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Analytic vortices and magnetic resonances in rotating superfluid He-A
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We study theoretically three types of analytic vortices in rotating superfluid 3He-A. We
have shown that in the Ginzburg-Landau regime and in an axial magnetic field the circular
and the hyperbolic vortices form a stable two-dimensional lattice. We study also the spin-

wave spectra associated with these three types of vortices. We find that the radial vortex

gives rise to the transverse satellite resonance consistent with a recent NMR experiment in

rotating 'He-A by Hakonen et al. However, the absence of other satellite resonances is quite

puzzling.

I. INTRODUCTION

As is well known the condensate of superfluid
He-A is described in terms of the axial state (i.e.,

the Anderson-Brinkman-Morel state), which in-
volves both the spin and orbital degrees of freedom.
Unlike superfluid He, it is known that the super-
fluid He-A supports analytic vortices' with a soft
core, when superfluid He-A is rotated and when the
rotation speed is not too large. However, until re-
cently there has been no experimental evidence for
analytic vortices in the rotating superfluid He-A.
This situation appears to be completely changed by
a recent nuclear magnetic resonance experiment by
Hakonen et al." in rotating superfluid He-A in a
coaxial magnetic field. Hakonen et al. observed a
new transverse satellite resonance when superfluid
He-A is rotated. As we shall see, the observed satel-

lite frequency is consistent with the spin-wave mode
associated with a radial (analytic) vortex in a strong
magnetic field. Furthermore, the intensity of this
satellite resonance is found to increase linearly with
the rotation speed Q. Therefore, we believe that the
satellite resonance observed by Hakonen et al. pro-
vides the first evidence for analytic vortices in
He-A.

The object of this paper is to study theoretically
the spin-wave spectrum associated with analytic vor-
tices. For simplicity we shall limit ourselves to the
Ginzburg-Landau regime. Furthermore, we shall
consider the case where a strong magnetic field is
applied parallel to the axis of rotation of superfluid
He. In this situation, the d vector describing the

spin degrees of freedom of the condensate lies al-
most in the x-y plane, which is perpendicular to the
rotation axis, except possibly near the centers of vor-
tices. In this situation the spatial configuration of d
in rotating He-A is mapped to the spatial distribu-
tion of disgyrations. Indeed one can fill the two-

dimensional space with a regular array of disgyra-
tions with n =1 (radial or circular) and n =1 (hy-

perbolic), so that the sum of the indices n over all

disgyrations is zero. Far away from the center of
each vortex, 1, the orbital vector, is parallel to d to
minimize the dipole energy. Therefore, in the pres-
ence of a strong magnetic field we have three types
of 2m analytic vortices ': the radial, the circular,
and the hyperbolic vortex as shown in Fig. 1. Then
the two-dimensional vortex lattice can be construct-
ed by the radial and the hyperbolic vortices or by the
circular and the hyperbolic vortices as shown in Fig.
2. We shall analyze the spin-wave modes associated
with these three types of vortices separately. As
mentioned already the magnetic resonance frequen-
cy associated with the radial vortex is consistent
with the experiment, while those with other vortices
have much larger dipole shifts.

According to Fujita et al. , the vortex configura-
tion with the lowest free energy involves the circular
vortex rather than the radial vortex at least in the
Ginzburg-Landau regime. This situation is unal-
tered even in the presence of a high magnetic field.
Therefore, why the radial vortices rather than the
other vortices are observed by Hakonen et al. is
somewhat puzzling. On the other hand, in the low-
temperature region, we can show that the radial vor-
tex is more stable than the circular vortex (see the
Appendix). Therefore, it is possible that at the actu-
al temperature where the nuclear magnetic reso-
nance experiment is carried out the radial vortex is
already more stable than the circular vortex.

