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The d=3 planar model is analyzed for the first time with the Monte Carlo
renormalization-group (MCRG) method. To increase the efficiency of the calculation, an
operator is introduced in analogy with the “vacancy” operator used in the MCRG analysis
of the ¢ =4 Potts model. This operator is shown to be important in understanding the ef-
fect of the renormalization transformation on the Hamiltonian, and in improving the con-

vergence of the method.

I. INTRODUCTION

Monte Carlo (MC) computer simulations,"? com-
bined with a renormalization-group (RG)
analysis,>~® have been shown to be useful for calcu-
lating properties of phase transitions in statistical
models.>~%® In principle, the MCRG methods that
have been developed are extremely general and can
be applied to any model of interest on a lattice in
any number of dimensions. In practice, there are re-
strictions arising from limitations of computational
power. These restrictions and other considerations
have led to a concentration of most work to date on
two-dimensional systems with discrete spin degrees
of freedom.?

The main purpose of this work is to demonstrate
the extension of the MCRG approach to systems
with continuous degrees of freedom in three dimen-
sions. Recent advances in MCRG methods now
make it possible to attack such problems with avail-
able computers, and prepare the way for more accu-
rate calculations with special-purpose machines.®

The most serious difficulty with the MCRG ap-
proach arises from the initial MC computer simula-
tion. The restricted availability of computer time
imposes a limit on the total number of MC steps
that can be used for a given calculation. This must
be divided by the number of sites in the system to be
studied to determine the possible length of the MC
simulation for a given problem. Increasing the size
of the system necessarily reduces the number of
Monte Carlo steps per site that can be used, and
consequently reduces the accuracy to which the re-
quired correlation functions can be determined. The
effect is naturally more pronounced in higher di-
mensions and further aggravated by the diverging
relaxation times (critical slowing down) when the
critical point is being studied. For a three-
dimensional system, doubling the system’s length L
directly affects the length of the simulation by a fac-
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tor of 8 and the relaxation times increase by roughly
a factor of 4. The computer time required for a
given accuracy therefore increases by a factor of 32.
This generally produces a rather well-defined practi-
cal limit to the size of the lattice that can be treated.

On the other hand, for the MCRG analysis, it is
desirable for the system to be as large as possible.
Since each renormalization transformation reduces
the linear dimensions by the scale factor b, the sys-
tem rapidly becomes so small that finite-size effects
dominate. For three dimensions, the maximum
value of L for most computer facilities is about 32
and the simplest RG transformations have a scale
factor b=2. Since finite-size effects are often no-
ticeable when the renormalized lattice is reduced to
L =4, there are at most three RG transformations
from which useful information about the critical ex-
ponents can be obtained.

It is clear from these considerations that rapid
convergence is extremely important. Two recent im-
provements in technique have made it possible to
optimize the convergence.

The first essential improvement is a method of
determining the critical temperature directly from
the MCRG analysis for any model of interest,
without having to rely on data obtained by another
method, such as high-temperature series or duality
relationships. This makes it possible to introduce
more parameters into the initial Hamiltonian
without loss of accuracy.®116:20-22

The second improvement comes from the insight
into the nature of the renormalized couplings that
has been obtained from the study of the g-state Potts
model in two dimensions.>*~*? In that problem, the
existence of both first- and second-order transitions
for different numbers of states highlighted the
necessity of understanding the effect of block-spin
RG transformations on renormalized Hamiltonians.
The breakthrough for real-space methods using
truncation approximations came with the introduc-
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tion of vacancies (an additional state), which enabled
a compact description of the renormalized cou-
plings.*?~37 The recognition that “effective vacan-
cies” could also be described by four-spin cperators
without introducing an extra state, enabled the bor-
derline case of the g =4 Potts model to be handled
directly by explicitly compensating for the renor-
malized interactions with an additional term in the
original Hamiltonian.??

