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Charged-particle wake in the random-phase approximation
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A study has been made of the wake of a swift charged particle in an electron gas using

the full random-phase-approximation dielectric function of this medium. Our earliest work

using the plasmon-pole approximation to the dielectric function gives a good account of
most aspects of the wake when the velocity of the particle is greater than the Fermi velocity.

INTRODUCTION

Research in the last several years has been con-
cerned with the distribution in space and time of
perturbations of electron motion in solids caused by
the passage of swift charged particles. Bohr' re-
ferred to the phenomenon of coherent electron dis-
placements in atoms due to the passage of a charged
particle as the "wake" behind the particle and
marked its boundary, loosely, by a cone whose angle
of opening was not defined. However, he gave no
information about the distribution in space and time
of the oscillatory perturbations in electron motion
forming the wake. Later Neufeld and Ritchie' gave
an explicit expression for the wake potential.

One had to wait until the early 1970's to see a
renewal of the interest on the wake of charged parti-
cles in condensed matter. Neelavathi, Ritchie, and
Brandt (NRB} pointed out that the oscillatory wake
of electron density fluctuations trailing a fast ion
may (a) influence the motion of nearby ions travel-

ing with nearly the same velocity and (b) give rise to
wake-bound states. Subsequently Brandt, Rat-
kowski, and Ritchie showed experimentally and
theoretically that the energy loss of proton clusters
in solids is influenced by the presence of such wakes.
Following this, Gemmell et al. found that it was

necessary to include in their calculations the wake
potential generated by the leading ion in order to ex-

plain the experimental distributions in energy and
angle of protons emerging from crystals bombarded
with (HeH)+ beams under planar channeling condi-
tions.

Recent experiments on coherent resonant excita-
tion of electrons in tightly bound E orbitals centered
on nearly stripped, highly charged channeled ions
are also sensitive to the presence of wake patterns of
density fluctuations in the valence-electron sea of

the crystal in which channeling occurs. Hybridiza-
tion of excited hydrogenic levels on the ion (wake
energy splitting} is a measure of the mean retarding
force on the ion and has its origin in the wake. '

Bell and co-workers have measured the shift in the
x-ray energy corresponding to the transition between
the 'P~ and 'So multiplets in heliumlike sulfur pro-
jectiles. This shift can be explained as due to the de-

crease, caused by the wake, in binding energy of
bound electronic states on the moving ion.

The first calculation of the wake was made by
Neufeld and Ritchie using, for emphasis and sim-

plicity, a local dielectric function to represent the
response of the medium. They also studied the
shock-wave aspects of the wake by employing a spa-
tially dispersive dielectric function. The local form
was also used in the first papers by NRB and Gem-
mell et al. Day' suggested that inclusion of
plasmon dispersion could vitiate some of NRB's
conclusions about wake-riding states. More detailed
calculations" ' did not bear out this suggestion,
however. Ritchie et al." used the plasmon-pole ap-
proximation to estimate the binding energy of
wake-riding states. A detailed study of the wake po-
tential and of the density fluctuations within the
plasmon-pole approximation has been made recently
by Echenique, Ritchie, and Brandt' and by
Echenique and Ritchie. ' Gemmell and co-workers
have initiated an extensive program of research in
the physics of molecular ions, ' the theoretical inter-
pretation of which involves the wake as a central
concept.

In view of the importance and relevance of the
wake concept in current experimental physics, it
would be useful to have a detailed calculation of the
wake potential and density fluctuations using the
full random-phase-approximation (RPA) dielectric
function to represent the response of the medium.
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The results of such a calculation are presented in
this paper. Besides their intrinsic interest, they pro-
vide a check of the validity of the plasmon-pole ap-
proximation for these problems. We also display,
for the first time, the evolution of the wake potential
as the velocity of the charged particle increases from
values such that plasmon creation is impossible to
higher velocities. The use of complete RPA quan-

turn dielectric function allows us to present results
for velocities smaller than the Fermi velocity of the
electron gas. Although the use of linear theory for
the medium's response may lead to some error, non-

linear treatments encounter difficulties such that
only the static case has been treated. " Calculations
of wake states binding energies are also presented.

