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As a model for a phase transition in an inhomogeneous system, we consider a system
where the local transition temperature varies in space, with a correlation function obeying a
power law ~x ~° for large separations x. We extend the Harris criterion for this case, find-
ing that for a <d (where d is the spatial dimension) the disorder is irrelevant if av —2>0,
while if @ >d we recover the usual Harris criterion: The disorder is irrelevant if
dv—2=—a>0. An m-vector system of this type is studied with the use of a
renormalization-group expansion in €e=4—d and 8=4—a. We find a new long-range-
disorder fixed point in addition to the short-range-disorder and pure fixed points found pre-
viously. The crossover between fixed points is found to follow the extended Harris criterion.
The new fixed point has complex eigenvalues, leading to oscillating corrections to scaling,
and has a correlation-length exponent v=2/a. We argue that this new scaling relation is
exact and applies more generally than just to the specific model. We show that the extended
Harris criterion also applies to percolation with long-range-correlated site or bond-
occupation probabilities, so that the scaling law should be obeyed by such systems. Results
for the percolation properties of the triangular Ising model are in agreement with these pre-
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dictions.

I. INTRODUCTION

This paper is concerned with the effect of intro-
ducing a small amount of quenched disorder into a
system which, when pure, undergoes a second-order
phase transition. We restrict our attention to
“random-temperature” disorder which arises, for ex-
.ample, from a small amount of bond randomness or
from a small density of impurities which cause ran-
dom variations in the local transition temperature
T.(X). We do not consider random “magnetic
fields” which couple linearly to the order parameter,
or random anisotropy fields which break the local
symmetry in the order-parameter space.

This work differs from most previous work in
that we do not restrict ourselves to randomness with
short-range correlations; rather, we wish to consider
fluctuations in T,(X) arising from “inhomo-
geneities” in the system which are characterized by
a correlation function that falls off relatively slowly
with distance.

In the body of this paper we are concerned with a
model where the correlation function
(T (X)T(Y))ay— (T, )2, falls off with distance as a
power law ~ |X—¥ | ™% where a is a constant.
(More general situations are considered in the ap-
pendices.) A power-law correlation is the simplest
possible assumption and has the possibility of scale-
invariant behavior, with new fixed points of the re-
normalization group, and new values of critical ex-
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ponents. In an actual experimental system one
would probably not expect to find that fluctuations
in T (X) are truly represented by a power law; how-
ever, if fluctuations in T, arise from a number of
different causes, with a wide dispersion in charac-
teristic length scales, it may well be that the result-
ing correlation function is approximated over a
number of decades by effective power-law behavior.
(For example, it appears that time variations of
quantities in a wide variety of situations are charac-
terized by a power spectrum proportional to the in-
verse of the frequency, although no general explana-
tion for the phenomenon has been found.!) Further-
more, we hope that study of the case of a simple
power-law correlation function may help develop in-
tuitive insights to understand better the more com-
plicated cases.

If a sample contains straight lines of impurities or
straight dislocation lines of random orientation, then
the quenched disorder may be described by an iso-
tropic correlation function of the power-law form
considered in this paper, with power a =d —1.
Random planes of impurities would give a =d —2.
We have recently received a report by Boyanovsky
and Cardy? in which they consider e;-dimensional
“lines” of impurities of a single orientation, with
perfect correlations in the disorder along the lines
and no correlations in the other directions. (The
same system was also considered earlier by Doro-
govtsev.) As Boyanovsky and Cardy point out,
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their system is anisotropic since the lines of impuri-
ties single out a direction, and they find an anisotro-
pic disorder fixed point. Nevertheless, there are a
number of similarities between their results and
ours.

An early investigation of the effects of quenched
disorder on a continuous phase transition was the
exact analysis of McCoy and Wu*® on the two-
dimensional Ising model with rows of differing
bonds. They found a “smeared” transition, which
exhibited a smooth specific heat through the transi-
tion region. Later studies concentrated on systems
in which the disorder of the transition temperature
had only short-range correlations.  Harris®
developed a consistency criterion for a random
transition-temperature system to undergo a second-
order transition with the same exponents and critical
properties as the corresponding pure system. The
criterion is that the specific-heat exponent ¢ must be
negative for the pure system. Later authors,’~!!
with the use of the renormalization group (RG) on
the n-vector model in spatial dimension d near 4,
found that the Harris criterion correctly predicts the
crossover to new behavior when «a is positive. Un-
like the long-range-correlated McCoy and Wu
model, the new behavior is still a second-order tran-
sition (described by a new short-range-disorder fixed
point), but with new critical exponents. Further-
more, the disordered fixed point has a nonpositive
value of a, so that the new fixed point may be said
to be consistent with the Harris criterion.

When long-range power-law correlations in the
disorder exist the Harris criterion must be modified.
In Sec. II we find that the criterion for the long-
range disorder to be irrelevant is that av —2 must be
positive if @ <d, while dv —2= —a must be positive
(the normal Harris criterion) if a > d, where v is the
exponent for the temperature dependence of the
correlation length.

The renormalization-group approach of Grinstein
and Luther’ can be readily extended to the case of
long-range quenched disorder, provided that a and d
are both close to 4. We find in this region that our
extended Harris criterion correctly describes the
crossover in critical behavior as the number of
order-parameter components m, the spatial dimen-
sion d, and the range of the correlations a are varied.
Depending on the values of a, d, and m (and in some
cases on the amplitude of the imposed disorder) we
find one of five possibilities for the asymptotic criti-
cal behavior—described by the Gaussian fixed point,
the Wilson-Fisher “pure” fixed point, the short-
range-disorder fixed point found by previous au-
thors,” ! a new long-range-disorder fixed point, or
a runaway behavior which carries the system out of
the region of applicability of our calculation, but

likely indicates some kind of smeared transition.!?
A summary of the regions where the various types
of critical behavior occur, for a and d close to 4 and
m >1, is given in Figs. 1 and 2. We expect that as
the range of the correlations is increased the system
will eventually exhibit crossover from a second-
order transition to a smeared transition. However,
in the region of validity of our calculation, a =4—38
with §=0/(€), we do not observe such crossover
behavior for d <4, while for d >4 the runaway,
which may be an indication of a smeared transition,
appears as a decreases through 4 and then disap-
pears again at a smaller value of a as the range of
the correlations increases; so that for still longer-
range correlations the system again has a second-
order transition. When the long-range-disorder
fixed point describes the behavior, the critical ex-
ponent v takes on the value 2/a to the accuracy of
our calculation, which means that our extended
Harris criterion is marginally satisfied. (We argue
that the relation v=2/a is exact at the fixed point.)
Experimentally, the crossover to behavior
described by the short-range-disorder fixed point has
not been observed, most likely because a is negative,
or only slightly positive, for pure m-vector models
in two or three dimensions. Thus, either the disor-
der is irrelevant or the crossover region is small.
However, if a system with long-range correlations
could be made, even if the correlations were not ex-
actly power law in form, the results of this study in-

