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Theory of double electron-muon resonance
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The theory of double electron-muon resonance is developed and particularized to the case
of muonium and of the anomalous muonium center observed in silicon, germanium, and di-
amond. The theory can be used to explain and analyze the coherence effects observed in
muon-spin —rotation frequency spectra resulting from intense near-resonant rf fields. The
technique can, in principle, be used to observe EPR transitions which are otherwise unob-

servable by muon-spin rotation.

I. INTRODUCTION

During the last few years a growing number of
studies have been made using a technique known as
muon-spin rotation (or @SR).'~ Muon-spin rotation
is a form of magnetic resonance of muons, usually
p+, which are implanted in solids. In this paper we
describe the theory of double electron-muon reso-
nance (DEMUR), a variation of p,SR in which an
intense rf magnetic field drives the coupled-spin sys-
tern of a muoniumlike center.

When a beam of spin-polarized positive muons
strikes a solid target, the muons stop and thermalize
quickly with virtually no lost polarization. The
muon spins then precess in the effective local fields
and ultimately the muons decay with a lifetime of
2.2. psec. In the weak decay of the muon a positron
is emitted preferentially along the direction of the
JM+ spin. These decay positrons are used to detect
@SR.

Therefore, muon-spin rotation is a form of free-
precession magnetic resonance. By Fourier transfor-
mation of the time-differential positron histograms
obtained from a large number of muons the frequen-
cies and amplitudes of the components of the pre-
cession of the p+ spin polarization can be obtained.
The pSR frequency spectrum of muonium or

1

muoniumlike centers (an electron spin of —, coupled
to the p+ spin, also —,) gives the frequencies of the
allowed magnetic dipole transitions of the p+ spin.
The information obtained is similar to the informa-
tion obtained by electron nuclear double resonance
(ENDOR) of paramagnetic centers. However, the
allowed magnetic dipole transitions of the electron
spin may be unobservably weak in the @SR frequen-
cy spectrum. In that case @SR will not provide
much information of the sort obtainable from elec-
tron paramagnetic resonance (EPR), such as the
electronic g factor.

In contrast to pSR, DEMUR permits observation
of EPR transitions even when they are not directly
observable as lines in the pSR frequency spectrum.
In DEMUR magnetic dipole transitions of the elec-
tron spin are driven coherently with an applied rf
magnetic field and the resultant structure in the
@SR frequency spectrum is used to detect the elec-
tron paramagnetic resonance.

The first DEMUR experiment was performed on
muonium in quartz and, to date, this is the only sys-
tem studied. ' For muonium in low fields there are
two frequencies in the pSR spectrum, the Elle ——+1
transitions within the F=1 triplet. These are also
allowed magnetic dipole transitions for the electron
spin. Driving either of these two transitions pro-
duces characteristic splittings of both frequency
components in the pSR spectrum demonstrating the
essential correctness of the theory and illustrating
one application of the technique. The coherence ef-
fects observed in this way were particularly strik-
ing. '

To illustrate how this structure appears for a sim-
ple example consider a spin- —, system. Quite gen-
erally, if the magnetic resonance transition for a
spin of —, is driven. coherently, then there are three
precessional frequencies for the component of the
spin transverse to the static magnetic field rather
than the single frequency obtained in free preces-
sion. These three frequencies are the rf frequency
and two symmetrically-placed side bands. The split-
ting with the applied frequency exactly on resonance
is the Larmor frequency in a field equal to the trans-
verse component of the rf field rotating in the same
sense as the spin precesses. (This is sometimes re-
ferred to as the Rabi frequency. ) The component of
the spin polarization parallel to the static magnetic
field has a static part and a term oscillating at a fre-
quency equal to the frequency splitting of the trans-
verse component. (In this we have ignored the com-
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ponent of the rf field which rotates in the opposite
sense to the precession of the spin. )

In DEMUR, if the frequencies of the transitions
are well separated, then choosing an rf frequency
close to one transition will split that frequency into
three just as for the spin- —, case. The middle fre-

quency is the rf frequency and the splitting of the
side bands on resonance is approximately equal to
the Larmor frequency of the electron spin in the
transverse component of the properly rotating com-
ponent of the rf magnetic field. If a particular pSR
frequency arises from a transition with only one of
the two states in common with the transition being
driven, then that frequency is split into two with the
same splitting as for the driven transition. Both of
these effects were observed in the experiment on
muonium in quartz. ' If the driven transition and
the pSR "transition" have no common end states,
then that part of the pSR frequency spectrum is un-

changed by the rf field. Also there is a dc com-
ponent to the p+ spin polarization and a low-

frequency component oscillating at a frequency
equal to the frequency splitting of the high-
frequency lines. These components are parallel to
the static field.

For muonium in quartz and the muoniumlike
centers in group-IV elemental semiconductors ' the
observed linewidths under many conditions are in-
strumental and relaxation can be neglected. Thus
we have described DEMUR theoretically by solving
the coupled differential equations for the coeffi-
cients of the stationary-state wave functions in the
general time-dependent wave function, neglecting re-
laxation and making appropriate approximations.
The time-dependent wave function, written in terms
of the initial state of the coupled spin system, is then
used to calculate the time-dependent muon-spin po-
larization. Finally this result is averaged over the
initial (unpolarized) state of the electron spin and,
when appropriate, over the rf phase.

Similar results could be obtained in other closely
related ways, in particular by using density-matrix
techniques or by considering precession in an
abstract vector space. ' Our results are similar to
those obtained for coherence effects in other types of
experiments (see Sec. IVD). The differences arise
primarily because of the high initial polarization of
the muon and the direct observation of the time evo-
lution of the muon-spin polarization that are charac-
teristics of @SR.

