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Correlated-basis-functions theory of metal surfaces. Preliminary results
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We report here a variational method for calculating surface energies and electronic density

profiles using correlated wave functions. Preliminary results are given for the whole range of
densities corresponding to simple metals. Our method provides an alternative to the density-

functional method. In addition, it furnishes a basis for obtaining many-body wave functions for
metal surfaces.

The density-functional formalism (DFF) has dom-
inated metal surface calculations that include many-
body effects for more than a decade. Starting with
the original work of Lang and Kohn, ' discussions
have centered about the importance of correlation ef-
fects, the accuracy of the local-density approximation
(LDA), and the validity of using first-order perturba-
tion theory to calculate lattice corrections. Improve-
ments have been made in at least four directions:
gradient expansion for the exchange-correlation ener-

gy functional, ' wave-vector corrections on LDA, ' in-
clusion of the ion lattice by means of pseudopoten-
tials in the Hamiltonian (but not in the single-particle
equation) for a variational calculation, ' and three-
dimensional band calculations that account for ex-
change and correlation only in low orders.

We would like to present an alternative to DFF,
using the formalism of correlated basis functions
(CBF).6 One purpose is to develop a method that
treats correlations in the bulk and in the surface re-
gion using the same scheme. Another is to provide
many-body wave functions for metal surfaces that are
needed, e.g. , for the evaluation of matrix elements
that couple adsorbed atoms and molecules to surface
excitations. Previously, we have developed CBF for
electron liquids without using cluster expansions, '
and have applied the method to systems with rela-
tively small density variations, such as metallic hydro-
gen. We have also calculated leading terms for the
metal surface problem using the simplest variational
wave functions. 9

In this paper we describe a full CBF calculation of
metal surface energies and electronic density profiles.
We first consider the electrons to be moving in a uni-
form positive charge background occupying the space
Z ( ZG, ZG being the Gibbs surface for the elec-
trons. The Hamiltonian has the form

p
2

+ Velectron-electron+ Velectron-ion+ Vion-ion
2m

electrons

lated wave function:

4'(1, 2, . . . , N) =F(1,2, . . . , N)D[s ]

where

F(1, 2, . . . , N) = X exp [ 2
u (r„)]"

is a multiparticle correlation factor taken from a pre-
vious bulk electron liquid calculation. ' The function
u (r ) has the form u (r ) = (a /r ) (—1 —e ~'), where
a = 2e /tee~ with co~ =4rrne /m, and b denotes a
parameter determined variationally for every r, .
D [cc ] is a determinant of single-particle orbitals

[sJ( r )) for an electron moving in a suitable model
potential V( r ); thus

&'+ V( r ) q'J( r ) = aj qj( r )
2m

Since F is a known function, '(I' is totally determined
by the choice of V( r ). Formally, the variational
problem reduces to minimizing E = ('P

~
DC~'P) /

(qc[qv) with respect to V( r ). For this calculation,
we choose a two-parameter potential that resembles
the potential an electron might experience in a semi-
infinite metal:

A kF 0!
for z (zp=

2m 2Sa pkF

cxe for z ~zp,
4z

(2)

E = T + T'+ V, + V„ (3)

where S and n are variational parameters. It should
be noted, however, that V( r ) bears no resemblance
to the effective self-consistent field in DFF. It is a
variational function. Using the form of W given ear-
lier we can write the energy as follows:

Central to our method is the construction of a corre- v= Z, —fv(r)v(r )dr
I

(4)
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2

J p( r i, r &) [Viu (r») ]'d r i d r &+ J p ( r i, r &, r &) ['7iu (r») V'u(r»)]d r id r &d r 3

e f' p( r i, r i) —p( r i)p( r q)
V d r~d r2,

2
(6)

e' I' [p(r i) —p+(r i)][p( r i) —p+(r ~)] dridr2 .CS

ri —12

In the above equations, p ( r i, . . . , r „) is the n

particle distribution function. Exchange and correla-
tion are seen to contribute to the energy through the
terms T' and V„and also by their effects on the
shape of the profile. We make simplifying approxi-
mations (explained below) on p ( r i, r q) and

p ( r i, r z, r i). E can be evaluated once the single-
particle distribution function, or density profile p (z),
is available. To calculate the surface energy, we sub-
tract the energy for the bulk metal from that of the
semi-infinite system.