Number of Components, m

-
S=4-a

FIG. 1. Regions in the §-m plane where the various
types of critical behavior occur for d <4 (€ =4—d). Here
8 =4—a where a is the power of the falloff of the disor-
der correlation function, and m is the number of order-
parameter components. The crossover between pure and
short-range-disorder behavior is determined by the Harris
criterion: The pure is stable for the pure specific-heat ex-
ponent o, <0; the crossovers between pure or short-
range behavior and long-range-disorder behavior are
determined by the extended Harris criterion: The pure or
short ranged is stable if av—2>0, where v is the
correlation-length exponent v OF Vghort, TESpeECtively.
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FIG. 2. Regions in the § —e plane where the various types of critical behavior occur for the number of order-parameter
components (a) 1 <m <4 and (b) m>4. Here § =4—a where a is the power of the falloff of the disorder correlation func-
tion and €e =4—d. The Gaussian, pure, and short-range-disorder behaviors become unstable to the long-range disorder ac-
cording to the extended Harris criterion: The crossover occurs when av —2 goes negative, where v is the correlation-length
€Xponent Vgauss, Vpures O Vsnort, Tespectively. In the cross-hatched regions separating the long-range and runaway behaviors
the long-range fixed point has a finite domain of attraction; those systems which lie outside of the domain of attraction ex-

hibit runaway behavior. See Sec. IV.

dicate that new behavior could well be observed. If
the correlations are sufficiently long ranged, disor-
der will be relevant for any system, and the cross-
over exponent (2v ~!—a) can be large.

Our renormalization-group analysis is carried out
for a Landau-Ginzburg-Wilson Hamiltonian of the
form

BH = [ do{5[r+6r()]|¢(3)|?

+3¢ | Vo ()| 2+u |$(X) |4,
(1.1)

where ¢(X) is the m-component order parameter,
B=(kgT)~', and ©&r(X) represents quenched
random-temperature disorder, with

(8r(X)),=0 (1.2a)
+(Br(X)8r () =g(|X=7 ), (1.2b)
where ( - - - ),, denotes an average over the spatially

homogeneous and isotropic quenched-disorder prob-
ability distribution. We shall take g(x)~x~¢ for
large x, so that its Fourier transform obeys

glk)~v +wk -2 (1.3)

for small k. Note that g(k) must be positive defin-
ite, so if @ >d, then v >0, while if @ <d, then w > 0.
The case w =0 corresponds to the short-range case
considered in the past, where g was taken to be a 8
function. Also, if @ >d, then in the long-wavelength

limit g(k)—const, as in the short-range case. Thus
disorder with long-range correlations which fall off
with distance faster than x ~¢ leads to the same criti-
cal behavior as that due to short-range correlated
disorder. In Appendix A we briefly discuss the case
g(x)~ A4;x ~% finding, as one might expect, that
it is the smallest a; which determines the critical
behavior.

The techniques used to analyze the system are an
extension of those used by Grinstein and Luther’ for
the short-range case. We use the replica trick”!1":1®
to obtain a translationally invariant effective Hamil-
tonian, and keep only the lowest term in its cumu-
lant expansion. We then apply the renormalization
group to the effective Hamiltonian, expanding
around the Gaussian fixed point. We find that we
cannot take a to be arbitrary, it must be near 4.
Thus we carry out a double expansion in € =4—d
and § =4 —a, with € and § of the same order, find-
ing the fixed points and eigenvalues to O (€,5).

As mentioned above, we find the short-range-
disorder fixed point found in previous work, and
also a new long-range-disorder one, with
correlation-length exponent v=2/a. For much of
the range of € and 6 the long-range-disorder fixed
point has complex eigenvalues in the directions oth-
er than the temperature direction. This leads to os-
cillating corrections to scaling, and to the possibility
that the fixed point can go unstable (via a Hopf bi-
furcation) without any other fixed point becoming
stable. This is discussed at greater length in Sec. IV.
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The fixed point in fact goes unstable (via a subcriti-
cal Hopf bifurcation) when 8§ ~1.8 | €| with € <O,
leading to spiralling runaway in the RG flows. This
runaway may be a crossover to a smeared transition;
but the fixed point goes unstable as 8 decreases (i.e.,
as the range decreases), not as it increases as we
would have expected.

As mentioned above, Boyanovsky and Cardy’
have considered €;-dimensional “lines” of impurities
of a single orientation. They found that the cross-
over from the pure behavior to behavior described
by an anisotropic long-range-disorder fixed point is
described by an extension of the Harris criterion
similar to that derived here. As in our case, their
long-range-disorder fixed point has complex eigen-
values.

The special case of the Ising model (m =1) must
be dealt with separately. For m =1 there is an ac-
cidental degeneracy in the recursion relations when
only short-range correlations are included, mak-
ing”*14 the short-range fixed point and its eigen-
values order €!/? rather than order e. Including
long-range correlations, we find that the short-range
fixed point is stable until § =0 (e!/?), when it ex-
changes stability with the long-range fixed point,
consistent with the extended Harris criterion. To
actually map out the stability and position of the
long-range fixed point we would have to find the re-
cursion relations to higher order in the interactions,
a program which has yet to be carried out.

In the final section we consider the percolation
problem with long-range correlations in the site- (or
bond-) occupation probabilities ~x ~¢ for large dis-
tances. We argue that the extended Harris criterion
applies to this problem, and thus that the scaling re-
lation v=2/a should be satisfied when the long-
range correlations are relevant. Examining the re-
sults of Klein et al.'> on the percolation properties
of the triangular Ising model with temperature
T >T,, we find that our expectations are satisfied.
For T >T, the correlation function falls off ex-
ponentially at large distances and normal percola-
tion critical behavior occurs. However, for T =T,
the correlations have power-law decay and the ex-
tended Harris criterion indicates that the disorder is
relevant. Klein et al. in fact find different percola-
tion critical behavior, which satisfies the scaling law
v=2/a.