This paper begins with a general derivation of the
coupled differential equations which describe
DEMUR for an arbitrary muoniumlike center (a
coupled electron spin and muon spin with interac-
tions appropriate for arbitrary symmetry). A gen-
eral solution is then obtained for the case when the

rf field is near resonance with just one transition

with the neglect of all terms in the differential equa-

tions except the resultant near-secular terms. This
general solution is then applied to muonium (isotro-

pic hyperfine and Zeeman interactions). Among the
results will be the equations needed to describe qual-

itatively and semiquantitatively the quartz DEMUR
experiments discussed in a companion paper. The
general solution is then applied to the problems of
the DEMUR of anomalous muonium in silicon, ger-
manium, or diamond. " ' After this, other solu-

tions of the differential equations will be discussed,
such as a more accurate treatment of muonium

needed for the quartz analysis and the treatment of
nuclear hyperfine structure. Our results will then be
compared with other types of magnetic resonance
experiments on p+ and muonium and with other
studies of coherence effects.

II. GENERAL THEORY

A. Formulation

A muoniumlike center in a crystal consists of an
electron with unpaired spin bound by a positive
muon. If the hyperfine interactions of the electron
spin with nuclear spins in the crystal can be ignored,
then the spin Hamiltonian of a muoniumlike center
consists of three terms. These terms are the Zeeman
interaction for the electron spin and for the muon

spin and the hyperfine coupling between the two
spins. By introducing an electronic g tensor g
and a hyperfine tensor A, the spin Hamiltonian can
be written for arbitrary symmetry as'

4 =@AH g S—g~p~H I +S A. I, (I)

where H is the total magnetic field, p& is the Bohr
magneton, and —,g&p& is the muon magnetic mo-

ment. Although g& could deviate from its vacuum
value (approximately equal to 2) and hence be slight-

ly anisotropic in a crystal, these effects are small
and can be neglected as they usually are for the nu-

clear Zeeman interaction of other paramagnetic
centers in crystals.

In DEMUR, the magnetic field consists of two
parts, a static component and a linearly-polarized rf
component, '

H =Hp+ Hicos(pit + p)
The time at which a p+ stops and traps an electron
is taken to be t =0 and P is the phase of the rf field
at that time. The phase may be random ' or speci-
fied, ' depending on the experiment. We will as-
sume that the muon is 100%%uo polarized along the
beam direction at t =0 and that the electron is com-
pletely unpolarized at that time.
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The spin Hamiltonian of Eq. (1}can be separated
into a tine-independent part and a time-dependent
part,

4 =4 p+P i(t),
where

(7)

and

P „(t)=4Re[a'(t)a„(t)e "(l(
I

I
I f„)]

where the partial polarization near zero frequency is

4

Pp(t)=2 g la„(t) I'(l(.
I
I ly. &

and

P p=p eHp'g S g„p—„Hp I +S A I (2)

P,(t)=(ij,ttH, g S g„p„—Hi. I )cos(tot+/) .

There are four stationary states resulting from the
solution of the eigenvalue problem using the time-
independent Hamiltonian of Eq. (2). The
stationary-state wave functions will be denoted by

nad the energies by %co„. In terms of these sta-
tionary states a general time-dependent wave func-
tion may be written

4
%(t)= g a„(t)g„e (3)

a=1

where the a„(t) are time-dependent expansion coeffi-
cients. The initial values of the a„(t) are obtained in
terms of the initial state of the system,

is the partial polarization near the frequency co „.
In summary the procedure to be followed is to

first calculate the stationary states of the time-
independent Hamiltonian of Eq. (2}. These station-
ary states are then used to calculate the a„(0) in Eq.
(4) and the coupled differential equations of Eq. (5).
The differential equations are then solved in terms
of the a„(0) from which P(t) is calculated using Eqs.
(6), (7), and (8).

B. Solution for a muoniumlike center
with a single driven transition

The coupled differential equations of Eq. (5} can
be written as

da 4

dt @=1

a.(0)=&l(.
I
WO)), (4) —'( — „)t+e "e ).

where %(0) is the wave function of the system at
t=0 'Substitu. ting Eq. (3) for P(t) into the full
time-dependent Schrodinger equation we obtain four
coupled differential equations for the a„(t):

dam . im „ti g a—„(t)Q~„e " cos(tot+/),
dt „1

(5)

where co „—=co —co„and

AQ~„= (~~ I (psHi g S—g„p„Hi I )

Implicit in this approach is that there is no appreci-
able relaxation.

The observable quantity in any pSR experiment is
the time-dependent polarization of the muon spin.
In terms of the a„(t) this can be written as

P(t)=2(%(t)
I

I
I
%(t))

4
=2 g a'(t)a„(t)e "(g

I
I If„) .

It is often convenient to write P(t) in terms of par-
tial polarizations near the various transition fre-
quencies co „as

4
P(t) =Pp(t)+ g P (t)

m &@=1

If the specific frequency co~„(to~„&0) is well
separated from the other transition frequencies, then
the rf frequency may be chosen to be near co „and
well separated fram all other resonance frequencies.
Mare precisely this conditian is that

~mn ) —l'y

dt 2
= ——0 „a„(t)e " e

dan t i(au —u )t
Q ( t)e IIIII ItI

dt 2 t

(lo)

where we have labeled the stationary states by the
indices k, I, m, and n. The cantributions of the
neglected term to the a„(t}are of the order

I
~+~ I» I

Q ~ I

I co+tpIi
I »Qti I

(ij'~ttttt ) .
Then the only terms on the right side of Eqs. (9)
which we need to retain are those proportional to
exp[+i(tp tp „)t],whic—h then become

dak daI =0,
dt dt
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I &J I /I ~+~1
I

times that for the near secular term which we retain
and thus small.