In Sec. II the essential equations of the MCRG
method are summarized for completeness. The
nearest-neighbor d =3 planar (or XY) model is intro-
duced in Sec. III and the MCRG calculation of the
critical exponents is presented, based on a simulation
at its critical temperature. It is seen that the statisti-
cal errors are not unreasonably large, but that the
convergence is slow. The model is generalized in
Sec. IV to demonstrate the improvement of the con-
vergence. The prospects for future work and appli-
cations to other three-dimensional models are dis-
cussed in Sec. V.

II. MCRG FORMALISM

We shall denote the operator on lattice site i by o;
and write the Hamiltonian in the general form

H=3K,S, , 80

where the S,’s are combinations of the o;’s

For the RG analysis transformations will be con-
sidered in which the spin variables on neighboring
sites are grouped into “blocks” and values for each
“block spin” are assigned on the basis of the values
of the spins in each block. The probability distribu-
tion of the new configurations is then described by a
Hamiltonian of the form of Eq. (1) but with dif-
ferent (renormalized) coupling constants.

Starting with a MC simulation at criticality, the
RG trajectory moves the renormalized Hamiltonian
towards a fixed point. The renormalization-group
transformation can then be linearized about the
fixed point,

KMV —Ka= TpKg"—Kp) , 0))
B

and characterized by the matrix
d K(n +1)
a

3Ky

The asymptotic behavior and the critical ex-
ponents are calculated from the eigenvalues of this
matrix, which is found by solving the set of chain-
rule equations

3(sy"+Y)
Ky < aky
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- tion functions.

with derivatives obtained from MC correlation func-
tions,
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The expectation values of certain operators vanish
by symmetry, so that some of the subtractions in
Eq. (5) can be eliminated, improving the accuracy.

To calculate the critical temperature, it is neces-
sary to compensate the size effect by simulating lat-
tices of two different sizes. For systems differing by
the scale factor b, one RG transformation of the
large system will match the size of the smaller sys-
tem. Differences in the correlation functions are
then entirely due to differences in the Hamiltoni-
ans.’ If these differences are not too large, we can
calculate the effect of changing the coupling con-
stants by making the linear approximation

8(SM)= 2 —==8KY" , (6)

where L (S) refers to the large (small) lattices. The
derivatives are calculated in analogy to Eq. (5).

A particularly effective alogrithm for calculating
an approximate fixed point or locating the critical
temperature uses differences in the correlation func-
tions to calculate deviations of the coupling con-
stants in H™ from the fixed-point Hamiltonian,*3

(S(n))L_<S(n—1))

2 S sy s
K(O) aKéO)

8K(0) .

M

Since deviations from the fixed point in relevant
directions are amplified by RG transformations, this
method is extremely sensitive to the location of the
critical point. A least-squares fit to a single cou-
pling constant can be made and the consistency of
the predicted change in the critical coupling com-

pared with the measured differences in the correla-
15,16,20,21

III. THE NEAREST-NEIGHBOR MODEL

I shall first present an MCRG analysis of the
nearest-neighbor three-dimensional planar model,
defined on a simple cubic lattice by the Hamiltoni-
an

H=K Y o0;. (8)
(i,j)

The renormalization transformation consists of



dividing the lattice into 2 X2 X2 blocks, adding the
two-dimensional vectors associated with each of the
eight sites in the block, and renormalizing the sum
to obtain a block spin of unit length. This RG
transformation will be used throughout.

As is usual in MCRG calculations, the positions
of the blocks on every level of renormalization were
shifted every time correlation functions were
evaluated to maximize the independence of the con-
tributions of successive configurations.'*19—2!

The operators used to analyze the results of the
RG transformations for the nearest-neighbor model
are given in Table I. Four separate MC simulations
of this model were performed for lattices of various
sizes ranging from 4 X4 X4 to 3232 32. Table II
contains technical data to aid in evaluating the sta-
tistical accuracy. For this part of the work, the
simulations were performed at the critical coupling
strength of K;=0.45393, obtained from series ex-
pansions.** The confirmation of this value of the
critical coupling by MCRG is discussed below.