The remainder of this paper is organized as fol-
lows: In Sec. II we derive the extended Harris cri-
terion mentioned above. The RG recursion relations
are derived in Sec. III, and their fixed points and
eigenvalues are determined in Sec. IV. We pay par-
ticular attention to the crossover of stability between
the fixed points, and compare it with the predictions
of the extended Harris criterion. Section IV also

contains a discussion of the effects of complex
eigenvalues since the eigenvalues of the long-range-
disorder fixed point are found to be complex. In
Sec. V we consider the long-range-correlated per-
colation problem. In Appendix A we discuss a
slightly generalized model in which g(k)
~v+ w,-k-(d_a"). Finally, in Appendix B we
consider a more general model where g(x) is an ar-
bitrary correlation function, and we develop
renormalization-group recursion relations correct to
first order in e=4—d, and to first order in
8(k)=€ —d1ng(k)/d1nk, assuming that g(k) and
the quartic interaction constant are of order e.

II. EXTENDED HARRIS CRITERION

Consider adding a small amount of disorder to a
system which undergoes a normal second-order
transition. The disorder may be irrelevant, in which
case the system will continue to exhibit the pure
critical behavior; or the disorder may be relevant,
driving the system to some new behavior, such as a
smeared transition or a second-order transition with
new exponents. The Harris criterion® arises from
examining whether it is consistent for the disordered
system to undergo a second-order transition with the
pure exponents, specifically with the pure
correlation-length exponent v. When the criterion
fails we expect new behavior to occur. In fact, the
results of earlier work’~!! and of this paper find
that the crossover to new behavior occurs exactly at
the point at which the pure transition is no longer
consistent.

Harris originally derived his criterion for the case
of random-temperature disorder, i.e., a system with
an effective local critical temperature T,.(X), with
only short-range correlations in the disorder. Thus
g (X) falls off rapidly with distance, where

g(X—Y)=(T(X)T,(¥))ga
= (T, () T(¥))ey— (T, )2, (2.1)

with ( - -+ )&, the connected impurity average. We
shall extend the argument to the case of long-range
correlations in the disorder which falls off as a
power law, g(X)~ | X | ~° for large x. We wish to
determine if it is consistent for the system to under-
go a second-order transition with the pure
correlation-length exponent v. To this end consider
dividing up the system into regions the size of the
pure correlation length §&. We then ask if the varia-
tion in the critical temperatures of the regions be-
comes negligible as T approaches T,. We expect
that spins will be well correlated for distances up to
the correlation length &, so we take the transition
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temperature of a region of size £ to be the average of
T.(X) over the region. Defining reduced tempera-
ture t =(T —T,)/T, and local reduced temperature
t(X)=[T —T,(X)]/T,, we have (t(X)),,=t, and
the effective reduced temperature of a region is

z,,=—117 [, d% 1), (2.2)

where the integration is over the region of volume
V =£¢9. The variance of t, will be

AzE((tV)z :V
=Ti? [ d%x [ d% (@135,

1 1 -
wdek f % f asa3)

~&—4 fogxd“lg(x)dx , (2.3)

where the last step assumes that g is isotropic and

that £ is large. Taking g(x)~x ~° for large x, and T

near T, so that ¢ is large, we find

const, a >d
A’ ~E~% g, a=d 2.4)
9% a <d.

The picture of a pure second-order transition is con-
sistent if A%2/¢? vanishes as t—0. Now & ~t~7 so

tdv—2, a>d

A%/t~ t¥ " IntY, a=d (2.5)
2 a<«d.

Thus for stability of the pure-system critical

behavior we must have

dv—2=—a>0, a>d
(2.6)
av—2>0, a <d

where in the first relation we have used the scaling
law'® dv=2—a to relate v and a. For a >d we

have recovered the original short-range Harris cri-
o

BHyr=3, [ d%[3r |4%3) > +3¢ | Vo4 |2

terion; in this case the long-range tail of g(x) is im-
material. However, for a <d the fact that g(x) is
long ranged leads to a new requirement for stability
of the pure fixed point. Notice that for a <d,
av—2<dv—2; so this new requirement is more
stringent than the original one.

III. RECURSION RELATIONS

We wish to investigate the properties of a disor-
dered system defined by the Hamiltonian equation
(1.1). Because the disorder is quenched, it is the free
energy which must be averaged over the disorder.!”
It is convenient to use the replica trick, which re-
sults in an effective Hamiltonian H ., which is a
functional of n replications of the original order
parameter. In the limit n—0 we obtain the aver-
aged free energy.”!"!3 The effective Hamiltonian
H 4 is translationally invariant, so it is straightfor-
ward to apply RG techniques in its analysis, taking
n—0 in the final results.

We write the partition function

Z=Tr{¢,1e*5H(¢’ . (31)

Then the averaged free energy can be written

—F=(InZ),,
=lim —1- ln(Z")av
n—0 n

—PH (%))

=lim 1 InTr, , q€ (3.2)

n—0 R (¢
where we have introduced » replicas of ¢, {¢“} with
the replica index a=1,2,...,n. The effective
Hamiltonian H ., defined by

—BH a
e g eff=<He—ﬁH(¢ )>av ’ (3.3)
a

can be expressed as a cumulant expansion in
—B >, H(¢%. The first cumulant vanishes since
(8r),y=0 [Eq. (1.2a)]. Including the next cumu-
lant, we find

+u |4 1= 3 [dixdig(X—7) 6% |2 $AF) |2, (3.4)
a,B

where g (X —¥)=5{8r(X)87(F))4. Notice that the
term involving g couples the different replicas. In
the case that the correlations in &r are purely short
ranged, it is easy to see that higher-order terms in

|

the cumulant expansion are irrelevant’ ~!!; also, if 57
is Gaussian distributed all of the higher cumulants
vanish. Higher-order cumulants may be relevant if
the higher-order correlations are sufficiently long
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ranged; however, the higher cumulants generated by
the RG are irrelevant.!® In this paper we shall ig-
nore the higher-order cumulants. Thus our results
are applicable to systems with Gaussian disorder, or
to systems in which the ranges of the higher-order
correlations are sufficiently short. .