These equations can be solved by writing both
a (t}and a„(t}as Fourier series;

(i)
N z

—CO+ COm+

1

2 m.

which yields

1

—,mn

(i)
CO~

a (t)= gC"'e "e

a„(t)= g C„"e

and

( ) [z+(z2+1}l/2]
I
fl

co'-'= —,[—z+(z +1)'/2]
I

0 „ I,

(14)

(15)

The values of ~"and ~'„' are related by

(i) (i) (12)

where we have denoted the two values by the super-
scripts + and defined a reduced frequency displace-
ment

Substituting Eqs. (11) into Eqs. (10) and using Eq.
(12) we obtain

(13)

The equation for co'„" then becomes

z=—(co—to „)/I0 „ I
. (16)

Note that co„'-'= —~m '. Either of Eqs. (13) may
then be used to relate C"' to C„"'. The values of C"'
or C„"' are then obtained from the initial values of
a (t) and a„(t) Calc. ulating a (t) and a„(t) in this
way we obtain

a (t}=—a (0) 1+
2

1 Z

(z +1}' (0)
&(t' Pmn) 1 im t

( 2+ 1)1/2

(z'+1)' ' (z'+1)' '

n

a„(t}=——a~(0}e ",+a„(0) 1 —
2

( '+1)'" ( '+1)'"

+—a.(0)e "
2 1/2+a. (0) 1+

2 1/2
e "'&—&mn)

( 2+ 1)1/2 "
( 2+ 1)1/2

where P „ is defined by

e "=—Q„/IO„I.
In addition we have

ak(t}=ak(0),

aI(t) =aI(0) .

From these expressions for the a;(t), explicit expressions for Po(t) and P~(t) can be obtained [see Eqs.
(6)—(8)]. There are three types of terms P,z(t) which are distinguishable by the relation between the indices i
and j and the indices m and n labeling the driven transition.

If ij =mn one obtains
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P „(t)=Re (y I
1

I y. & a'(0)a„(0) 1+
( 2+ 1))i2

+[~ ( )~
~

(0)~ ] 2 )n 1+
(z +1)' (z +1)'

(p) ~(p) ~"(('—&mn) 1 '[~—("+')' ') "mn ) 1'

z +1

+2 a'(0}a„(0)
2

—[ ~

a (0)
~

—
~
a„(0)

~
]ez'+1 z'+1

+ a (0)a„'(0)e " e'"'
z'+1

'2
a' (0)a„(0) 1—(z'+1}'"

2i(p p~„)— 1 i[ru+(zi+i)(~2) 0 „)]t—a~ a„e
2

ez+1 (17)

The transition driven by the rf field is split into three lines with a splitting equal to (z +1)'~
~

0 „~,the Rabi
frequency, and the central line at the rf frequency. The amplitudes of the three lines depend upon the rf phase
relative to P „, the rf frequency through z, and the initial state of the system through a (0) and a„(0). For

~

z
~

&& 1, the rf frequency is far from resonance and P „(t) reduces to

P „(t)=4Re[(g
~

I
~

it(„)a'(0)a„(0)e "],
the result for no applied rf field. For experiments which allow ()) to be random we average over (I) and thus all
terms with a ()) dependence in Eq. (17) are averaged to zero. Exactly on resonance, z =0, the random-phase
partial polarization consists of three lines with amplitudes in the ratio 1:2:1.

For the case of P,J(t} with only one index i or j being one of the indices m or n, there are four possibilities
with similar but not identical results. The state involved can be m, the higher energy one, or n, the lower one.
For each of these the state k, which is not an end state of the driven transition, may be above or below the ap-
propriate end state. Thus the possibilities are

P~k(t)=&Re (p~
~

1 ~1[k) a'(0)ak(0) 1+ (z'+1)' '

+(0) (p}
i(t' P„m ) 1 —i(~mk ~m ')(

an k
(z +1)

+ k 2 1/2(z2+ 1)1/2

(p) (p)
i(tIt —P „) 1 t(co ~

—cu )t
+an ak

(z +1}
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P„k(t)=2Re &l „~ I
~ 1 i &

—~(0)ak(0) " z»i2+ 1)1/i

+ ~ (0)&k(0) 1
2 i/2(z'+1)'"

l(N k
—cd + )te n

+ a' (0)ak(0)e (z'+1}'"

'[~.k —".
e

P~k(t)=4Re[&/~
~

I
~ Pk &a'(0)ak(0)e ],

the result for no applied rf. Similar results occur for the other transition with only one state in common with
the driven transition.

For experiments in which the rf phase at t =0 is random all P-dependent terms average to zero. Exactly on

resonance, z =0, one then obtains two lines of equal amplitude.
In the case that ij=kl, i.e., neither state of the driven transition is involved, the partial polarization is

Pkl(i) =4Re[& Ak ~

I
~
1(, &ak(0)ai(0)e ],

the result for no applied rf field.
Finally the low-frequency coinponent Po(r) is given by

4

Po(r)=2+ &4 I
I It( & la, (0) ~'+2(&Q

~

I ~g &

+ a (0)ak(0) 1+ 2 i/2(z'+1)' '

where co'„and co'-' are given in Eqs. (14) and (15}. Pk (t) and Pk„(t) are obtained from these results by re-

placing co k by —cok or m„k by —cok„. A transition with a single state in common with the transition driven

by the rf magnetic field is split into two lines with a splitting of (z +1}'/
~

0 „~, the same splitting or Rabi
frequency as obtained for the three lines of the driven transition [see Eq. (17)]. One of the two lines is above

the precessional frequency for no rf and one is below it. For
~

z
~

&&1, i.e., well off resonance, the expres-
sion for P k(t) in Eq. (18) becomes

&@n I
I—

I @.&) — i (
I
a~(0}

I

'—
I
an(0}

I
'},

+«(a'(0)a„(0) e " ), [1—cos(}/'z'+1
~

II „~ r)]
z +1

+Im(a'(0)a„(0) e "
) i

sin(+z +1
~

0 „~ t)
( 2+ 1)i/2

This consists of a static polarization, present even
with no rf, plus a term which is significant only near
resonance. The latter term consists of a static con-
tribution whose amplitude depends on the rf fre-
quency (or z) and an oscillation at a frequency equal
to the frequency sp1ittings or Rabi frequency ob-
tained earlier [Eqs. (17) and (18)]. For a random rf
phase the terms depending on P are zero, a result
which has a maximum oscillatory component exact-
ly on resonance.