More disturbing is the fact that there appears to
be no signal from the hyperbolic vortices. Accord-
ing to our present analysis, the hyperbolic vortices
should exist in all temperatures in order to complete
the vortex lattice. However, the satellite frequency
associated with the hyperbolic vortex is quite close
to the bulk resonance frequency and therefore it will
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FIG. 1. Three types of analytic vortices are shown: (a)
the radial vortex, (b) circular vortex, and (c) the hyperbol-
ic vortex. The arrows indicate the direction off. Omeans
that fis directed upward.
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be more difficult to detect. Clearly more accurate
determination of the NMR spectrum is desirable.

II. THREE TYPES OF ANALYTIC VORTICES

The order parameter of 3He-A is described by A„„,

A„„={6p/~2)Z„d„, (1)

where the indices p and v refer to the orbital and
the spin degrees of freedom, respectively. In the
Ginzburg-Landau regime and in the presence of a
magnetic field in the z direction the free energy is

given by

F=FkI„+Eg)+EH

where

E'„= ,K f d'r[—3IV b, I'+I Vxh I'

+2I(' V)d I'

+
I
~ I'(I v d I'+

I
v xd I'}]

(2)
I
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FIG. 2. Two possible vortex lattices are shown: (a) the
radial-hyperbolic vortex lattice, and (b) the circular-
hyperbolic vortex lattice. The arrows indicate the direc-
tion of l. 8 means that I is directed upward while 8
means the downward direction.

+i(sinyx+cosyy)], (3)

we find the free energy for a single vortex per unit
length f,

where in the weak-coupling theory I{, is given by'

6 N 7g(3)
5 8m» (2mT}z

and ED and EH are the dipole energy and the mag-
netic energy.

In the presence of a strong magnetic field in the z
direction, we can parametrize d and 6,

d=( —cosgx+singy)sinX+cosXz,

Z=e' [cosp(cosyx —sinyy)+sinpz

f=—f d r{[2(Va)+cosp{ Vy)] +3(Vy) —2sin p[(cosya„—sinya») +(sinyy„+cosyy»)']
2

+(Vp} +2sin p(cosyp —sinyp„}

+2sinp[p„(a»+cospy») p»(a, +c—ospy„)

+2(cosyp, —sinyp»)[siny(a„+cospy„)+cosy(a»+cospy»)]2

+2[(1+cosp) I
VX I2+sin p(sinyX„+cosyX„)

+sinzX[(1+cos'p)
I Vg I2+sin'p(sinyp„+cosy'»)']2

+4/~ [1—[cosXcosp+sinXsinpcos(y —p)]2}+4/~ cos2X), (4)

"he~~ we assumed that a, p, y, X, and g are independent of z. Here gi and gH are the dipolar coherence length
(fi —CJ/Qg 10 pm) and the magnetic coherence length [(H=(Hp/H)gi where Hp=27 Oe]. In the experi-
ment of Hakonen et al.' with H=2840e, we obtain $H=10

We are interested in an isolated vortex configuration not only because it is the simplest case to be analyzed
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but also because the vortex density is quite low in the actual experimental setup. Furthermore, we shall confine

ourselves to the solutions with axial symmetry in the case of the radial-circular vortex, while in the case of the

hyperbolic vortex we shall allow small axial asymmetry. We shall consider, in the following, two separate

cases.

A. Radial-circular vortex

The radial and circular vortices belong to a family of solutions given by

4=r= 0—+ro (5)

where P is the azimuthal angle and ys is a constant; yo ——0 corresponds to the radial vortex while yo
——m'/2 to

the circular vortex. Furthermore, P and X depend only on r the radial distance. Then Eq. (4) reduces to

1'0

f =~A f r dr —[5—gcosP+3cos P+2sin X(2—sin yosin P)]
0 f~

+ (1+2cos yosin P)P„+2(2—cos yosin P}X,+4(j sin (X—P)+4' cos X (6)

where A = —,Kho and ro is the radius of an effective circle occupied by a single vortex line; ro can be expressed
in terms of the vortex density n„or the rotation speed 0 as

ro (mn„) '——~ =(IC/2nQ)'~, .

where K =h/(2m) =0.661X10 ' cm /sec.
We shall determine P and X variationally; we assume that P(r) and X(r) are given by