Upon taking Fourier transforms ¢(X)—¢(k), we
get the usual momentum-independent fourth-order
interaction u acting in a single replica, plus an in-
teraction which couples replicas with momentum
dependence —g(k), where g is the Fourier
transform of g. With g(X)~x ¢ for large x, if
a >d, then g(k) is constant for small momentum k,
and we recover the H of the short-range case
analyzed by previous authors. However, if a <d,
g(k)~v +wk ~'9=9 for small k, and we have, in ad-
dition to the momentum-independent interaction
—v, the momentum-dependent interaction
—wk —(d —a)_

We carry out the RG procedure! expanding in
the interactions u, —v, and —w. We shall find that
at the fixed points of the RG the couplings u, v, and
w are O(€,6) [where e=4—d and § =4 —a and we
take 6 =0(€)]: So in order to calculate fixed points
and eigenvalues to order € we must work to first or-
der in the couplings in calculating ' and to second
order in calculating u’, v’, and w’.

The interactions can be represented graphically as
in Fig. 3, where we have indicated the replica indices
and momentum dependence. Figure 4 shows the
contributions to r’, and Fig. 5 shows the contribu-
tions to #’, v’, or w’. In Figs. 4 and 5 a dotted line
represents either of the three interactions. Since we
are interested in the limit n—0, graphs which have
a free-replica index (which gives rise to a factor of

FIG. 3. Interactions u, —v, and —w. Notice that u
acts only within a single replica a, while the other two act
between arbitrary replicas a and 3, and that the w interac-
tion has momentum dependence g ~¢~%,

eooe
.......
. .

- . |
A u
; |
A\ |
(a) (b)

FIG. 4. Graphs that contribute to #'. The dotted in-
teraction labeled A4 is any of the three interactions.

n) do not contribute and are neglected. Thus the
graph of the form 4(b) appears only with the u in-
teraction, and graph 5(a) has at least one of the in-
teractions equal to u. Graphs 5(a) and 5(b) with in-
teraction A contribute to A’, while graph 5(c) contri-
butes to ' if either 4 or B are u, and to v’ otherwise.
Although there is a contribution to ¢’ from the
momentum dependence of graph 4(a) with A = —w,
the contribution is O[w(d —a)]=0(€?), so 7 con-
tinues to vanish to order € as in the pure system.

Proceeding in the usual way,!® we find differential
recursion relations

dr 4m +2)u  8(v+w)

—d?=2r+ 1+r - 1+r ’ (3.5a)
du 4m +8)u?  48u(v +w)

—=€u — s (3.5b)
dal =T (At (147

(a)

(c)
FIG. 5. Graphs that contribute to u’, v’, and w’. The
dotted interaction labeled 4 or B is any of the three in-
teractions.
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dv 8(m +2)uv  16v(v+w) = 16(v +w)?
— =€V — ’
dl (14r)? (14r)? (147)?
(3.5¢)
dw s 8(m +2uw  16w(v +w)
aw _ e,
dl (1477 (14-r)?
(3.5d)

where / is the logarithm of the RG length-rescaling
factor. We have scaled the momentum so ¢ =1, tak-
en the momentum cutoff to be unity, and absorbed a
factor of S, /(2m)? (S, is the “surface area” of the
d-dimensional unit sphere) into a redefinition of u, v,
and w. Notice that § =4 —a appears in the w recur-
sion relation (3.5d). Thus, only if § =0 (€) will the
recursion relations have fixed points with a nonzero
value of w*. Also, v is generated by w under the RG
[Eq. (3.5¢0)], so that even if v =0, dv /dl > 0; thus the
problem is not simplified by taking an initial Hamil-
tonian which neglects the v interaction.

The physical region of parameter space is u >0,
w>0, and v+w>0. Negative u would lead
to an unstable initial Hamiltonian. Now, g(k)
=v+wk 9% must be non-negative for the
momentum up to the cutoff since it is the Fourier
transform of the translationally invariant correlatiosn
function g. For a <d, the w term is dominant at
small k, so w must be >0. At the momentum cut-
off, g(1)=v 4w, so v+w must also be >0. For
a >d, w is irrelevant and the requirement is that
v>0. It is easy to see the encouraging result that, at
least to this order, the RG flows that start in the
physical region never leave it.

IV. FIXED POINTS AND EIGENVALUES

A system that undergoes a second-order transition
will, except when the temperature is exactly the crit-
ical temperature, be driven away from the critical
point toward either high or low temperatures by suc-
cessive applications of the RG. The critical
behavior is thus determined by a fixed point of the
RG recursion relations which is stable in all direc-
tions in parameter space except for the temperature
(r) direction. All of the order-€ fixed points we find
are unstable in the r direction; in what follows we
shall call a fixed point “stable” if it is stable in all
but that direction. Crossover in critical behavior
(from, for example, pure to disordered behavior as
the number of spin components is changed) corre-
sponds to an exchange of stability between fixed
points describing the different behaviors. Thus our
program is to find the fixed points of the RG recur-
sion relations [Egs. (3.5)], and then to diagonalize
the relations about the points. For most systems

studied in the past, the eigenvalues turn out to be
real.’® However, we shall find that one of the fixed
points (the long-range-disorder one) has a pair of
complex eigenvalues leading to RG flows which
spiral around the fixed point. The signs of the real
parts of the eigenvalues in all but the r direction
determine the stability of the fixed point. Only if all
of them are negative is the fixed point stable. The
eigenvalue in the r direction is positive for all of the
fixed points, and in fact can be seen to be v-1
where v is the correlation-length critical exponent.
The complex eigenvalues lead to oscillating correc-
tions to scaling.?

An important task in the following discussion will
be to identify the stable fixed points as we vary the
parameters a, d, and m. When the eigenvalues are
real, fixed points will (generically) change stability
as illustrated schematically in Fig. 6(a). As a
parameter (the number of spin components, the
dimensionality, or the range of the disorder) is
changed, an unstable and a stable fixed point ex-
change stability when they are coincident. This de-
scribes normal crossover behavior. Another possible
scenario not illustrated in Fig. 6 is that two fixed
points, one stable and the other unstable, meet and
become complex; since the recursion relations are
real these fixed points become inaccessible to the
system. In addition, when the eigenvalues are com-
plex, a Hopf bifurcation scenario is also possible.!
In Fig. 6(b) we show a schematic supercritical Hopf
bifurcation in which a stable fixed point goes un-
stable by giving off a stable limit cycle, and in Fig.
6(c) we show a subcritical Hopf bifurcation
(equivalent to a supercritical Hopf bifurcation run
backwards in “time”) in which an unstable limit cy-
cle enclosing a stable fixed point shrinks to zero size,
making the fixed point unstable.