These results are valid for a case in which the rf is
near resonance with one and only one transition,
otherwise they apply quite generally to any muoni-

umlike center in solids so long as nuclear hyperfine
structure can be ignored and there is negligible re-
laxation. In Sec. III A we particularize these results
to muonium and in Sec. III B we will discuss the ap-
plication to anomalous muonium or Mu' in Si, Ge,
and diamond. To particularize these results to any
muoniumlike center it is necessary to solve the
time-dependent Schrodinger equation for the sta-
tionary states and then to calculate 0 „, the a;(0),
and the & P; ~

I
~ P~ &. It is also necessary to average

over the random orientation of the electron spin
which wi11 appear in the expressions for a;(0) in all
cases.
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III. SPECIFIC RESULTS z, Ho

A. Muonium with a single driven transition

The spin Hamiltonian for muonium has isotropic
Zeeman and hyperfine interactions, thus Eq. (2) be-
comes

H)

P(0)

4 p gp, t——i Hp S g„p—„Hp I +A S I . (20)

Although a very small anisotropy in A has been ob-
served in crystalline quartz, ' by incorporating a
field-dependent effective A, the results obtained
from this isotropic spin Hamiltonian can be applied
to the DEMUR of muonium in crystalline quartz. '

The solution of the eigenvalue problem represent-
ed by the Hamiltonian of Eq. (20) is well known. 2

Using as the basis
~
Ms, Mt &, a product function of

electron spin eigenfunctions
~
Ms &, and muon spin

functions
~
Mt &, with the z axis chosen as the direc-

tion of Hp, we can write the four muonium eigen-
functions as'

FIG. 1. Coordinate system used in describing DEMUR
for muonium. The static field is along the z axis and the
rf field is in the x-z plane.

1 1

4 2~2

where

(21} qi(0)= +1+cos8s
~ » —, &

Q 1 —cos8se

c
s ~2 (x2+ 1)1/2

1/2

(22}
Ql+cos82i

~

——,, —, &

and

SI B+0+SyPpH0
(23)

where

1 1+1—cos8iie (24)

We will choose the x axis in order that H& be in the
z-x plane at an angle 8~ with the z axis or H0. This
completely determines the coordinate system, which
is shown in Fig. 1. The direction of the beam, or
more precisely the initial muon spin polarization
P(0), is given by spherical polar angles 8s and Ps.
The initial orientation of the muon spin is along
P(0) but the initial orientation of the electron spin is
random. We may describe the random initial orien-
tations of the electron spin by specifying the spheri-
cal polar angles 8, and gati, and then, after calcula-
tion of P(t), the results are averaged over all possible
orientations of the initial electron spin. It is con-
venient to write the wave function of muonium at
t=0 as

1 +1+cos8, ,

P= Ql —cos8, e
1 iy,
2

(25)

(26)

In terms of a, p, 8s, and pii, the values of a;(0) ob-
tained using Eqs. (4) and (24) are

Upon averaging P(t) over 8, and ((l, we find only
four quantities appearing in the averages. The aver-
ages of these four quantities are
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a ~(0)= — Ql —cos8se
QS i/~

2

+ Ql+cos8s,

a3(0)= Q 1 —cos8se lpga

{27}

a3(0)= Ql —cos8se
ac i/~

2

+ Q 1 +cos8s,s
2

a4(0) = +l+cos8& .

It will prove useful to examine the results when each
of three different transitions are driven by the rf
magnetic field. These are the 4-3 and 3-2 transitions
within the F= 1 triplet, the transitions studied in the
experiments on quartz, ' and the 3-2 and 4-1 transi-

I

tions which are the allowed electronic magnetic di-

pole transitions at high field. Thus we need to cal-
culate three values of Q)J

..
1

ilQ43 —
2 sin8~(sg)MzH~ cg&i—4&H~ )

1

RQ32 g sin8~(cgi4&H~ sg„—i4„H& )

1

AQ4~
———,sin8~(cgp&H&+sg„i4„H& ) .

(28)

First consider the results for the rf frequency near
resonance with the 4-3 transition. Since this case is
primarily of interest for muonium at low fields we
will ignore all contributions to P(t) involving state 1,
the lowest state, because such high-frequency tran-
sitions are normal~i not observed. The remaining
contributions to P(t) are obtained by substitut-
ing into Eqs. {17}—(19) with tp=tp43 and averaging
over the orientation of the electron spin, using Eqs.
(26) [also certain matrix elements of I must be cal-
culated using Eqs. (21)]:

P42{t}=0,
1

P32{t)= —,s sin8& 1— z

(z +1) ~ [i cos[(cp33 co+)t+—ps]+j sin[(p33$ ca+)t+fJ]I

z+ 1+ 3,z3 [i cos[{p333+p3 }t+ps]+j sin[(tp32+tp )t+$s] j(z +1)'
'2 {29)

P43(t)= —,c Re (i ij )— z 1 z
1/2

'
B+ 2,/2 1+ 2,/2 2C coseB(z'+1)'" (z'+1)'" (z'+1)'"

1 . 2i(y —y~) 2
3 sin8s e exp[i (p3 &z +1—Q43)t+ip&]2+ 1

1 . z i(y —y~) 1 . &s(y—y~)+2
2 sin8& —

2
2c cos8&e + 2 sin8se exp[i(p3t+ptt)]z +1 z +1 z'+1

'2
z 1 z &(f—$g )+ 1 —

2 1/2 sineB —
2 1/2 1 —

2 1/2 2ccoseBe
(z +1) (z +1) (z +1)

1

z'+1 sin8s e exp[i(p3+&z +1Q43)t+iptt) '

A,
2 2 1 zPp(t) =k (1—2s c )cos8& ——,c c

2 cos8&+ 3 sin8&cos(p —ps )z'+1 z2+1

& (1—cos+z +1Q43f) 2 c
(z2+ 1)1/2

sin8s sin($ —Ps )sin( +z3+ 1Q43t )

where

z =(cp —co43) /Q43,

to+ ———,[(z +1)' +z]Q43,
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A A
and 043 1S evaluated in Eqs. {28). The unit vectors in the x, y, and z directions are i, j, and k, respectively.
There is no dependence of P32(t) on the rf phase but Po(t) and especially P43(t) are quite complicated for a
fixed rf phase. For random phase these two terms simplify to