Table III contains MCRG data for the leading
thermal eigenvalue exponent yr=1/v. The finite-
size effect for the smallest lattice (L =4) is large
and the entries in Table III for the first iteration of
the RG transformation differ considerably from
those obtained from the system with L =8. This is
not surprising, since the renormalized lattice is only
2X2X2 and imposes a substantial truncation on the
renormalized Hamiltonian. Unfortunately, even the
entries for L =8 are about 10% less than those of
larger lattices. It is only when we compare the re-
sults of L =16 with L =32 that we find agreement,
so that the finite-size effect can be regarded as negli-
gible. Therefore, only the first two iterations of the
RG transformation for the L =32 lattice (and the
first RG transformation for the L =16 lattice) are
characteristic of the infinite lattice. Since the first
two iterations give different estimates of yr, the re-
normalized Hamiltonians are not close enough to
the fixed point for the sequence of estimates to have
converged. This internal evidence is also confirmed
by comparison with the value of 1.49, obtained from
other methods,* 4’ which differs considerably from
the values of 1.0 and 1.3 obtained from the first two
RG transformations.

Table IV gives estimates of the magnetic eigen-
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TABLE 1. Coupling constants used in the analysis of
the nearest-neighbor d =3 planar model.

Even couplings
Description

Nearest neighbor (100)
Next-nearest neighbor (110)
Bi-quadratic nearest neighbor (100)
Third-nearest neighbor (111)
Fourth-nearest neighbor (200)
Sixth-nearest neighbor (211)
Seventh-nearest neighbor (221)
Eighth-nearest neighbor (222)

R RV ST N -

Odd couplings

Description
Magnetic field: (h*o;)
(h*o0;)¥(0;%0;)
(h%o;)*(0;%0;) nearest neighbor
(h%0;)*(0;%0;) (110) neighbor
(h*o;)*(0;%0;) (111) neighbor

uh Lo =2

—_—

value exponent yj, obtained from the same simula-
tions. The situation here is somewhat better, in that
the finite-size effect is only evident for an RG
transformation which reduces a 4X4 X4 lattice to a
2X2X2 lattice. Even for these extremely small lat-
tices, the finite-size effect is less than 3%. The sta-
tistical accuracy of the results is also substantially
better than for the thermal eigenvalues. This is a
common effect due to the vanishing of all odd corre-
lation functions, which makes it unnecessary to per-
form the subtractions in Eq. (5).

However, the convergence of the magnetic eigen-
values is also rather slow. The three available RG
iterations give values for yy of 2.27, 2.39, and 2.44.
These are all below the expected value of 2.48.44—48
Although they are consistent with a smooth conver-
gence from below, the convergence is too slow to
make clear predictions.

Another method of extracting critical exponents
from the same MC data is illustrated in Table V.
This table shows estimates of the critical exponent 7
obtained from the calculated values of the magnetic
susceptibility at the critical point, using finite-size
scaling on the renormalized systems. Both a strong
lattice dependence and and a strong dependence on

TABLE II. MC simulation data for MCRG calculations for the d =3 planar model.
Nearest-neighbor interaction K;=0.45393. Data taken for correlation functions every 10 MC

steps per site.

Lattice size (L) 16 8 4
10° MC steps per site used 336 1536 240
10° MC steps per site discarded 36 64 10
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TABLE III. Critical eigenvalue exponent y1 for the d =3 planar model as a function of the
number of RG iterations (N,), the number of coupling constants in the RG analysis (N,), and
the linear dimension of the lattice (L). K;=0.45393.

Lattice size (L)

N, N, 32 16 8 4

1 1 1.08(2) 1.10(1) 1.16(1) 1.48(1)
2 1.06(2) 1.08(1) 1.15(1) 1.53(1)
3 1.01(3) 1.03(1) 1.06(1) 1.28(1)
4 0.99(3) 1.00(1) 1.04(1) 1.28(1)
5 0.98(3) 0.99(1) 0.96(1)
6 0.96(5) 0.97(1) 0.89(2)
7 0.97(5) 0.98(1) 0.89(2)
8 0.97(5) 0.98(1) 0.89(2)