1, 2 2cosP=e-'&"' cosx=e-'&' (8)

where 7} and g are the variational parameters. The assumption (8) is consistent with the known behaviors" of
P and X; P and X increase linearly with r from the origin where P=X=0. On the other hand, the approach to
Il=X=m. /2 for large r is exponential, which is somewhat slower than the ones described by Eq. (8). Then we
find

f=mA I(9—2 sin yo}in[(y~}'~ rlro] —41n(g/g)+( —,—sin yo)ln2+ —„m +cos yo

+[ isrn02P3)cos'ro](~C)'+gi'~ '+(4H' 4&'4 'I—,

where

(9)

y~ =1.781. . . .

ln Eq. (9) we have kept only the lowest-order terms in (rl/g) as q/g-10 '. Minimizing Eq. (9) with rl and g,
we obtain

sin yo —2((3)cos yo
rl~=2)I 5 —2sin yo+8 z p

5 —2sjn yo
(10)

1 (sin yo —2((3)cos~yo)
1 — 1+2 , p

5 —2sin yo

—21np+ —„m +—,+cos yo

where p =(gH /gj ) . Finally the free energy of a single vortex is given by

f =@A (9—2sin~yo}ln

+ 2cos yoln2 ——,(5—2 sin yo)ln(5 —2 sin yo)+Op (12)
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5 7 3—21np+, z ir + —,——, ln3

The free energy is minimized when yp=7T/2 which corresponds to the circular vortex:

(py)1/2r
f„„=nA 71n (13)

Similarly for the radial vortex with yp ——0, we obtain

(~g)1/2
f„,=~A 91n —21Ilp+ 12' + —, +21n2 ——, ln5

5 2 11 5

(14)

Therefore, even in the case of a strong magnetic field where p « 1, we have

frad &fcirc (15)

in the Ginzburg-Landau regime. This generalizes the result obtained by Fujita et al. However, as we shall see
in the Appendix at low temperatures f q &f„„;the radial vortex becomes more stable than the circular vortex.
It is of great interest to identify the transition temperature where f~d f„„,. Ou——r variational solution for f d
with 2) = —,gi and g = —,gH is compared with a numerical solution by Passvogel et al."and we find a good
agreement for r & gq. For r & gq our solution approaches p=e l2 somewhat faster than the numerical solution.

B. Hyperbolic vortex

The hyperbolic vortex is found by assuming that

a=((), y=7'=y+yo,
It can be easily seen that the vortex energy is independent of pp' pp controls the orientation of the vortex in the
x-y plane. Therefore, without loss of generality we can take yo

——0. Then Eq. (4) reduces to

10

f&„z —,A f d(I) f r——dr —2{5+8cosp+3cos p+2sin +[2—sin2(2$)sin2p]j

+[1+2cos (2$)sin2p]p, +2[2—cos (2$)sin2p]X,

+ 4/i sin (g —p)+4gtt sin g

Now, again assuming that p and X are given by

cosp= —e ' t' cosX= —e-'&'2 2

where we assume that 2) depends on p as well, we obtain

(17)

5m'
fh~ ———,A f dP [5—2sin (2$)]In[(y*)'/ atro]+41n[(2y~)'/ pro] ——In2+ +cos (2P)

'2

+ [sin2(2rIi) —2((3)cos2(2$)] +gq (2) —g )+gH g (18)

Minimizing fh„~, we obtain

i) =2[4+cos(Q)] 'g'i

O'= —,CH'

and

(19)
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fhr& m——A 81n (ya)' z——21ryp —„ir p —,+—,ln2 —[2[in(4p~15)pin —,]p2 ——,'~15j (20)

&s was already mentioned in Sec. I, in order to form a regular vortex lattice, we need either the circular-
hyperbolic vortex pairs or the radial-hyperbolic vortex pairs. The parameters t) and g characterizing these
three vortices are summarized in Table I.