'2

P43(t) = —,c sin8& 1+
2 1/2 [i cos[(co +—z +1043)t+ps]

( 2+ 1)1/2

+j sin[(co 1/z —+1043)t+ps] J

2 A
+ 2 [i cos(cot+ps)+j sin(cot+ps)]

z +1

2,/2 [i cos[(co+ &z +1043)t+pt3](z'+1)' '

+j sin[(co+t/z +1043}t+ps]]

Pe(t) =k cos8& 1 —2s c ——,c
2 [1—cos(+z +1043t)]z+1

{30)

The second case of interest is when co is nearly resonant with co32. In the low static-field region this case is
examined experimentally in a companion paper for muonium in quartz. ' In the high-field region this case is
an example of DEMUR in which the driven EPR transition is not observable in @SR. This could occur for
isotropic muoniumlike entities with small hyperfine splittings, such as are observed for muonic free radicals in
liquids. To understand both limits all components of P(t) are calculated. As before P42(t} is zero and P41(t}
is unaffected by the rf field. Thus for co=co32,

1 z
P43(t) = , c sin8—a 1

(z2+ 1)1/2 [i cos[{to43 co+)t+pz]+j sin[(ro43 co+)t+pt3])

z+ + 2 1/2 [i OCS[(CO43 +CO )t+Ps] +j sin[(co43+co )t+Ijlz]){,2+, )1/2

A z
P21(t)= —,c Re (i+ij) 1 sin8~

(z2+ 1)1/2

1 —i(p —p~ )

(z +1)
s cos8Be exp[i(o321 o3+ )t i ps ]— —

z 1 —i(p —p~)+ 1+ 2 1/2 sineB+ 2 1/22 coseBe2+ 1)1/2 ( 2+ 1) /2

X exp[i(o321+co )t its]—
2A

P3~(t)=sc k Re

r

z 1 1 . i(y —y~)1+ 2,/2 s cos8s ——
2 «2 sin8se exp[i (co31 to )t]—(z'+1)'" 2 (z'+1)'"

z 1 1 . ny y~)1 —
2 1/2 s cos8s+ — 2,/2 sin8se exp[i(co31+co+)t](z2+ 1)1/2 ( 2+ 1)1/2

(31)
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1

P32(t)= —,s Re (i i—j )

'
2

z 1 z i($—fg )+ 2 1/2 ~B + 2 1/2 + 2 1/2 2$ cosHB
(z +1) (z +1) (z +1)

2i($ —Pg ) 2sin8se exp[i(N +—z +1032)t+i ps]
z + 1

1 z l(tip —fg )+2
2 sin8B —

2
2$ cosHBez'+ 1 z + 1

+ sin8se exp[i(Nt+p&)]
2i(P —Pg )

z + 1

' 2
i(p —p~ )

+ 1 s ~B 2 1/2 2 1 2
B cosOB(z'+1)'" (z'+1)'" (z'+1)'"

2i($—$g )

2
sin8se exp[i(N+3/'z +1032)t+ipe]2

z + 1

A 2 2 1 zPp(t)=k (1—2$ c }cos8S—&s s
2 cos8S+

2
sin8ecos(P —Pe)

z + 1 z + 1

X [1—cos(+z +1032t)]——s
(z2+ 1)1/2

sin8& sin(p —pe ) sin( &z + 1032t)

where

z —(N N32)/032 ~

Np = , ( t/z2+ 1+z—)032,

and 032 is given in Eqs. (28). For random rf phase ({}, P21(t) becomes identical to P43(t) except that the
arguments of sine and cosine are {N217N+)t —((,e and the sign ofj is changed, i.e., the sense of precession of
the p+ spin is reversed, a result found for zero rf field. For random ((, P32(t) and Pp(t) are identical to P43(t)
and Pp{t) in Eqs. (30) except that s and C must be interchanged and Q43 replaced by Q32. For random p, P31(t}
becomes

P31(f)—s c cos8&k 1+ 2 1/2 cos[(N31 N )t]+ 1
2 1/2 cos[(N31+N~)t]

(z +1) n —
( 2+1)1n

For the final case, N near resonance with the transition at N41, P42(t} is again zero and P32(t} is unaffected by
the rf field. Thus for co=co41 we have

A A i (tI) —p~ )
P43(t)= , C Re {i —ij) —1+ 2 1/2 sin8e —

1
22scos8ee

(z2+ 1)1n (z2+ 1)1/2

Xexp[i (N43 N )t+ipe]

z 1 i(f—fg)+ 2 1/2 i B + 2 1/2 2$ cos~Be
(Z2+ 1 )

1/2 (Z2+ 1 )
1/2

Xe"P [i(N43+N+)t+ips]
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z
P21(t)=—,c sin8q 1+

(z2+ 1)1/2 [i cos[(co21—co )t —ps] —j sin[(co21 —co )t ps—]]

z1—
(z2+ 1 )1/2 [i cos[(co21+co+)t —ps] j—sin[(coz1+co )t —{{}s]J+

P»(t) =sczf Re z 1 11+ z 1/2 s cos8s+ — z, /2 sin8se exP[i {co21—co )t]
( 2+1)1/2 ( 2+ 1 )1/2

z 1
1 —

z 1& s cos8& ——
z 1/z sin8se exP[i (co31+co+)t](zz+ 1 )1/2 2 (z2+ 1 )1/2

'2 T

P41(t)= —,s Re (i ij) — 1+ z . 1sin8B— 1+ z
2s cos8Be'i(p

—p )

(z2+ 1 }1/2 (z2+ 1 )1/2 (z2+ 1 )1/2
(32)

2i(p —p~) 2
z sin8se exp[i(co +z +—104,)t+iPs]z'+1

1 z i(ti]'—tI]'g) 1 . 2l(p —pg)+2 z sin8s+ z
2s cos8&e + z sin8se exp[i (cot+Ps)]z'+1 z+1 z'+1

'2 T

z i(f—$g)+ 1
~ )~2 n8B+ 2 )~2 2 )~2 2$8B

(z +1) (z2+ 1 )1/2 (z + 1 )1/

2i(p —Qg) 2sin8s e exp[i{co+'}/z +1041)t+ips] '

z'+1

Pp(t}=k (1—2s c ) cos8& ——,s s, cos8&—, sin8s cos({{} ps)—2 2 1 z
2+ 1 z+1

X [1—cos(&z'+1Q4, t)]+—,s'
(z2+ 1 )1/2

sin8s sin(p —{l}q) sin(}/ z + 1041t)

where

z =(a)—a)4))/Q4),

co+ ———,(&z +1+z)041,

and 0~, is given in Eqs. (28}. The results for ran-
dom rf phase can be calculated as in previous cases.