2 1 1.41(2) 1.50(1) 1.89(1)
2 1.39(3) 1.48(1) 1.92(1)
3 1.36(3) 1.41(1) 1.65(1)
4 1.34(3) 1.40(1) 1.65(1)
5 1.31(3) 1.29(2)
6 1.30(5) 1.22(5)
7 1.30(5) 1.22(6)
8 1.30(6) 1.22(6)

3 1 1.59(4) 2.03(2)
2 1.56(5) 2.06(2)
3 1.50(5) 1.78(1)
4 1.49(5) 1.78(1)
5 1.36(6)
6 1.19(9)
7 1.24(7)
8 1.25(8)

4 1 1.97(10)
2 1.99(10)
3 1.72(9)
4 1.72(10)

the number of RG iterations (distance from the
fixed point) is seen. Although this method has been
shown to be effective in some systems, it does not
produce useful results here.

A clear success of the MCRG analysis, despite the
slow convergence for the critical exponents, is the
confirmation of the critical temperature obtained
from series expansions. Table VI shows the results
of comparing pairs of lattices and performing a
least-squares fit of the deviation of the coupling
constant used for the simulation from the true criti-
cal coupling. The comparison of the L=8 and
L =4 systems shows a systematic deviation of less
than 3%, while the larger lattices show no deviation
within the statistical errors.

It should, however, be noted that only on the
second iteration do the deviations predicted by the
small changes in the coupling constant really corre-

spond to small differences in all measured correla-
tion functions. Before this, the irrelevant deviations
from the fixed point are still important and result in
both positive and negative discrepancies. These
discrepancies are very important in providing a hint
as to the nature of the effect of the RG transforma-
tion on the Hamiltonian, leading to the modified
MC simulations described in the following section.
Table VII shows raw data for the first- and
second-nearest-neighbor correlation functions from
the MC simulations both before and after RG
transformations. The table is constructed with data
for each correlation function for all lattices of a
given size after renormalization shown on the same
line. Therefore, by moving to the left on a given
line, we can see the effect of renormalizing the
Hamiltonian without changing the lattice size. The
most striking feature is that both correlation func-
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TABLE IV. Critical eigenvalue exponent yy for the d =3 planar model as a function of the
number of RG iterations (N,), the number of coupling constants in the RG analysis (N,), and
the linear dimension of the lattice (L). K;=0.45393.

Lattice size (L)

N, N, 32 16 8 4
1 1 2.314(1) 2.318(1) 2.333(1) 2.385(1)
2 2.314(1) 2.318(1) 2.333(1) 2.385(1)
3 2.273(2) 2.274(1) 2.273(1) 2.243(2)
4 2.273(2) 2.274(1) 2.273(1) 2.242(2)
5 2.273(2) 2.274(1) 2.273(1) 2.242(2)
2 1 2.418(2) 2.440(2) 2.507(1)
2 2.418(2) 2.440(2) 2.507(1)
3 2.393(2) 2.393(1) 2.347(2)
4 2.393(2) 2.393(1) 2.343(2)
5 2.393(2) 2.393(1) 2.343(2)
3 1 2.480(7) 2.558(4)
2 2.479(6) 2.558(4)
3 2.446(4) 2.395(4)
4 2.444(4) 2.392(4)
5 2.444(4) 2.392(4)
4 1 2.556(2)
2 2.555(2)
3 2.386(2)
4 2.378(3)
5 2.379(3)

tions increase as the renormalized Hamiltonians
move towards the fixed point. The most plausible
explanation seems to be that the nearest-neighbor
coupling constant becomes stronger under renormal-
ization. However, since we remain at criticality, ad-
ditional interactions must be generated that compen-
sate for this effect. This could be simply longer-
range antiferromagnetic exchange, but attempts in
this and other systems to compensate for the effect
by introducing antiferromagnetic interactions be-

TABLE V. Estimates of the exponent 7 for the d =3
planar model from finite scaling on renormalized lattices.
Values of 7 obtained by comparison of renormalized lat-
tices (n) and (n —1) from a single MC simulation as a
function of the size of the original lattice (L).
K;=0.45393.