III. MAGNETIC RESONANCES

The spin-wave spectrum in the presence of an inhomogeneous texture is analyzed, by studying a small oscil-
lation of d around the equilibrium configuration. ' ' Parametrizing d as

d =[—cos(pp f)x+sin(pp f)y]sin(X pg)+ cos(X pg)z (21)

we derive the eigenvalue equations for f and g, where f and g describe the longitudinal mode and the transverse
mode, respectively. We shall consider, in the following, two separate cases.

A. Radial-circular vortex

In this case the eigenvalue equations are given by

A ff = ———[r( 1 ——, cos yosin p)f, ]+ ( 1 —cos p)fr 3r (22)

l a
Asg= ———[r(1——, cos yosin P)g„]+(1—2cos P)g, (23)

g(r, P)=g(r)e (24)

From the eigenvalues of Eqs. (22) and (23},the satel-

where yo is the parameter introduced in Eq. (5) and
cosp is assumed to be given by Eq. (8}. The frequen-
cy and the length are written in units of Qq and gi.
In deriving Eq. (23), we take into account the fact
that g(r, P}, which couples to the homogeneous rf
field has the P dependence of the form'

I

lite resonance frequencies are given by

coi =RiQg, cot —(c00 pRt Qg )
sat sat 2 2 2 1/2 (25)

where RI ——kf, R, =kg, and coo is the Larmor fre-
quency.

We have determined variationally the eigenfre-
quencies A,f and A,g for the circular and radial vor-
tices, which are summarized again in Table I.

Furthermore, the intensity of the transverse satel-
lite resonance is obtained from

TABLE I. Size parameters t) and g and the dipole shift
parameters R, and R~, which describe the satellite reso-
nance frequencies of three types of analytical vortices are
summarized. The radial vortex is most extended in space
and as a consequence gives rise to the smallest dipole
shifts.

00 00

I=2tr f rdrg f rdrg

and we find for the circular and the radial vortex

I„,= 14.8( f2ni}I g
——2. 9. (2ng2i),

respectively.

(26)

(27}

Vortex Rr Ri B. Hyperbolic vortex

Radial

Circular

Hyperbolic

+2/5

V'2/3

2
4+cos(4tt} )

1

1

vz

0.702 0.943

0.935 0.997

0.8485 0.988

In this case the corresponding eigenvalue equa-
tions are given by

Aff = ———[r ( 1 ——, sin P)f, ]+(1 —cos P)fr Br

(28)
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Ihyi, ——6.4(2ngi) . (30)

IV. CONCLUDING REMARKS

We have studied the magnetic resonance spectra
of three types of analytic vortices in superfluid
He-A in a strong axial magnetic field. We find that

out of the three types of vortices, the observed satel-
lite frequency is consistent with the radial vortex.
Furthermore, the intensity of this resonance in-

creases with the rotation speed as

I„~ , I n—d—„—=2.9(2~$ )i—=2.9(gi/ro) (31)

in the equilibrium configuration. This linear depen-

dence appears to be also consistent with the experi-
mental observation.

On the other hand, if we limit ourselves to the
Ginzburg-Landau regime, the circular vortex is

more stable than the radial vortex. Therefore, we

believe that a transition from the circular vortex to
the radial vortex should take place slightly below the

superfluid transition temperature, since we know at
I

A, g= ———[r(1——sin p)g, ]+(1 2—cos p)g .la 2

rBr 4

(29)

Here we have neglected P dependence of g for sim-

plicity. Again the eigenvalues for f and g are given
in Table I. We have also the related intensity

low temperatures the radial vortex is more stable.
Another puzzling aspect is that there seems to be no
indication of the existence of the hyperbolic vortex.
However, since the related satellite frequency is so
close to the bulk resonance, it is possible that the sa-
tellite resonance associated with the hyperbolic vor-

tex may be completely masked by the bulk reso-
nance.