THE WAKE IN RPA

The wake potential (i.e., the scalar electric potential) qi (r, t) in an homogeneous isotropic medium due to a
swift point charge Ze having constant velocity v is given by

@~(r,r)= ' f «Jo(»b)d» f'Re e'~~" —1
mr »2+ 2/U 2

The cylindrical coordinates b and z refer to the direction of motion and are defined as b=( x+iy )'i~ iand
z=z ut relative —to the position (x,y, z}=(0,0,vt) of the moving charge. The wave number

2
1/2

k= ]c+
v2

has component sc in the b direction. The bare potential of the ion in vacuo has been subtracted from the total
scalar potential in Eq. {1). The induced electron density fluctuation 5n(r, t) =p;„q(r, t)/( e) in the med—ium is
related to 4 by Poisson's equation and is given by

5n(r, t)= — f »JO(»b)d» f dao Re e'"' " —1
2m v 0 e(k, a))

(2)

Lindhard's has derived the dielectric response function e(k, co) in the RPA. ' In terms of the dimensionless en-
ergy transfer x =co/Ez and momentum transfer y=k/2k+, where EF and kz are the Fermi energy and the
Fermi momentum, the complex dielectric response function can be written as

e(k,co}=1+ [fi(y,x)+if'(y x)]=a(y x)
X2

(3)2

where X =(irU~) ' and v~ is the Fermi velocity. We use atomic units in the rest of this paper. The real part
fi(y, x} is given by

+ 1 —y+-1 x
8y 4y

ln

irx/Sy in I [0&x &4y(1 —y)]

2 y- y+ —+1
fi(y,x)= +—1 —y —— ln

1 1 x 4y 4y
2 8y 4y x x

y — —1 y+ ——1
4y 4y

while the different representations offi(}I,x) which are to be employed in the regions of the (y,x) plane are

(4)

xf2{y,x }= 1 —y — in II [4y(
~

1 —y ~
) &x &4y(1+y)]8y 4y

0 in III [0&x &4y(y —1)] and IV [4y(1+y) &x] .

In region III it is understood that y ) 1.
The plasmon line x =xo(y) is defined as the set of points belonging to the region in which e(y, x) vanishes

and for.which x &4y(1+y). The straight line x=4vy/u~, corresponding to momentum and energy conserva-
tion, defines a point on the plasmon line and on the x =4y{1+y) line whose corresponding abscissas we call yi
and y2, respectively.

In order to obtain the wake potential and the induced density fluctuation in the RPA, Eq. (3) is to be substi-
tuted into Eqs. (1) and (2). Confining ourselves to the wake potential, for the moment, we obtain
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4 (r, t) =4' (r, t)+4' (r, t),
Z2

f y f "
dx Jp(a, b)[X'f&(y'+X'f&)+X'f&]

t

ZvF m 4 y~F sinyz4'(r, t)= f ydy f dx Jp(a, b)f2
m v F(y,x} '

where

4 2
' 1/2

VFX
a = 4vFy-

4v

I= f 'dy+ f dy+ f dy f dx —(10)

and confine our attention to the second term which
we rewrite as

and

2
UFX

2U
P(y, x) b —xp

I2 —— dy ln
y] BG xp —a

3X x =xo(y )

F(y «) =[y'+X'f i(y, x)]'+X'f2(y, x) .
We note that at least part of regions I, II, and III

always contribute to the integration domain while
only if v & vF is there a contribution from region IV.
Likewise, part of the plasmon line belongs to it if
v & UF(1 +y2).

Since the function F(y,x} appearing in both in-
tegrands vanishes on the plasmon line, contributions.
to 4' and 4' arising from regions I, II, and III re-
quire straightforward use of Eqs. (4) and (5). Re-
gion IV demands special consideration. We define

to be the contribution from region IV to '0?~.
On the plasma resonance line x =«p(y) one may

write, considering f2 to be a positive infinitesimal,

f2/F =rr5(y'+X'f ( )IX'

rr uF5(x —xp(y))

a 2 2(y +X f() =„,(y)

Accordingly, the 4~ y integrand is reduced to the
interval [yr,y2] and the x integration may be im-
rnediately performed upon use of Eq. (7).

The contribution to 4'„ from region IV is a bit
more complicated. We note it presents no problems
except close to the plasmon line since then

X2
[X'fi(y'+X'f i )+—X'f2]F f2 py +X fi 0

G(y, x}=[x —xp(y)]
aG
Bx

(12)

and the x integration in (11) becomes for those
points

b P(y, x) P(y, x =xp(—y) }f dX
a x —xp(y)

(13)

A criterion is given so as to decide whether or not
a (y, x) point is close enough to the plasmon line, and
in that case, the substitution

X —Xp
X —Xp~ f if X+Xp

fx —xp [

~E' if X =Xp (14)

is made, where e is a small positive constant value.
We can summarize our treatment of integral (9) as

follows:
r

d P(y x) Ser= f dy SpCp+ f dx
p G(y, x} x —xp

where

(15)

+fd
()X x =xo(y )

For points close enough to the plasmon line,
x=xp(y},

must be interpreted as a principal value integral.
The integral is of the type

Sp ——

P(y, x)
aG
BX x =xo(y)

if yi &y &y2

where if y& &y &y2 then G(y,x=xp(y))=0 while
P(y, x=xp(y)) =0. We write

0 otherwise,
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b —xp
ln

Cp= . xp —a

0 otherwise .

if y1&y &y2

tutions (12} and (14) for points close enough to the
plasmon line.