B. Selected results for anomalous muonium
with a single driven transition

A muoniumlike center with a small but very an-
isotropic hyperfine interaction has been observed in

I

each of diamond, silicon, and germanium. "
These centers have been designated anomalous
muonium (or Mu~). Detailed pSR studies have
shown that these centers have axial symmetry about
one of the crystalline (111)axes. The spin Hamil-
tonian for anomalous muonium, including an axial
electronic g tensor, is

P p gllizsH, S, +g1izs(H——„S +HrSy )

gwPvH I +All S&I&+A1($ I„~S&Iy},
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where the z direction is the (111& symmetry axis of
the specific Mu» under study (there are four possible
orientations, all of which are observed with equal
probability).

Although the g and A tensors are much simpler in
this case than the most complicated (lowest-
symmetry} possibility allowed in the general analysis
of Sec. II, there is very little simplification possible
of those general results for an arbitrary orientation
of the magnetic field. However, one reason for
studying the DEMUR of Mu» is to measure the
principal values of the g tensor. To do this it is
most convenient to study Mu» centers whose sym-
metry axes are either parallel to the magnetic field
(to measure g~~) or perpendicular to it (to measure

gi }. In addition the greatest precision is obtained by
measurements made at high field where the EPR
transitions are so weak in the @SR that they would
be difficult or impassible to observe. These candi-
tions simplify the general results and limit the con-
tributions to P(t) that are observable.

The spin Hamiltonian for the case of the static
magnetic field parallel to the symmetry axis is

4 p
——

gl l pgHpSz —g~ppHpIg

+A IIS,I,+A i(S I„+S~Ix)

This Hamiltonian is somewhat similar to that of Eq.
(20) when the field defines the z axis. This leads to
eigenfunctions identical to those of Eq. (21) except
that the variable x in Eq. (23} is given by

g
l lP aH p+gII HAH pX =

Ag

Defining the geometry as shown in Fig. 1, we obtain
the initial values of the a; given in Eq. (27} and the
expressions for 0;~ given in Eq. (28) with g replaced
by g~. The only other major difference between this
case and that of muonium presented in Sec. III A is
that either levels 3 and 4 or levels 1 and 2 cross for
Mu». We will continue to label the states as in Eq.
(21). This is illustrated in Fig. 2 for the case of dia-
mond. ' For those regions of field in which the or-
der is reversed it will be necessary to replace co43 by

c034 or cozen by —co&z in the equations of Sec. III A.
The allowed electronic magnetic dipole transitions at
high field are 3-2 and 4-1 as for muonium; thus we
will be interested in only two cases. The first case is
with the rf frequency close ta co3q only, where the re-
sults of Eqs. (31) for P4&(t) and Pz, (t) give the im-
portant components of P(t). Similarly, if co is near
co4i only, then P43(t) and Pq~(t) are obtained from
Eqs. (32).

Results for the static magnetic field perpendicular
to the Mu» symmetry axis are somewhat different.
The static spin Hamiltonian for this orientation of

400

200

N

0
C9
K
UJ
Z.'
LLI

-200

I

150
I I

0 Ioo 200
H (G)

FIG. 2. Energy-level diagram for Mu» in diamond
when the static field is parallel to the Mu» symmetry axis.
The labeling of the states is shown. This is the same as
that used for muonium if level 3 were degenerate with lev-
els 2 and 4 at H =0.

the field can be written as

~p =gj pgHpS& —
gII p&HpI& +A yS&I&

+ , (A, +A~~)(S+—I +S I+)

+ —,(Ai —A~~}(S~I++S I ) .

The eigenfunctions for this Hamiltonian are

1 1 1 11(z=c—
I

—i ——, &
—s

$3 c+ I 2' &&+s+ I z~z & ~

1 1 1 1

I

—„—,&+s

(33)

For this case the states will be labeled from lowest to
highest energy at low field. The 3 and 4 levels cross
at fields which are tao high for DEMUR experi-
ments. The initial state of Mu» in terms of the

where c+ and s+ are given by Eq. (22) with the vari-
ables x+ given by

gpss gH p+g~p~H p
X+ =

(A~+All)
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beam orientation and the electron variables of Eqs.
(25} are identical to Eq. (24) as it was in the parallel
case. However, since the eigenfunctions of Eq. (33)
are different from the muonium functions of Eq.
(21},the values of a;(0) will differ. They are

C+
a~(0)= Ql+cos8&

z, Hp

P(0)

QSp i/~Q 1 —cos8se

Pc If'a2(0) = Ql —cos8se
2

as

2
+I+cos8s,

ac+ If'
a 3(0)= +1—cos8&e

2

S++ y'I +cos8»
2

ac
a4(0) = Q 1+cos8&

2

Y

I Mu +III~ symmetry axis
I

I

FIG. 3. Coordinate system used in describing DEMUR
for Mu» when the static field is perpendicular to the Mu»

symmetry axis. The static field is along the z axis, the
Mu» symmetry axis is the y axis, and Hi and P(0) are
specified by spherical polar angles.

i/~Q 1 —cos8se
2

where a and P are given in Eqs. (25).
Calculation of the Qij is more complicated here

than in the earlier examples. The coordinate system
and the various directions of importance are shown
in Fig. 3. The expressions for the two 0;J of interest
are

1 —if( i/i —ip)RQ32 —
2 sin8~[gljsH~(c+c e s+s e ) —gzp&H~(—c s+e ' c+s —e ')]

1 —ip& ip& —ip& ip&
A'Q4~ ———, sin8~[gpsH (c+c e —s+s e )+g&p&H ~ (c s+e c+s e —)],

where

g =(gi cos'4+g}~ »n'6 }'"

$) ——tan tang )
&II

Sj.