After completing this work, I received a report by
Seppala and Volovik. ' They analyzed the satellite
frequencies of the singular and analytic vortices and
concluded that the experimental observation is con-
sistent with existence of analytic vortices. However,
they studied only the case of the 4n vortex rather
than the 2~ vortex studied in this paper.
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APPENDIX: VORTEX FREE ENERGIES
AT LOWER TEMPERATURES

The free-energy function which is valid for all

temperatures is obtained by Cross, ' and can be
written as

'y g~ f d'ir[g, (l g@)i+~&(fxP@)~+X,{fiP) [curl I —1(l.curl /))

g4(p@—) l(l curl 1)+F5(div I) +E6(l X curl 1) +&7(I curl l )

+
~

(l X '(I)d
~

~+)i,
~

(1 V )d
~

+pi [1 (1 d) ]+—gH d, ],
where

&i=ps((/PZi ~ &z=psi/pÃi i &3=&a(ps((/Psih &4=&i~ &s= 4(1+ 3I'i) Psi/pFi

(A 1)

p 0

&6=(1+ I~i ) ps[(+ i 0 Ps[[ + 3'P
0 1 1 0 psll 2

12 1+—,Fi(p„i/p) p
csin

(A2)

+7= 3 (1+ 3I'i) ~psi+Ps[)i+ — i, (ps())'/p
4 1+-'Fl(p'll/p)

spin

A, =PJ'S'~"/pfz", XivCi ——(iil /2m) pj's",

and Ps;, Pg", and Ps; are the mass, the sPin, and the irreducible suPerfluid density, and y is another quantity

introduced by Cross, '

~4

3f dQ P3 ~()
P~3
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({}(p)=1——f dg sech'[ —,PE(p)]

with

The free energy for analytic vortices are obtained as in Sec. II. However, it is necessary to identify 4 by

V4= Va+cospVy

and l is given by

I = ( —cosyx+sinyy }sinp+ cospz .

Then, making use of the same variation functions for p and X, we obtain for the radial-circular vortex,

f=nX~Cj 'I [(K~+Ks+A, 1)sin y—o+(K2+K5)cos yo]ln[(y )' pro]+1n[(y )' pro]

(A3}

(A4)

(A5)

+ „n (co—s yoK&+sin yoK7+1) ——, cos yo(K5 Ke)+—, [gq —r) +(f~ fp ')—g ']J (A6)

By minimizing f for g and g, we obtain

r)'=(i '[2«yo)\ '

0'= —,(4'—4»
with

K(yo) =(KI+K6+k —1}sin'yo

+(K2+Kq)cos yo .

(A7)

(A8)

K(0}=4+( —,A) ——,B))e

and (A12}

7T 3K —= —,+(—,A) B))e . —
4

Then making use of F~ and FI at the melting pres-
sure' ' F

&
——15.66 and F] ———1.33 we obtain

From this it is easy to see that the radial vortex be-
comes more stable than the circular vortex when

K(0) (K
2

(A9)

In the vicinity of the Ginzburg-Landau regime
E s are expanded in powers of e= 1 —T/T, as

1 1 1

K) ———,+ —,( —,A )
—B))e,

K(0)= —,+3.67e, K —=-
~ +3.23e . (A13)

K) =Kg =K3 K4 (3+F) )——/(3+——F) ),
K5 , (1+—,F))——— (A14)

Therefore, within the present approximation, the
circular vortex is more stable than the radial vortex.

On the other hand, in the low-temperature regime
we have

K2 = 1+—,(A ) B( )e, —
1 1

E5 ——
4
——,B)e,

K6 ——
~ + —,( —,A I —BI)e,

A. = —,—6B)e,
where

(Alo)

2Tc
E6——K5 2+ —,FI+8 ln

T

Substituting this, we obtain
1K(0)=(1+—,F I } '(

~ + —,F))

(A15)

Ai Fi /(1+ ,Fi)———
and (Al 1)

7T 1 g i 5 7 2Tc
K —=(1+—F'} FI ——+21n—

3 I 12 6 T

BI ——FI /(1+ —,FI )

and Fi and FI are the Fermi-liquid coefficients.
Substituting (A10) into (AS), we obtain

which implies that K (rr/2) &K (0) in the low-
temperature region. Therefore, at low temperatures
the radial vortex becomes more stable than the cir-
cular vortex.
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