We now state how p (z ) is obtained for a given

[

V(z). First, we define

(8)

i

qr(lk) = X eXP —u (rS) D [q ],
i&J

and denote the corresponding generalized density
profile by p (z IX). For a system of independent par-
ticles, 3, -0, O'-D [s ], and thus p (z I0) - XJI s J I .
So the "uncorrelated" density profile can be easily
calculated after we solve Eq. (1) for Iq~( r )). For a
system of fully interacting particles, A. =1, and
p(zll)-p(z), the desired density profile. p(zl}k) is
related to p (z IO) through the equations 9

lnp(zil)k)-lnp(zil0)+ J dL' JId rzp(zilch')u(riq)g(1, 2lik')

+ —, J dX' J d rz Jl d r p3(z lb'. ')p(z le, ') (ur )z3[g(1, 2, 3I)k') —g(2, 3llk')]

where

g (1, 2IX) —=p ( r i, r ili)/p (zi ilk)p (zzlik)

and

g(1, 2, 31&)=p(r i, r 2 r 31)k)/p(zil)k)p(zilch)p(z3IX)

denote generalized pair and triplet correlation functions. Under the convolution approximation,

g(1, 2, 3IX) —g(2, 3IX) =hii+hii+hiihiq+hiihqq+hiihii+ J p(z4IX)hi4hz4hi4d r4,

(9)

where h]i ~g (1,2I X) —1 satisfies the normalization
condition fd r ip(zilch)biz= —1. We further make
the approximation

g (1, 2 I)k) =gbulk(1121)k) gbulk(rig)

and take it from Ref. 7. These same approximations
are used in simplifying the energy terms. Some of
the resulting integrals in Eq. (9) are divergent, but
we have proven that the divergences are spurious,
and can be removed by properly ordering the limits
in which the three length scales: size of the system,
distance between the cleaved surfaces, and the range
of the Coulomb force, are taken to infinity. Details
will be given in another publication.

We solve Eq. (9) iteratively, and use the result in

the variational energy. For the ion lattice model, we
choose our Hamiltonian as containing pseudopoten-
tials, and make corrections to the jellium calculation
given above in much the same manner as Lang and
Kohn. ' The difference is that we do not carry out a
first-order perturbation calculation. We vary the
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FIG. 1. Surface energy.
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TABLE I. Surface energies of simple metals (in units of ergs/cm2).

Metal Face

Present work

Jellium
model

Ion
lattice
model Experiment

Lang-
Kohn

DDF
M�onnie-
rPerde

Al (fcc)

Zn (hcp)

Pb (fcc)

Mg (hcp)

Li (bcc)

Na (bcc)

K (bcc)

Rb (bcc)

Cs (bcc)

2.07

2.30

2.30

2.66

3.28

3.99

4.96

5.23

5.65

(111)

(0001)

(100)
(111)

(0001)

(»0)
(110)

(»0)

(»0)
(110)

2.3

3.5

3.5

4.0

4.4

4.7

8.0

8.3

8.5

1.2

1.4

1.4

1.7

1.8

1.9

2.0

2.0

2.1

102

278

277
277

309

363

204

94

76

915

1040

624
-270

859

445

277

139

121

99

1143 ' 1170 965'

913,' 1040 350

690 593'

785, 712

522,' 470

261,' 275 220

145,' 135 125

7 a95f

95,' 80'

730

480

»40

546

380

230

140

120

102

795

590

456

619

392

247

148

»7
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parameters S and e in evaluating the expectation
value for the full Hamiltonian. It turns out that the
energy minimum shifts very slightly, indicating that
the first-order perturbation theory is valid at least
from the point of view of a variational calculation
using our rather restricted class of trial wave func-
tions.

Table I and Fig. 1 give pertinent results for metals
with r, ranging from 2.07 (Al) to 5.65 (Cs). On ac-
count of the bulk approximation for g (1,2

~ 3.), these
results should be regarded as preliminary. We are
encouraged that they have the right order of magni-
tude. Ongoing work makes elaborate improvements

on g (1, 2~ 8, ), and will be reported elsewhere.
Note added in proof Calcul.ations without using the

bulk approximation for g (1,2
~ X) are now complete.

Results are similar to those reported here except for
small r„and will be published in detail elsewhere.
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