These are equivalent to the values in Eqs. {28)when P~ ——0, s =0, and c =1, as expected. Note that the Q,j
are not in general real, so that P;~ will not necessarily be zero. The results for (f; ~

I
~ P~ ) are more complicat-

ed; the required values are

(Qg ~

I
~ f3)—,(c+c +s+s )i ——(c+c —s+ )J,

(i(2
~

I
~
l(~) = , (c+c +s+s —)t+ (c+c —s+s —

)g .

If the rf frequency is near co32 only, then the principal components of P(t) (aside from a nearly constant stat-
ic contribution if 8&+m/2) are
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P43(t) =—, Re [(c+c +s+s )i i—(c+c —s+s }j]

z . if~ —c4~
1—,2 sin8s(c+c e +s+s e )

2+1)1/2
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We note here that the dependence of P43(t) and P21(t) upon the rf phase angle p is only present if there is a
component of the bemn along the static field. Even then they are weak at high fields.

Rather similar results are obtained when co is close to co4i but not close to co32, i.e.,

P43(t)= —, Re [(c+c +s+s )i i (c+c ——s+s )j]

1+ 2,/2 sin8s(c~c e +s+s e
' s)(z'+1)'"

1 l(0—4'4) )
2s+ c+ cos8~e

(z2+ 1)1/2 exp[i (co43 —co )t]

z —
lpga+ 1— sin8~ (c+c e +~ +~

( 2+1)1/2

1 l« —&4i)+ 2 &&2 2s+c+ cos8~ e
(z +1) exp[i (co43+co+)t]

'
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P

1

P2i(t)= —,Re [(c+c +s+s )i+i(c+c —s+s }j]

X 1+ 2,&2
sin8z(c+c e +s+s e e)(z'+1)'"

1 i (Q—p4))c cos8g e
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~
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~

.

Thus for Mu~ with the external field either paral-
lel to or perpendicular to the symmetry axis, it is
possible to determine the resonance frequencies of
the EPR transitions by the requirement that the two
DEMUR lines near co43 or co2& have equal amplitude
if random rf phase is used, if the beam is perpendic-
ular to the static magnetic field, or if the static mag-
netic field is large enough. To find this condition
involves a search in which the rf frequency or the
static magnetic field is varied. One must know in
which sense to change the frequency and by approx-
imately how much. The previous analysis gives this
information but we here make it explicit.

If the two lines near coq3 and the two lines near
co2~ both have the lower frequency line more intense,
then co is less than co32 or greater than cd~, it is not
possible to tell from this which resonance is closer to
the rf frequency. If the upper frequency lines are
more intense, then co is greater than co32 or less than
co4i. This applies to the case when H is perpendicu-
lar to the symmetry axis and also to the case when
they are parallel, provided that level 4 is above level
3 and level 2 is above level 1.

The next step is to calculate the ratio of the am-
plitudes of the strongest to the weakest line of any
pair split by the application of the rf field (or prefer-
ably a suitable average of both pairs). Calling this
ratio p we have

1+
I
z 1(z2+1) i/2

1 —~z ~(z'+1) ' '

From this, the measured splitting (or average of the
splittings}

hto=+z +1(Q „(,
and the definition of z in Eq. (16), we can calculate
the difference between the rf frequency and the reso-
nance frequency co „

I
ei —eimn

I

=
mn +1

Similar considerations were used to analyze approxi-
mately the data obtained in quartz. '

IV. OTHER RESULTS

A. Near resonance with two transitions
sharing a common level

In Sec. III we analyzed the case in which the rf
frequency was close to one and only one transition
frequency. If we consider other possibilities then we
obtain more complicated results. The most general
case is one in which we consider every term in Eqs.
(9) to be significant. In this case we obtain 13 fre-
quency components near every non-negative integral
multiple of the rf frequency. Although this very
general case is of little practical interest, at least one
generalization of the analysis of Sec. IIB is impor-
tant. This is the case when co is near two frequen-
cies coI and co „,a case which occurs for the F=1
state of muonium and which was encountered in the
studies of muonium in quartz reported in a com-
panion paper.

For the case in which co is close to both coI and
c0 „ the differential equations of Eq. (5}become
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dak =0,
dt

dal ) '( )
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dam l '(~ ~1m )

dt 2
= ——Ql ale e

—i (al —N „)f2"~mnane
" e

da n 1 y i( ~m~ )&

dt 2"~mname
" e'

The resulting determinantal eigenvalue equation in
terms of the frequencies of a is
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Having solved this equation, the coefficients of the
various oscillatory terms in the a; (t) can be obtained
from 2 of the 3 linear equations and the initial
values a;(0). These can then be used to calculate the
components of P(t) using Eqs. (6)—(8). Because the
eigenvalue equation is cubic, numerical solutions
were employed. The results of a calculation which
is illustrative are shown in Fig. 4.

In this case there are seven frequency components
in the precession of the p+ spin polarization. For
low rf magnetic fields these are close to the values

lm mn~ ~ 1m~ mn~ ~ 1m~ hymns

and —co+col +co „except when the rf frequency
1

is near roi~, co~„, or —,(coi~ +co~„). Near these three

values of the rf frequency, the lines which would
otherwise cross, avoid each other and the intensities
vary so that away from these avoided crossings only
the lines near col and co „have appreciable intensi-

ty. Consequently, when co is near resonance with ei-
ther transition, only the five lines predicted in Sec.
IIB have appreciable intensity. For rf magnetic
fields which are large enough so that

I
Qi

I
and

I Q~„ I
are comparable to

I
coi~ —co~„I, then all

seven lines may have appreciable intensity and the
avoided crossings are more complex.