The supercritical Hopf bifurcation scenario would
lead to very strange critical behavior described by a
stable limit cycle rather than the normal stable fixed
point. The scaling behavior would be oscillatory in
1, the logarithm of the length rescaling factor. In
the subcritical Hopf bifurcation scenario there is a
contraction of the domain of attraction of the stable
fixed point as the unstable limit cycle collapses, un-
til the domain vanishes and the fixed point is un-
stable. Thus systems will exhibit runaway behavior
when they are no longer attracted by the fixed point.
Different systems described by different initial posi-
tions in parameter space will display runaway
behavior at different times as the limit cycle col-
lapses.

The system we are studying displays the normal
exchange of stability among fixed points and the
subcritical Hopf bifurcation, but not the supercriti-
cal Hopf bifurcation. We observe the runaway of



420 ABEL WEINRIB AND B. I. HALPERIN 27

(a)

w
.
[s4]
<
@
o
; S
I
14
s
=t
z
a

PARAMETER

(b)

w
-
[s4]
<
g
>
-J ‘
I
1=
s
g
z
>
a

PARAMETER

(c)

w - -~
-
o ~
p N
g
s / [ / M
- 11— =
3 \\ y
Q /
= s
< -
P -
>- —
o

PARAMETER

FIG. 6. Three generic scenarios for the change of sta-
bility of a fixed point of a dynamical system as a parame-
ter is varied. The solid (dashed) lines represent stable (un-
stable) fixed points, and the solid (dashed) paraboloids
represent stable (unstable) limit cycles. (a) A stable and an
unstable fixed point meet and exchange stability. (b) The
supercritical Hopf bifurcation. A stable fixed point be-
comes unstable and gives off a stable limit cycle. (c) The
subcritical Hopf bifurcation. An unstable limit cycle col-
lapses around a stable fixed point making it unstable. No-
tice that in this last case the domain of attraction of the
fixed point shrinks as the limit cycle collapses.

RG flows which are outside of the domain of attrac-
tion of the long-range-disorder fixed point as the un-
stable limit cycle collapses (see Fig. 7). The fixed
point becomes unstable when 8 ~1.8 | € | with € <O.

FIG. 7. Schematic view of the shrinking of the domain
of attraction of the long-range-disorder fixed point just
before it becomes unstable by a subcritical Hopf bifurca-
tion as 8 —1.8 | €| with e<0. We show a projection of
the RG flows onto the u,(v +w) plane. The point marked
V1 is the long-range-disorder fixed point. The flow which
starts at point A is attracted to the fixed point, while that
which starts at point B is outside the domain of attraction
and spirals out.

We now find the fixed points of the recursion re-
lations and map their stability. If m =1 there is an
accidental degeneracy in the fixed-point equations
when w =0. Thus we consider the case m > 1 and
m =1 separately in the following two sections.

A. Casem >1

In Table I we show the values of the parameters
of the Hamiltonian at the six fixed points of the re-
cursion relations (3.5). We find the normal Gauss-
ian and pure fixed points, which determine the
behavior of the system with no disorder for d >4
and d <4, respectively. We also find the short-
range-disorder and unphysical (III) fixed points of
previous authors,”!! and in addition we find two
new fixed points, another unphysical (V) one, and
the long-range-disorder fixed point which describes
the behavior of the system when the correlations in
the disorder are sufficiently long ranged.

In Table IT we show the eigenvalues obtained by
diagonalizing the recursion relations about each of
the fixed points. The first column gives the eigen-
value with an eigenvector in the r direction; this
eigenvalue is equal to v~!, where v is the
correlation-length exponent. The remaining three
eigenvectors with eigenvalues A;, A,, and A; lie in
the three-dimensional u,v,w subspace. The equation
for the eigenvalues of the long-range fixed point is
unwieldy; in Fig. 8 we plot these eigenvalues for
three values of m. Notice that they are complex for
much of the range of € and 6.

Fixed point III is unphysical because it has an un-
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TABLE I. Fixed points of the recursion relations, Egs. (3.5).

Fixed point r¥ u* v* w*
I Gaussian 0 0 0 0
2 €
I P __m+ 0 0
ure 2(m +8) 4(m +8)

IIL. Unphysical - %e 0 - 3—126 0
Iv. Short-range

disorder 3m € £ ool € 0

16(m —1) 16(m —1) 64(m —1)
. 1 5?2 8 |26—¢)
V. Unphysical -9 0 166 —¢) 16 {—_&8—6 ]
2
36 —¢ 1 2(m +2)e —(m +8)8 1

VL.  Long- —15

diggfdznge ¢ 4(5m +4)  b—e¢ 4(5m +4) 16(8 —e)(5m +4)?

X[6m(m +2)e?
—(11m2+32m—16)ed
+4(m +8)(m —1)82]

physical negative value of v* for € >0, whereas for
€ <0 it lies in the physical region of Hamiltonian
space, but is unstable. Similarly, fixed point V has
v¥* +w*=—38/16, which is unphysical for § >0,
while for § <0 the point is never stable. Thus, in
the discussion that follows, we shall neglect these
two fixed points.

We now discuss the crossovers between the physi-
cally accessible fixed points of Table I. The results
of this analysis are summarized in Figs. 1 and 2,
which appear in the Introduction.

When w =0 (no long-range correlations), the
Gaussian fixed point is stable for € <0, while for
€>0 we find crossover between the short-range-
disorder and pure fixed points at m =4. This is
consistent with the Harris criterion which states that
the pure fixed point is stable against short-range dis-

order if dvpy,e —2>0. To order e, this becomes

m—4€>
m +8

0. 4.1)

For a model with long-range-correlated disorder
(w>0) and d <4 (e >0) we find (see Table II and
Fig. 8) crossover to the long-range-disorder fixed
point from (1) the pure fixed point at

0— 2(m +2) 2
m +38 Y pure

€—8=a— 4.2)

when m >4, or from (2) the short-range fixed point
at

(4.3)

Vshort

when m <4, where Vpure and Vg,ory are the pure and

TABLE II. Eigenvalues of the fixed points of Table I.

