of the electron interac-
tion between Si atoms and V—V bonds on chains.

(o)

Vp $I l5.5 K

Valence Oeniity

si
ii

(0.225, 0.4,0.275) (05,0.4,0275) (0.775,0.O,0.275)

(02.25,0.4,0) (0.775,0.i,0)

(0.225,0A, -Ow m) (09,0.4,-0.275) (0.775,0.4,-0.275)

Ir

Si

FIG. 11. Valence (a) and deformation (b) electron-charge-density maps of V3Si in the superconducting state (13.5 K)
showing the structure of the "rings" discussed in Fig. 10 and in Ref. 33 (see text). Contours at 0.05 e A interval. Nega-

tive densities are shaded. Reflections up to sin8/A, =0.65 A are included in the inverse Fourier transform. The arrows

pointed toward the Si indications show the direction of the closest Si atoms from this ring structure.
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Their origin clearly lies in the consequences of Eq.
(21). Furthermore, their internal structure seems to
be an illustration of the idea first proposed by Labbe
and Friedel that the martensitic transformation re-
moves the degeneracy of the 3d levels of the V
atoms (see Fig. 11). The fact that they are paired
and surround the V—V bonds could also be related
to the presence of superconducting electrons since
superconductivity has always been associated with
electronic effects in the chain, ' thus they are a
manifestation of Eq. (21). The shape of these rings
is peculiar: A deformation density of 0.21 e A is
observed when rings are between two V-V on two
different perpendicular chains [between positions
(0, —,,0) and (—,, —,,0) in Fig. 10] and a deformation

0
density of -0.1 e A can be noticed when rings
are between a V—V bond and Si atom [between
points (0,0,0) and ( —,,0,0) and this position is also

orthogonal to the latter]. The particular shape of
these rings combined with the disappearance of the
bond between Si atoms and V—V bonds at 13.5 K
can also induce very small displacements of the V
atoms on a chain. This statement tends to correct
what has been said earlier in the sense that at 78 K
static displacements have been originated from
humps in the potential well, while here, at 13.5 K,
they can possibly be associated with the charge an-

isotropy of these rings which, together with the V
atoms, are affected by the "tetragonal" environment
of the V atoms. Note that the changes of the V-V
and Si-V distances between 300 and 13.5 K are
negligible.

The study of these rings, i.e., their geometry, their
electronic properties, and their influences on the vi-
brational behavior of the V atoms in the supercon-
ducting state should give useful information about

V~ Si is.s x

Oeformotion Density

Si

(b)
(O.I2, 0.42, 0.28) (O.5,0.42, 0.28) (O.S8,0.42, 0.2S)

(O.I2,0.42,0) ' (0.88,0.42,0)

(O.I2,0.42, -0.28) (0.5,0.42, -0.28) (O.SS,0.42, -0.28)

Si

FIG. 11. (Continued. )
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the coupling of the electron-phonon interaction
and the superconductivity in VqSi. More theoretical
insights are needed to understand this coupling as
well as the effects of the dielectric function. On
the basis of remarks relating Nb~Sn to V~Si made in
Ref. 20, the ring anisotropy in NbqSn could be such
that the electron density maximum is pointed to-
ward Sn atoms rather than toward another chain as
in V~Si. This, of course, implies different structures
for these two compounds below their respective
martensitic transition. Because of the magnitude of
the standard deviations on the densities (Table I) to-
gether with the magnitude of the distortion of the
unit cell, the shape of these rings will not be signifi-
cantly changed if the inverse Fourier transform is
done with the true structure of the martensitic phase
of V&Si.

X. CONCLUSIONS

The end of Sec. VII (charge integration) contains
a striking conclusion, showing that compounds hav-

ing no significant dynamical contributions from the
valence-electron orbitals are simpler to analyze and,
at the same time, seem to exhibit enormous varia-
tions in their physical properties (see Ref. 6 for V&Si

as an example).
It is easy to see that the problem of determining

whether a metal or an alloy has valence-electron or-
bitals with no significant dynamical contributions
requires a sort of self-consistent procedure. The full
evaluation of its ECD's (deformation and valence} as
well as a complete charge integration procedure
must be completed. The results are then checked to
see whether E„,& -0. When it is, the present
analysis shows that valence and deformation ECD's
can be used interchangeably and that the valence-
electron orbitals are in quasistatic configurations. It
further implies that these compounds can be un-
stable and can lead to a rich collection of possible ef-
fects lowering the energy such as martensitic, super-
conducting, Jahn- Teller, or Peierls transitions.
When E„,i&0, the valence ECD's still play an im-

portant role because a detailed comparison of the
two ECD's allows to distinguish which density in
the unit cell exhibits valence-electron orbitals with
dynamical effects. It also means that electronic or-
bitals are almost in a free-particle-like eigenstate
with a large positive energy.