In Fig. 4 the DEMUR spectrum for an isotropic
muoniumlike center is calculated for a rather large
rf magnetic field. When the rf magnetic field is
close to resonance with either of the two transitions
then a five-line spectrum is observed as predicted by
the theory of Sec. IIB. The splittings of the three
lines near the rf frequency and the two lines near the
transition which is not driven are equal, also in
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FIG. 4. DEMUR spectrum for muonium when the rf
field is large enough to drive both low-frequency transi-

tions. These graphs were made for g =2, A =4500 MHz,
Ho ——100 G, and Hl ——4 G. Figure 4(a) is a plot of the ac-
tual precessional frequencies versus the frequency of the

applied rf field. The two resonance frequencies are shown

on both axes by arrows. Figure 4(b) is a plot of the ampli-

tudes of the seven lines shown in Fig. 4(a) against the fre-

quency of the applied rf field. The two resonant frequen-
cies are indicated with arrows. The curves are numbered

so as to match those of Fig. 4(a).



3978 T. L. ESTLE AND D. A. VANDERWATER 27

agreement with the more elementary theory of Sec.
IIB. However, there are several differences. When
the rf frequency is equal to one of the transition fre-
quencies, the two lines near the other transition fre-
quency are not equally spaced about the other tran-
sition frequency. Their mean position is on the op-
posite side of the undriven transition from the
driven one. In addition the amplitudes of these two
lines are not equal on resonance and the three lines
near the rf frequency do not have a 1:2:1amplitude
ratio on resonance. The minimum splitting of the
groups of two and three lines also does not occur on
resonance but rather at an rf frequency lower than
the lower transition frequency and higher than the
higher transition frequency. These effects are some-
what analogous to the Bloch-Siegert shift. '

The avoided crossings for rf frequencies near
1

—,(col +co „) correspond to a two-photon reso-

nance. For rf fields less than or of the order of 1 G,
there is very little evidence of this feature, consistent
with its two-photon character.

B. DEMUR of a muoniumlike center
with nuclear hyperfine structure

The analysis for a muoniumlike center with nu-

clear hyperfine structure proceeds much like the
analysis of Sec. II A except that there are additional
terms in the spin Hamiltonian, Eq. (1). Consequent-

ly there are more stationary states, so that Eq. (3)
for %(t) has more contributions, as do Eqs. (5), the
differential equations for the a;(t). For low-static
fields the theory of DEMUR could be very compli-
cated as could the pSR frequency spectrum with no
applied rf.

At high-static fields the results are much simpler;
provided that the rf magnetic field is not too large,
it is reasonable to say that cu is near one and only
one EPR frequency and only two pSR frequencies
occur. The analysis of Sec. IIB is then valid al-
though more stationary states occur.

If we confine our discussion to the case of a single
1

nucleus of spin —,, then there are four strong EPR
transitions in high field. When the rf frequency is
resonant with one of these four EPR transitions, the
two @SR lines will each be split into three lines.
Half of the amplitude of each pSR line, that corre-
sponding to a particular nuclear spin state, will be
split into two lines as given by Eqs. (18), and the
other half will be unaffected. Thus on resonance
with random rf phase a symmetric pattern with a
1:2:1 ratio of amplitudes occurs for each pSR line.
Off resonance the amplitudes and splittings are both
asymmetric. As the nuclear spins or the number of
nuclei involved increase, the intensity of the unsplit
line increases relative to the two lines which are

split. DEMUR would clearly not be simple and
easy to see except in the simplest cases of nuclear
hyperfine structure.

C. Other magnetic resonance experiments
on p+ and muonium

There have been numerous experiments first on
p+ and then on muonium in which magnetic reso-
nance was detected by observations of the changes
of the static muon spin polarization along the direc-
tion of the applied static field. Such behavior for a
muoniumlike center is shown by the z dependence of
the static polarization in Eq. (19) and for selected
driven transitions of muonium in Eqs. (30) and (31).
Since the aim of these magnetic resonance experi-
ments is much different than those of DEMUR, the
experimental conditions are quite different, and the
analysis which we have used may not always be ap-
propriate. The experiments on muonium measure
the magnetic dipole transitions of the muon spin
precisely so as to extract accurate values of the
muonium hyperfine splitting. They are not designed
to use time-differential @SR techniques and thus to
obtain the p+ spin precessional frequencies. Conse-
quently they do not display the various coherence ef-
fects observable in DEMUR nor can one study weak
EPR transitions as in DEMUR.

D. Comparison to coherence effects
observed in other ways

DEMUR is a technique which works only because
of the coherence effects. The intense rf magnetic
field drives the system, frequently just one transi-
tion, and the state of the system and the polarization
vary coherently with the driving field. The split-
tings, shifts, and amplitude variations which depend
on the magnitude and frequency of the rf field are
all coherence effects. Without these DEMUR could
not be detected.

There are many other kinds of experiments in
which coherence effects are observed and there are
many papers about magnetic resonance or atomic
physics which relate to this subject. Two examples
will be discussed which, if combined, illustrate the
kinds of effects analyzed in Sec. III A.

In nuclear magnetic resonance experiments at low
frequencies and in the earth s field, Bene and his col-
laborators have observed that in the resonance of
spin- —, nuclei such as protons the response of the
system has three frequency components. This is
the same as the behavior of P43(t) in Eqs. (29) and
(30) with the rf frequency near resonance with co43.

A qualitative explanation for this is given in Sec. I.
Coherence effects are also observed in electron nu-
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clear double resonance (ENDOR). ' One form that
these experiments take involves high microwave
power, i.e., a large rf field driving the EPR transi-
tions. A splitting of the NMR transitions is ob-
served when the frequency of the low-power rf field
is near a resonance of the nuclear ~sins. This
behavior is similar to that observed in P3z(t) in Eq.
(29) when the rf frequency is near co43.

V. CONCLUSION

We have presented a rather general theoretical
treatment of DEMUR together with results for two
specific cases of interest, muonium and the
anomalous muonium centers observed in Si, Ge, and

diamond. The theory has been tested in experiments
on muonium in quartz and other applications are
under study. The results are similar to those for
other coherence effects. The special features of @SR
have been incorporated into this treatment as has
been the absence of observed relaxation in the sys-

tems to which the theory has been applied.
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