Fixed point Ar=1/v M As Az
L Gaussian 2 € € 5
IL Pure _m+2 —€ A-m 5 2Am+2)
m+8 m+8 m +8
IIIL. Unphysical 2——€ - %e —€ d——¢€
Iv. Short-range Im m—4 Im
. 2— € —€ ——€ -
disorder 8(m —1) 4(m —1) 4m—1)
V. Unphysical 238 €—38 e —48+(85%—4€5 +€2)'"?]
VL Long-range )_ls See Fig. 6
disorder 2
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(a)m=2

-201 \
-20 -1.0 0.0 1.0 20 30 4.0
&/8

FIG. 8. Eigenvalues Aj, A,, and A3 of the long-range-
disorder fixed point for (a) m=2, (b) m=4, and (c) m=6.
The solid lines are the real parts, the heavy line is the real
part of a complex-conjugate pair, and the thin line is the
other (real) eigenvalue. The dashed line is the imaginary
part of one of the pair. Notice that we plot A/6 and € /8,
so if 8 <0 the plot must be inverted. The values of € /8
marked P and S are those at which the long-range fixed
point is coincident with the pure and the short-range fixed
points, respectively. For m=4 the pure and short-range
fixed points are coincident, and the long ranged meets
them at €/8=1. The long-range fixed point is stable
when the real parts of the three eigenvalues are all nega-
tive. Notice that for €/8 ~ —0.5 the real part of the
conjugate-pair eigenvalues changes sign. This corre-
sponds to a subcritical Hopf bifurcation (see text).

short-range-disorder correlation-length exponents,
respectively. This behavior is consistent with the ex-
tended Harris criterion of Sec. II: av—2> 0 for sta-
bility, as we see by the second equalities of Egs. (4.2)
and (4.3), which are true to the order we are work-
ing, O(€e). The long-range fixed point is then stable
for all 6 (of order €) greater than the value which
satisfies (4.2) or (4.3). In this calculation we do not
find a crossover to smeared behavior as the range of
the correlations increases for all =0 (¢) and € > 0.

We now consider the case d >4 (€ <0). For
6>0, with & sufficiently large, the long-range-
disorder fixed point is stable. As & decreases to
8y~1.8|€| the long-range fixed point goes un-
stable by a subcritical Hopf bifurcation and there is
no stable fixed point remaining in the physical re-
gion. The RG flows spiral outwards from the (now
unstable) long-range fixed point, reaching large
values of u, v, and w where our perturbation expan-
sion cannot be expected to be valid. It seems reason-
able to conjecture that this spiral runaway is a sign
of a smeared transition, although we cannot say
more about it from the results of this calculation.
We can see the domain of attraction of the fixed
point shrink as 6 approaches 65 from above, as we
expect in the subcritical Hopf bifurcation scenario
(see above). This is illustrated schematically in Fig.
7; the actual RG flows are too close together to al-
low for a clear reproduction since the real part of
the eigenvalue which determines the decay or
growth of the spiral is small.

As & decreases to O the Gaussian fixed point,
which was previously unstable, interchanges stability
with the unphysical (V) fixed point which was in the
unphysical region. The Gaussian fixed point
remains stable for all § <0 and € <0, consistent with
the extended Harris criterion avlgauss—2>0,
Satisﬁed for a > 4 (8 < 0) since VGauss = 7 *

Thus for € <0 we find rather surprising behavior.
For correlations of sufficiently long range the long-
range-disorder fixed point is stable and describes the
transition. It is as the range of the correlation is de-
creased that the subcritical Hopf bifurcation occurs,
leading to spiral runaway of the RG flows, which
we would like to interpret as signaling a smeared
transition. The runaway occurs until § goes nega-
tive, at which point the normal Gaussian fixed point
becomes stable.

, (4.4)

V=

Q|

to O(8). In fact, we believe that this result is exact.
In Appendix A we shall find that the long-range
fixed point arising from correlations ~# ¢ is unst-
able to perturbation by a correlation ~7~¢ for any
a’'<a. More generally, for any random-
temperature-disordered system which undergoes a
continuous transition we expect that if the long-
range nature of the correlations in the disorder is
relevant, then it is the longest-range part which
determines the asymptotic critical behavior. Thus,
any system which exhibits behavior determined by
the power of the falloff of the long-range correla-
tions a will be unstable to perturbation by any a’ <a,
but stable against perturbation by any a” >a. Ap-
plying the extended Harris criterion to the system,
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we expect a'v—2<0, but a"v—2>0 for all
a'<a <a'". These inequalities can be satisfied only
if av—2=0, which gives (4.4). In Sec. V we argue
that this is also true for long-range-correlated per-
colation, and find that the scaling relation (4.4) is
satisfied by the percolation behavior of the triangu-
lar Ising model at T =T,.

The other exponents of the long-range-disorder
fixed point are determined by scaling relations'® us-
ing the exact result (4.4) and the fact mentioned
above that 1 =0 (e2). We find

a=2a—d)/a ,
B=(2—¢€)/a +0(e?), (4.5)
y=4/a+0(e?) .

For much of the range of € and § for which the
long-range fixed point is stable, its eigenvalues in
directions other than the temperature direction are
complex. As mentioned above, this will lead to os-
cillating corrections to scaling.?®

B. Case m=1

The analysis of the system with m=1 is compli-
cated by the fact that there is an accidental degen-
eracy in the recursion relations when w=0. This
leads to a short-range-disorder fixed point with u
and v proportional to €'/, rather than of order € as
found above for m > 1. Other than the short-range
fixed point, the fixed points of the recursion rela-
tions found for the case m > 1 remain well behaved
for m=1 and are given in Table I.

For d>4 (e<0), the short-range-disorder fixed
point is complex and does not affect the behavior of
the system. The behavior is determined by the
crossover between the Gaussian and long-range-
disorder fixed points exactly as in the case m > 1.

However, for d<4 (e>0), the short-range-
disorder fixed point of order €'/? describes the
behavior of the system with short-range-correlated
disorder. As the range of the correlations is in-
creased, the short-range-disorder fixed point remains
stable (and the long-range fixed point unstable) for
all 8 of order €; crossover to the long-range fixed
point occurs when 8 is of order €!/2. We shall find
that this behavior is consistent with the extended
Harris criterion since vepor =5 +0 (€'72).