Our final result for the different contributions
arising from regions I, II, III, and IV to 4' and 4~
is given by

Our procedure (15) must be completed by substi-

sbw(b, z }=
4ZVVF min(1, v/v+) 1f dl f dy Jo(ab)cosyzFI,

4ZV VF min(1, v/vP) 1 I
qpIE(b, z) = f dl f dy Jo(ab}sinyzE2,

{16a)

'q cII(b g
@sii(b -)

@ciii(b )

P

2ZV VF min[1, [2v/v+) —i] 2v/v+ —t —COS~F1
dt ds Jo(ab)'

n I singz

—2ZVVF 1 q, tf d2 f ds Jo(ab)cosyz
p ~F(S t} +qi—

(16b)

v — 2ZvvF 16y dvFCs" (b,z) = f dy Jv(ab) sinyz
I =I() Bq1

Bl

2ZV VF v/v+ —1 2Jv(ab )cosyzqi
{bz)=- dy SpCp+ dl

I+& rrvF{s t) +q,—
Sp

l —lp

(16c}

where

i[rrvF{s t) +qi]+q21-
[nvF(s t) ~qi] +q2I—

(16d)

qi(s, t)=4(s t)f, (s, t),—

q2(s, t) =4(s t)f2(s, t), —

V =V/VF .

nvF(s —t) q2I
3

F2 ——
3 2 2[~vF(s I} +'ql l +'q2I

Our wake potential 4 (r, t} is finally obtained as
the sum of all these contributions:

@cI+@sI+C cII+ps II+@CIII+@sIII+yc IV

Sp ——

2J&I(ab )cos(yz )q I

Bqi

al

0 otherwise

if yi &y &y2 To compute the induced density fluctuation 5n we
can follow a similar procedure since

k2
5n(k, tv) = — 4;„d(k,to) (18)

4m

V /VF —Ip
ln

Cp= lp —1 —y

0 otherwise .

if yi &y &y2

with corresponding multiplicative factors under the
integrals over x and y.

WAKE POTENTIAL AND DENSITY
FLUCTUATIONS

l =x/2y, s =y+x/4y,
t =—y+x/4y, r= —1/t .

Also, we have

(17)

As apparent in (16), some variable changes have
been made to facilitate the calculations. They are The we11-defined oscillatory behavior of the wake

potential behind the ion constitutes its outstanding
feature. The way it changes as the ion velocity in-
creases is shown in Figs. 1 and 2. The potential
remains nearly constant when v (VF (vF ——0.96 for
r, =2 in our exaInple). Only a slightly growing
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FIG. 1. Wake potential in the neighborhood of a pro-
ton moving in an electron gas at the aluminum density
(r, =2). The potential is plotted as a function of distance
along the track for three different velocities less than the
Fermi velocity in Al. All quantities are measured in
atomic units.

asymmetry and a slighter well-depth growth is ob-

served. However, once the Fermi velocity is exceed-

ed, rapid changes take place as Fig. 2 illustrates.
For v & uf(1 +yq) (v & 1.32 in our case), one can al-

ready see electron troughs in the wake potential. As
expected from the NRB work, we find oscillatory
behavior and plasmon creation closely related.

Figure 3 illustrates the variation of —4 in the
neighborhood of z=zo, the position of the first
trough for electron capture, for several different ve-

locities. The curves labeled z show —4 (0, z —zp)

vs z —zp and the curves labeled b show 4—(b,zp}
vs b. One sees that this trough evolves from a figure
flattened in the direction of motion at the smaller

values of v to a shape elongated in the direction of
motion at larger U. This behavior is not described

well in the NRB approximation since there the ex-

tensions of the first wake trough in the two direc-

tions both scale with v/co&. However, the plasmon-

pole results of Echenique, Ritchie, and Brandt
(ERB) are in general accord with this.