Although our primary goal is a better understand-
ing of the fundamental electronic contributions that
are exhibited in ECD maps, it is worthwhile at this
point to review our acquisitions about VqSi and con-
front them with works from others. By comparing
the x-ray diffraction data at 300 and 13.5 K, it can
be seen that interactions in V~Si are temperature

dependent and this cannot be explained without in-
voking Eq. (21). The same behavior is expected for
Nb3Sn. We also noted that the V-atom chains are
weakly bonded to the body-centered lattice of Si
atoms. Therefore, the linear character of the V
atom chains is a good approximation if ionic forces
between the V and Si atoms are not taken into ac-
count (see below). This could partially explain the
successes of simple models. From the work of
Schweiss et al. ' on inelastic neutron scattering one
can read that vibrational spectra in V~Si is largely
determined by the forces between the V and Si com-
ponents. This conclusion is relatively temperature
independent and valuable for other A15 alloys.
Since there is no pileup of charges along lines join-
ing V and Si atoms at 13.5 K as well as at 300 K
and since the density (that is the strength} of the
bonds between Si atoms and V—V bonds on chains
decreases below —130 K (see Fig. 1},it is necessary
to introduce important ionic electrostatic forces be-
tween the Si and V atoms in order to be in agree-
ment with conclusions derived from inelastic neu-
tron scattering on polycrystalline V&Si. ' The large
charge transfer found in V&Si seems to support this
conclusion (see Fig. 4 and Ref. 13). Therefore, ionic
forces seem to be a temperature-independent feature
of V~Si and probably of most of the A15 com-
pounds. The comparison between the neutron
scattering study of the dynamics of the lattice-phase
transition in V&Si by Shirane et al. ' and our work
seems to show that the martensitic phase transition
has probably an electronic origin —perhaps due to
the disappearance of the pileup of charges between
the Si atoms and the V—V bonds on chains —rather
than originating from a softening of an optic pho-
non branch near the Brillouin-zone (BZ) center.
Consequently, the pronounced softening in the elas-
tic constants measured by Testardi and Bateman
could also result from an electronic origin. Batter-
man and Barrett described the observed transfor-
mation in VqSi at -21 K as a martensitic transition
because it involves no diffusion. Anderson and
Blount pointed out that if the martensitic transi-
tion in V&Si is a second-order transformation, this
transition must depend on something else than
strain. Because no superstructure and no magnetic
anomaly were found in V&Si, Anderson and Blount
have written: "We are left with two possibilities: (1)
some electronic mystery parameter, associated
perhaps with pairing; or (2) some change in symme-
try, such as the loss of the inversion center, which
cannot easily be observed with X-rays. " It is
tempting to bring the possibility (1) of Anderson and
Blount together with the pair of anisotropic rings
found around each V—V bond in a chain in the 13.5
K measurement. Their second possibility could ei-
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ther be another source of the martensitic transition
or a consequence of the first possibility (anisotropic
rings}. For inore details about the phase transition
observed in some A 15 compounds, one can consult
the excellent article of Testardi and the review of
Luthi and Rehwald.

Harrison pointed out in his book the importance
of the electronic arrangement on the dielectric func-
tion through the so-called "local-field corrections. "
These corrections arise because "the field at any one
bond is affected by the polarization of any neighbor-
ing bond. " Furthermore, Harrison continued by
writing that: "Local field corrections may reduce
the static dielectric constant by the order of 10%."
This means that the more anisotropic an ECD is,
the more pronounced is the effect on the dielectric
function. Figures 6 and 8 clearly show that the an-
isotropy is not only more pronounced but also more
extended around the atoms in V3Si than it is around
the atoms in Cr&Si (see also Ref. 20). "Any increase
in the dielectric constant of the medium, even if in
only a part of it (the sources of the field remaining
unchanged), reduces the total free energy. " This
citation seems to contradict the local-field correc-
tions one, but any of these corrections implies a
frequency renormalization (softening} such that the
total free energy of the system is still a minimum.
Consequently, the local-field corrections for the A 15
compounds seems most pronounced when the anhar-
inonicity is maximum, which, according to Eqs. (13}
and (14), locally enhances the ECD. This local
enhancement derives from the fact that the dielec-
tric function depends upon the frequency and the re-
ciprocal vector. These considerations explain why
the charge transfer described in Sec. VII is signifi-
cantly higher for V3Si than for Cr3Si. In a subse-
quent paper, ' we plan to show more rigorously
which are the most favorable experimental condi-
tions for extracting local combination of the
electron-electron and electron-phonon interactions.

A further consequence of this discussion is the
danger in assigning electronic orbitals and decom-
posing them by the method of multipole decomposi-
tion. It is now clear that this practice can only be
done if the dynamical effects have been properly ac-
counted for. Otherwise physical effects may be
inadvertantly treated as static electronic orbitals. In
addition, the multipole scheme is strictly limited to
cases where the orbitals are in quasistatic configura-
tion (see Sec. VI).

Finally, the fact that p(co, r) and F(co,H) have an

explicit frequency (time) dependence has important
practical consequences: (a) Competition between an-
isotropic extinction corrections and the anisotropy
of the dielectric function. (b} Fourier transforming
the various forms of independent reflections (espe-
cially at low H) gives information about the aniso-
tropy of the dielectric function and not, as is usually
thought, about the anisotropy of the extinction.
(c) The first few reflections (lowest values of H or
h, k, l) cannot in principle suffice to determine the
extinction parameters because of the information
about the dielectric function which they contain.
Thus, the extinction parameters must be determined
from the core electrons, together with the thermal
parameters. This varies from standard crystallo-
graphic practice, as well as from the practice previ-
ously followed by one of us (J.-L.S.). Isotropic ex-
tinction corrections based on valence reflections (see
Fig. 2) do not correct anisotropic features of the
dielectric function, they simply rescale the ECD dis-
tribution.

The experimental determination of difference
ECD's is a very important tool in the study of any
phase transitions. It promotes the concept of the
dynamics of the valence-electron orbitals. Conse-
quently, precise ECD measurements are particularly
useful to understand the dynamics of electronically
driven phase transitions. In this respect, this
method may become complementary to inelastic
neutron scattering techniques. When our knowledge
of ECD's improves, we should be able to predict lo-
cations of inelastic neutron peaks in the reciprocal
space.
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