Lattice size (L)

n 32 16 8

1 0.372 0.362 0.325
2 0.162 0.113 —0.043
3 0.033 —0.143

4 —0.139

tween more distant neighbors have not been success-
ful in improving the MCRG convergence. The al-
ternative assumption that the important interactions
in the renormalized Hamiltonians are relatively
compact, many-spin terms is the basis for the inves-
tigation of a generalized model in the following sec-
tion.

IV. THE GENERALIZED MODEL

The speed of convergence of the MCRG method
is determined by the magnitude and direction of the
deviation of the original model from the fixed point
of the RG transformation. To improve conver-

TABLE VI. Estimates of the deviation of the simulat-
ed coupling constant from the critical value for the d =3
planar model. K;=0.45393.

Lattice sizes being compared

N, N, 32—-16 16—8 8§—4
1 8 0.0028 0.0050 0.0127
2 8 0.0002 0.0022 0.0100
3 8 —0.0005 0.0015
4 8 —0.0006
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TABLE VII. First- and second-nearest-neighbor correlation functions for the d =3 planar
model as a function of the renormalized lattice size and the linear dimension of the original

lattice (L). K;=0.45393.

Original lattice size (L)

Renormalized
lattice N, 32 16 8 4
3232 1 0.994(2)
2 1.265(3)
16X 16 1 1.172(5) 1.015(1)
2 1.66(2) 1.322(3)
8% 8 1 1.33(2) 1.253(4) 1.066(1)
2 1.99(4) 1.85(1) 1.461(2)
4%4 1 1.55(5) 1.58(1) 1.452(2) 1.213(2)
2 2.6(2) 2.64(3) 2.384(5) 1.842(5)
2X2 1 2.21(7) 2.28(2) 2.213(3) 2.051(5)
2 4.2(2) 4.22(4) 4.073(8) 3.69(2)

gence, we need information concerning the location
of the fixed point, or, in other words, the effect of
the RG transformation on the Hamiltonian. This
information is difficult to obtain, but recent work on
two models of interest in two dimensions has pro-
vided the hints that led to the calculation in this sec-
tion.

The most important insights have come from the
study of g-state Potts models in two dimen-
sions.!32227:30-42 These models exhibit second-
order phase transitions for g <4, and first-order
phase transitions for ¢ >4.3! The borderline case of
g =4 is particularly difficult (and interesting), due to
the presence of a marginal operator. This peculiari-
ty leads to logarithmic corrections for the critical
singularities,'>3%% differing in this respect from the
Baxter-Wu model,*> which is in the same universali-
ty class. It also leads to extremely slow convergence
of the MCRG estimates for the critical exponents,
since the rate at which the fixed point is approached
in the marginal direction goes to zero close to the
fixed point.!>2?

Real-space renormalization-group calculations us-
ing truncation approximations showed that the artif-
icial introduction of “vacancies” into the renormal-
ized configurations allowed a compact description
of the effects of renormalization and a qualitatively
correct distinction between first-order transitions for
large-g-values and second-order transitions for
small-g values. Based on this success, Berker sug-
gested that the effect of vacancies in the renormal-
ized Hamiltonian could be imitated without intro-
ducing an extra state by using terms such as

Sp=3 (1=8,;)(1—8;,) (1—8, )(1—8,,), (9

plag

where i, j, k, and [ label the corners of a plaquette

(plag) or elementary square of the lattice, and §;; is
unity if the operators on sites { and j have the same
value and zero otherwise. Explicit calculations then
demonstrated that the convergence of the MCRG
method was improved dramatically by proper choice
of the coupling constant multiplying the additional
term in the Hamiltonian being simulated; excellent
agreement with the expected value of yr=1.5 was
obtained.??