We have studied trends exhibited at still higher
ion velocities and in different media. Figure 4
shows the variation of the wake potential behind the
ion for several ion velocities. Distance z along the
particle track is scaled by the length v/co& so that
the NRB wavelength is 2~. All curves take the
value 4 =neo~/2u just on the ion (b =z=0) as in
the NRB (Ref. 3} and Ritchie, 8randt, and
Echenique"- (RBE) ERB (Ref. 12) cases. In our
work the wavelength is somewhat smaller than 2~
decreasing with decreasing ion velocity.

Figure 5 shows the wake potential on axis as com-

b~ 0
rs ~ 2

v 1.50
———v ~ 1.RS

".v ~ 1.32

0.2--

FIG. 2. Wake potential for the conditions of Fig. 1 and for three velocities larger than the Fermi velocity. The develop-
ment of the oscillatory portion of the wake is clearly seen as the velocity increases.
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FIG. 3. Plots of the variation in the wake potential in
the neighborhood of the first potential minimum for an
electron. Data are presented for a proton moving with
various velocities in an electron gas with r, =2. The
curves labeled b show the variation of —4 with b, while
those labeled z show the variation with z. It seems that as
v increases the profile of the trough changes from one
that is flattened in the direction of motion to one that is
elongated in the direction of motion.

and those of NRB, RBE, and ERB are presumably
not important in most applications. We may add
here our results do not appear to corroborate those
of Stachowiak, ' in that he obtains a screening until
the ion velocity reaches approximately 0.8vF with no
screening at all for high ion velocities. This is in
contradiction with our results pictured in Figs. 1

and 2.
We display the electron density fluctuation func-

tion 5n(0$) vs z for different velocities of a proton
in an electron gas for which r, =2.0 in Figs. 6 and 7.
No dramatic changes are involved for v&vf. In
particular, U=0.01 and v=0. 1 curves are almost
identical. It is interesting to compare 5n with the
static results of Langer and Vosko. ' For r, =3
value and at the ion position we find 5n/u 3-0.127
for v =0.01 and v =0.1 compared with
5n/v+3-0. 139 from Langer and Vosko. Both of
these results are much lower than the value obtained
by Almbladh et al. ' who include nonlinear terms in
a calculation for the static case.

In Figs. 8 and 9 we show the fluctuation on the
track of the charged particle when the wake is well
established (U =4). Figure g shows the region behind
the particle while Fig. 9 corresponds to the region
ahead of the particle. In the latter the scale of z is
changed to enhance the small oscillatory contribu-
tion arising mainly from the single-particle response
of the medium, as predicted by ERB. We note on
the ion we get 5n=cop/4v in agreement with the
ERB treatment.

We illustrate in Fig. 10 the difference in the den-
sity fluctuation as computed in the plasmon-pole ap-
proximation and in our work. The inset shows in
detail the region around the origin, while the larger
set of axes shows a portion of the oscillatory region.

Figure 11 shows the density fluctuation in front
of the ion for v=4 and two extreme values of elec-
tron density: r, =1.56 and r, =6. The wavelength
of these fluctuations is medium independent and
takes a value very close to m/v=0. 79. Figure 12
shows the wake potential at the origin as a function
of U compared with NRB and ERB's results.

puted from the local dielectric theory (with a cutoff)
as in the work of NRB, from the plasmon-pole
dielectric function by ERB, and from our RPA ap-
proach. This potential Ep (O,z) vs (topaz/v) due to a
proton with v=4 is multiplied by (—U/co&). The
density of the electron gas was taken to be such that
r, =4.0. One sees that there is general agreement be-
tween the various results, with quite close matching
of the wake potential in the RPA with that obtained
from the plasmon-pole approximation.

Differences between our wake potential results

WAKE BINDING ENERGIES

(b,z) = —V, + ah'+P(z z, )' . —(19)

We have carried out a systematic numerical study
of the wake potential near the minimum in the first
potential trough for an electron behind the ion.
Numerical values of 4 (b,z) were fitted in the
neighborhood of the minimum at z=zo by an ex-
pression of the form
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~10
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V

20

FIG. 4. Negative of wake potential plotted along the track for several different velocities. The distance behind the par-
ticle is scaled by the factor co~/v and the potential is scaled by the factor v/cop In the simple NRB theory all these curves
would be identical.

b~ 0
m 4

v 4

RPA

ERB
NRB (cutoff)

g=p C'w

8-.