We now write down the recursion relations for the
case m=1 and §=0(e!/?). We will find that for
this case the fixed points of the recursion relations
have u*, v*, and r* of order €!/?, while 4v* —3u*
and w* are of order €. Because of the degeneracy in
the equations, we must include terms of third order
in # and v in order to determine the fixed-point
values. The recursion relations are

dr 4(m 42)u 8v
LA _ (4.6a)
dl rt 14r 147 +0(e),
%=4Suv —36u’+eu +48uw +816u3

—2208u% +1312uv2+0(€?) (4.6b)
%:32:;2—24:4:; +ev 4480w + 16w?

+6720% —1056uv%+240u’ +0(€?), (4.6c)
gdi;)—zﬁw—%uw +16vw +16w?+0(€?) , (4.6d)

where the coefficients of the terms of third order in
u and v are derived from previous work of other in-
vestigators.” Notice that Egs. (4.6b) and (4.6c) are
degenerate to lowest order when w=0 in that the
combination 4v —3u appears in both expressions.
This leads to the apparent divergence at m=1 of the
short-range-disorder fixed point found for m>1,
which appears in Table I. The short-range fixed
point is O (¢'/?), with values of

r*=—1(6e/53)\7,

u* =+(6€/53)12, @.7)
v*=5(6€/53)'/2,
w*=0,

and  correlation-length  exponent Vg, = %

+%(6e/53)1/ 2. This fixed point is stable in the u
and v directions,’* and in the w direction it has
eigenvalue 8 —2(6€/53)!/2. Thus the short-range
fixed point becomes unstable (exchanging stability
with the long-range-disorder fixed point) when

0 =2(6€/53)"2—8=a —2/Vgor » (4.8)

which is consistent with the extended Harris cri-
terion by the second equality, which is valid to
0(e'?).

Taking w0 breaks the degeneracy, so that the
long-range-disorder fixed point of Table I is a solu-
tion of Egs. (4.6). However, for 8 =0 (€) the long-
range fixed point is wunstable; only when
8> 2(6€ /53)1/% is it stable, having exchanged stabil-
ity with the short-range-disorder fixed point accord-
ing to the extended Harris criterion. For
8=0(e'?), the long-range fixed point has the
values of

r*=-58/4,
u*=56/12, 4.9)
v*=586/16,

w*=0(e),



424 ABEL WEINRIB AND B. I. HALPERIN 27

to O(e'/?). The long-range correlation-length ex-
ponent is still vy, =2/a, so that the extended
Harris criterion is marginal when the long-range na-
ture of the correlations is relevant, as we expect.
One of the eigenvalues in the u,v,w subspace is —3§,
while the other two vanish to O (e!/2).

We are confident that the above picture of the
crossover between the fixed points is correct since it
is in accord with the extended Harris criterion.
However, working only to O(e!/?) we have not
proved it. We would need O(e) results to check
that when the long-range fixed point is stable, it in
fact is in the physical region (i.e., it has w*>0).
Also, we would have to work to higher order to map
out the stability of the long-range fixed point for all
8 of order €!/%; there may be crossover, via a Hopf
bifurcation, to some new behavior as the range of
the correlations is increased.

V. LONG-RANGE-CORRELATED
PERCOLATION

In this section we argue that the extended Harris
criterion can be applied to percolation problems?? in
which there are long-range correlations in the site-
(or bond-?) occupation probabilities. In addition,
since the extended Harris criterion is applicable, we
expect the scaling relation v=2/a to hold when the
long-range nature of the correlations is relevant. We
shall find that the results of Klein et al.'> on the
percolation properties of the triangular Ising model
are in agreement with our analysis.

For conciseness, consider a site-percolation prob-
lem. It is described by a variable ; at each site i
which takes on the value 1 or O if the site is occu-
pied or vacant, respectively. Then, the probability
that a site is occupied is p =(6;) where ( - - ) is
an ensemble average, which we take to be homo-
geneous and isotropic. The system percolates when
p>p.. We define the connected site-occupation
correlation function

g(i,j)=(6;6;)°=(6;6;)—(6;)*. (5.1)
In the normal case of no correlations between sites,
g(i,j)=p(1—p)§;; , (5.2)

which vanishes unless i =j. We wish to consider the
case of power-law falloff of correlations

glij)~ | % —%;| 2. (5.3)

We can derive the extended Harris criterion for
this case following Sec. II very closely. Dividing the
system up into regions the size of the pure percola-
tion correlation length £, we argue that each region
will have an effective occupation probability pj

which is the average of the 6; over the region. For
the picture of a pure transition to be consistent, the
variance in py must be negligible compared to p, —p
as p—p.. The resulting equations are identical to
those of Sec. II, and we regain the extended Harris
criterion, Eq. (2.6) for this case.

For percolation, the correlation-length exponent v
is defined by

E~(pe—p)"", (5.4)

where £ is the percolation correlation length. The
values of v for short-range-correlations in 6;
are’ v=1.33, 0.84, 0.66, and 5 for d=2, 3, 4, and
> 6, respectively. Thus dv—2>0, and the Harris
criterion states that short-range-correlation disorder
is irrelevant. This is what we expect since the per-
colation problem, in a sense, already has short-range
disorder with the correlation function (5.2). For
small enough a, however, av —2 will be negative, so
that the long-range correlations become relevant.
By analogy with the results for spin models in Sec.
IV, we anticipate that when the long-range correla-
tions are relevant, the percolation exponents will be
modified, and that they will depend explicitly on the
parameter a. As in the preceding section, the argu-
ment that the percolation exponents should be deter-
mined by the longest-range contribution to the
correlation function g (i, /), together with the extend-
ed Harris criterion, suggests that

v=2/a (5.5)

in the regime where the percolation exponents vary
with a. (This implies that an addition to the correla-
tion function (5.3) of a term proportional to
| %;—X; | = will be relevant if and only if a’ <a.)

Klein et al.'® studied the percolation of clusters
of “down” spins in the triangular Ising model in an
external rrllagnetic field A for T >T,. For this prob-
lem 6; =+(1—s;), where s;=*1 is an Ising spin at
site i. Thus p =%(1—m), where m = (s; ), and the
sitel-occupation correlation  function  g(i,j)
=781(i,j), where g;(i,j)=(s;s; )¢ is the Ising con-
nected spin-correlation function. For the triangular
site percolation problem pc=—;-, so the percolation
threshold is at m=0 and p,—p =%m. Fixing
T>T,, m can be smoothly varied by applying an
external field A, approaching the percolation thresh-
old as A —0.