The natural generalization of Eq. (9) to a planar
model is

S;= 2 (1—0,0))(1—0;0)(1—0r0o;)(1—0y0;),
plag

(10)

where scalar products have replaced the 8 functions.
In the interest of simplicity, the same idea of a local,
multispin interaction can lead to a term of the form

szz(l—a,-ok)(l——ajal). (11)
plag

The idea behind using these terms is that the RG
transformations in Potts models and planar models
show a certain similarity in the form of the blocks
and the dominance of a majority of the spins in
determining the value of the renormalized block
spin. These formal considerations are strengthened
by looking at the effect of such operators on the
two-dimensional planar model. Kosterlitz and
Thouless have shown the importance of the topolog-
ical excitations known as vortices in determining the
properties of the phase transitions.**~>! Below the
critical temperature, an RG transformation such as
we have been using causes vortex-antivortex pairs to
annihilate (this is rather easy to demonstrate numer-
ically). The reduction of the number of vortices in
the renormalized configurations requires a term in
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the renormalized Hamiltonian that increases the
vortex core energy, without affecting the Gaussian
terms. The interactions in Egs. (10) and (11) can be
seen to have the desired properties, with S, affecting
the vortex core energy in a particularly direct
manner, which can be exploited to improve our
understanding of how first-order transitions can
arise in models with planar symmetry.>

Since S, is simpler than S,, I have used S, to ex-
plore the possibility of improving the convergence in
the MCRG analysis of the three-dimensional planar
model. Short preliminary runs were performed with
L =4 and L =8 to find a reasonable value for the
coupling constant K,. I found that K,=0.10
showed the effects quite clearly, so I fixed it at this
value and varied K to find the critical temperature.
The operators used for the calculations with the gen-
eralized model reflected the new Hamiltonian, as
specified in Table VIII. Data for the new MC simu-
lations are given in Table IX.

The data in the preceding section have shown that
the finite-size effect is important when the renor-
malized lattice is as small as L =4, but not when
L =38. For a fully optimized calculation, it would be
appropriate to investigate this point more carefully
and determine more precisely for what lattices the
finite-size effect becomes negligible. I have chosen
not to do that, in order to make it easier to evaluate
the results of the changes in the model parameters.

With the use of the procedures described in Sec.
II, I determined the critical value of the nearest-
neighbor coupling to be K;=0.6744, when
K,=0.10. Table X shows that the MCRG esti-
mates for the deviation of the true critical value of
nearest-neighbor coupling constants are below the
statistical uncertainties of about 0.2%.

The improvement of this starting point can be im-
mediately seen in the behavior of the correlation

TABLE VIII. Coupling constants used in the analysis
of the d =3 planar model with the crossed-product opera-
tor. Odd couplings are the same as given in Table I.

Even couplings

N, Description

1 Nearest neighbor (100)

2 Next-nearest neighbor (110)

3 Cross-product operator

4 “Vacancy” operator

5 Biquadratic nearest neighbor (100)
6 Third-nearest neighbor (111)
7 Fourth-nearest neighbor (200)
8 Sixth-nearest neighbor (211)

9 Seventh-nearest neighbor (221)
10 Eighth-nearest neighbor (222)

TABLE IX. MC simulation data for MCRG calcula-
tions for the d =3 planar model. Data taken for correla-
tion functions every 10 MC steps per site. K;=0.6744,
K, =0.10.

Lattice size (L) 32 16 8

10* MC steps per site used 5 17 50
10 MC steps per site discarded 1 26 36

functions, as shown in Table XI. The change in
correlation strength upon renormalization is much
less pronounced than it was for pure nearest-
neighbor coupling in Table VII. The improvement
has occurred as expected, with an increase in the
nearest-neighbor correlations for the original simula-
tion and only very small changes in the correlation
functions after three RG transformations.

The most important test is the prediction of the
thermal and magnetic critical exponents, which are
shown in Tables XII and XIII. A comparison of
Table XII with Table III shows that even the first
RG transformation is closer to the expected value of
1.49.4—47 The second iteration of the RG transfor-
mation, which was shown in the preceding section to
be the closest to the fixed point without having a
significant finite-size effect, is in complete agree-
ment within statistical error.

As usual, the best convergence and smallest sta-
tistical errors are found for the magnetic eigen-
values, as seen in Table XIII. The size effect is
again negligible down to a 4X4X4 renormalized
lattice, and both the second and third iterations
starting with L =32 give values for y, in agreement
with the expected 2.48 (Refs. 44—48) within statisti-
cal error.