—2--

-4--

FIG. 5. Negative of the wake potential for b=0 plotted as a function of z behind a proton. Both 4 and z are scaled as
in Fig. 4. The three curves were obtained using various approximations to the dielectric function of the medium as ex-
plained in the text.
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b~0
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v 0.1

b~ 0
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I

2 4 6
Z

-6

b 0
's
v~5

-2

Sn x 100 8

2 4 6
Z

-4 -2
I

-6 -4 -2 2 Z

FIG. 6. Variation of the electron-density-fluctuation function with position along the track for several different proton
velocities.

b 0
I'6~ 2
v- 1.5

Sn x ~pp

7--

~RMP
a E E

f f PEHEHL f I-l6
P z (a.u. )

FIG. 7. Variation of the electron-density-fluctuation function with position along the track for two different velocities
both larger than the Fermi velocity. The medium is an electron gas at a density corresponding to r, =2.
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b~ 0
rg ~ 1.56
v~4

—"Sn I(

~2
P

-i0
jm.

-8 -6

-0.2--

CUP

v z

FIG. 8. Density-fluctuation function behind the proton for r, =1.56, b=0, and at v=4, where the wake is well estab-

lished. Both 5n and z have been scaled in accordance with predictions of the plasmon-pole theory.

i.o--

O.e-

0.6- b~0
r i.56
v~4

0.2-

0.2 0.75
I

g

i.25 1.5 zto. u. )

-02--

FIG. 9. Density-fluctuation function in front of the proton for the same conditions of Fig. 8, except that z is given in
atomic units to show the oscillations in 5n clearly.
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Sn x 100

2.-

z(o.u. )

-30 -25
I

i5 0 /
z (O.u. )

FIG. 10. Density-fluctuation function along the track of a particle for r, =1.52 and v=4 computed in the RPA and in

the plasmon-pole approximation. For clarity the curves have been presented on two separate contiguous sections of the z
axis. It is seen that there are only minor differences in results obtained in the two approximations.

4v—Sn
QJ 2

P
( Q

0.8

0.6

Q 4

0.2

I~~
1

&.25
1.5

z (0.U )

-02

FIG. 11. Density fluctuation scaled by the factor 4U/up plotted vs z for two quite different electron densities and for
points ahead of the particle. Since 5n in this region depends primarily on the single-particle response of the medium, the
wavelengths and amplitudes are almost independent of the static electron density of the medium.
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I I
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+Zef fS
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0+Zef f +Zeff

0.5
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0 1 2
v(a. u. )
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FIG. 12. Negative of the wake potential at z =b =0 as
a function of the velocity of a proton in an electron gas at
r, =2. The solid curve shows the RPA results, while the
dashed curve gives results obtained with the plasmon-pole
approximation.

Qz(a u)

24

20

H+

0.5
0 1

I

'I

KINETIC ENERGY (MeV/amu)
10

12

6b(a. u. )

0+Zeff

5+Zef f

FIG. 14. Wave binding energies of electrons in their
first potential trough plotted as a function of the energy
of the leading ion. The three lower curves were computed
assuming Z~ ——1 while the ion is identified in the remain-

ing curves. The solid curves were calculated in the RPA,
the short-dashed curves were found using the plasmon-
pole dielectric function, and the long-dashed curves were
computed using the NRB method. The electron-gas den-

sity corresponds to r, =2.

+Zeff

SWZef f

I I I

2 4 6 8 10 20 v(a. u. )

FIG. 13. Spatial extension of the ground-state wave

function of an electron bound in the wake of various ions

plotted as a function of ion velocity. The wave function is
assumed to have the form g-exp[ —(z —zo) /
(M) b l(f),b) ], where (Op—o) is the position of the first
minimum in the potential energy of an electron moving in

the wake. The effective charge Z' of an ion with nuclear
—rz'

charge Z was computed from Z' =Z~(1 —e '
)

when it has velocity v in atomic units. The electron-gas

density corresponds to r, =2.

Electron binding energies in this harmonic-oscillator
potential are found from standard quantum theory.
Figure 13 shows the spatial extension of the wake-
bound electron both in the longitudinal and trans-
verse direction for three types of ions. Behind pro-
tons in the velocity range under discussion (v= 1—10
a.u.) the wave function of the wake-bound electron
extends over (-1—1.5 a.u.). Figure 14 shows wake
binding energies E in eV computed for protons ox-

ygen and sulfur ions moving in an electron gas at a
density corresponding to the conduction band in A1
metal. The results are in general agreement with

those found by Day and Ebel ' who used a semiclas-
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sical dielectric function to represent the response of
the medium and a variational procedure in which an
exponential trial function was employed. It might
be noted that as more realistic dielectric functions
are utilized, less wake binding of electrons is found
at low speeds.

We have not included here the effect of the self-

wake of the electron on its binding energy in the

trough of a leading ion. This effect is estimated us-

ing a method described in RBE to result in an addi-

tional binding energy &1 eV for all cases studied

here.
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