For T > T, the site-occupation correlation func-
tion is short ranged,

glij) =gl ~e ™ T (5.6)

where &;(h,T) is the Ising correlation length. Thus
we predict that for T > T, the site-occupation corre-
lations are irrelevant and the system should exhibit
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normal percolation critical exponents.
However, for T =T, the correlations are long
ranged,

gli)=3g i)~ | —%; | " (5.7

(with 17,=%.=_a) for distances |X;—X;| less than
the correlation length &;(h,T,), with &;— oo as
h—0. It is the form of the site-occupation correla-
tion function g (i,j) for lengths less than the correla-
tion length £ which is used in the derivation of the
extended Harris criterion sketched above. Thus the
criterion should hold so long as the percolation
correlation length £ is at most of the order of the Is-
ing perco}ation length &; as A—0 and thus p—p,.
For a = the extended Harris criterion indicates
that the long-range correlations are relevant, so the
scaling relation (5.5) should hold,

E~(p.—p)~a. (5.8)

. —(v;/Bp)
For the Ising model at T, we have & ~m ' P ,

where v; and B; are the exponents for the correla-
tion length and the magnetization, respectively, at
h=0 and T <T,. The scaling relation'®
2B;=vi(d —2+m;) for the Ising critical exponents
implies that (v; /B;)=2/7;, so

—2/7]1

§r~m (5.9)

For our percolation problem (p, —p)=%m and
a =7;. Thus £ is of order £; and it was consistent
to apply the arguments leading to the extended
Harris criterion.

The above results are identical to those found by
Klein et al. using real-space RG techniques. They
found that for T > T, the system had normal per-
colation critical behavior, while at T =T, they
found different percolation critical behavior, with
the percolation correlation length £ proportional to
the Ising correlation length £;.
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APPENDIX A: SUM OF POWER-LAW FORM
FOR THE CORRELATION
FUNCTION g (x)

In this section we consider a system with more
general correlation in its random-temperature disor-
der of the form

gx)~ 3 Aix . (A1)

This form leads to a Fourier-transformed correla-
tion function

gk)~v+ Jwk ~(d=a)

(A2)

for small k. We write down the recursion relations
and find the fixed points, finding that the long-
range critical behavior is determined by a fixed
point at which all of the w; =0 except for the coeffi-
cient of the most divergent term of g(k), i.e., the one
with the smallest a;.

With the use of arguments very similar to those of
Sec. III, the recursion relations are found to be

dr dm +2)u  8Q

=2 _
a =Tt T 147’

du _ _ Am+8u’ 48uQ

da =T T 0w T

(A3a)

(A3b)

o 8m42dw 160 1607
dl (147)? (147?142
(A3c)
dw,- 5 8(m +2)uw,~ 4 16w,Q
al oM T T Ay

, (A3d)

where Q=g(1)=v+ Y w; and §;=4—a;. These
recursion relations have the same fixed points I
through IV as before (see Table I) with all of the
w; =0; and then they have 2N fixed points with all
but one w; =0 (say w;50) of the same form as the
unphysical V and long-range-disorder fixed points
with § replaced by §;. Diagonalizing around such a
long-range fixed point, we find eigenvalues in the wy
direction,

A =5, —5; . (A4)

Thus, each long-range fixed point is unstable to a
larger §;. There is only one stable long-range fixed
point, the one with the maximum §;, i.e., the
minimum a;, call it a;. At this fixed point all of the
w;=0 for i>1, and we can ignore them. The
system’s critical properties are the same as those of
the system considered in the body of this paper with
glk)~v +wk 47,

APPENDIX B: QUENCHED DISORDER
WITH GENERAL ISOTROPIC
LONG-RANGE CORRELATIONS

In this appendix we develop recursion relations
for a system with arbitrarily correlated random-
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temperature disorder, expanding to second order in
the normal four-point coupling # and in the
Fourier-transformed correlation function g (k). (For
clarity we shall neglect the overbar on the Fourier-
transformed correlation function in this appendix).
We continue to assume, however, that the system is
isotropic so that g(k) depends only on the magni-
tude of k. Unlike the cases considered above, we do
not assume that the correlation function g (k) can be
characterized by a finite number of parameters, so
we must find recursion relations for g (k) for all &
less than the cutoff, which we take to be unity.
Since we do not assume that g (k) behaves asymptot-
ically as a power law for small k, we do not find
scale-invariant critical behavior characterized by
fixed points of the RG recursion relations. Howev-
er, the recursion relations we derive could be used to
investigate the behavior of systems with perhaps
more realistic choices of g (k).

As in Sec. III, we replicate the system and find an
effective Hamiltonian with a momentum-dependent
interaction of strength g (k) acting between replicas.
Rescaling the Hamiltonian in the normal way with
length rescaling factor b =e’, we find that the re-
scaled interaction g (k) is bg(k'/b), where we ig-
nore 7) because it will be of higher order, as in Sec.
III. Taking the derivative of the rescaled g (k) with
respect to / at /=0, we get 8(k)g (k), where

dlIng (k)

S(k)EE_W . (B1)

Expanding in u and g(k), we obtain diagrams iden-
tical to those of Figs. 4 and 5, and find the recursion
relations

dr_  Am+2u 8g(1)
dl _2r+ 1+r 1+r ) (BZa)
du 4m +8)u’  48ug(1)
du_ , B2b
T T R TR w2
dg (k) 8(m +2)ug (k)
= —8(k)g (k) — ——TLHEE]
2
16g (k)g(1) | 16g(1)* (B2c)
(147r)? (14r)?

The recursion relations (B2) can be seen to be
equivalent to those found for the case
g(k)~v+wk=9=9 in Sec. III for v and w if one
considers Eq. (B2c) for dg(k)/d! in the two limits
k=1 and k—0. In general, the recursion relations
(B2) must be integrated numerically. Functions
such as the susceptibility, the order-parameter corre-
lation function C(q,T), or the free energy can be ob-
tained in the usual way®® by stopping the integration
at the appropriate value of /, such that the renormal-
ized |r| is of order unity, or such that ge’ is of order
unity. Thus, within our approximations (where
11=0), we find for the susceptibility X and correla-
tion length £ above T,

X=£=e", (B3)

where [* is the value of / such that r=1.
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