In principle the MCRG method can also be used
to investigate nonleading exponents. The necessary
eigenvalues are delivered automatically by the com-
puter analysis, but usually have much larger statisti-

TABLE X. Estimates of the deviation of the simulated
coupling constant from the critical value of the nearest-
neighbor coupling for the d =3 planar model, with the

crossed-product coupling held fixed. K;=0.6744,
K, =0.10.

Lattice sizes being compared
N, N, 32—-16 16—8
1 10 0.0010(4) 0.0009(10)
2 10 0.0003(4) 0.0000(12)
3 10 0.0002(4) —0.0002(14)
4 10 0.0002(5)
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TABLE XI. First- and second-nearest-neighbor corre-
lation functions for the d =3 planar model as a function
of the renormalized lattice size and the linear dimension
of the original lattice (L). K;=0.6744, K, =0.10. This
table should be compared with Table VII for the nearest-
neighbor model.

Original lattice size (L)

RG lattice N, 32 16 8
32X32 1 1.246(3)
2 1.580(8)
1616 1 1.29(1) 1.270(5)
2 1.83(3) 1.65(2)
8X8 1 1.39(3) 1.37(2) 1.348(2)
2 2.13(7) 2.04(5) 1.877(3)
4x4 1 1.64(6) 1.61(5) 1.617(3)
2 2.7(2) 2.7(1) 2.673(8)
2X2 1 2.3(1) 2.26(6) 2.282(4)
2 4.2(3) 4.2(2) 4.21(1)

cal errors and a stronger dependence on the size of
the system and the number of interactions used in
the analysis.2! For the current calculation, the
second-largest magnetic eigenvalue seems to suffer
mostly from finite-size effects as shown in Table
XIV. The size clearly dominates when the renor-
malized lattice is 4 X4 X4, but it remains a question
as to how strongly the second iteration of the L =32
system is affected and whether the data can be inter-
preted as a second relevant eigenvalue, which might
give rise to an important confluent singularity in the
magnetic susceptibility. It is difficult to make a pre-
diction on the basis of the data available, but it
seems likely that the simulation of an L =64 system
would be able to shed light on the problem.

To demonstrate from internal consistency of the
MCRG calculation that the second iteration has al-
ready converged to the asymptotic value, at least one
additional RG step would be needed. If the same se-
quence were followed, this would require simulating
a system with L =64. This is by no means impossi-
ble with a special-purpose machine, but additional
investigations should be made to see whether the
finite-size effect can be neglected for lattices smaller
than 8 X 8X 8, to see whether the required computer
time could be reduced.

It should be noted that additional effort to find
the optimal value of K, would probably be rewarded
by better convergence. It is also possible that Eq.
(10), which is closer to the operator suggested by
Berker and used in the MCRG analysis of the
d =2,qg=4 Potts model,??> might be even more effi-
cient in improving the convergence properties of the
MCRG analysis.

TABLE XII. Critical eigenvalue exponent yr for the
d =3 planar model as a function of the number of RG
iterations (N,), the number of coupling constants in the
RG analysis (N,), and the linear dimension of the lattice
(L). K;=0.6744, K, =0.10.

Lattice size (L)

N, N, 32. 16 8
1 1 1.33(1) 1.37(2) 1.44(1)
2 1.31(1) 1.36(2) 1.42(1)
3 1.25(1) 1.29(3) 1.25(1)
4 1.25(2) 1.28(3) 1.26(1)
5 1.22(2) 1.26(3) 1.24(1)
6 1.19(4) 1.23(3) 1.22(1)
7 1.20(4) 1.25(4) 1.13(2)
8 1.18(5) 1.24(6) 1.04(4)
9 1.18(5) 1.24(7) 1.04(4)
10 1.18(5) 1.24(5) 1.04(4)
2 1 1.56(2) 1.66(2) 2.07(1)
2 1.55(2) 1.66(2) 2.09(1)
3 1.54(2) 1.55(2) 1.85(1)
4 1.54(2) 1.55(2) 1.77(1)
5 1.53(2) 1.55(2) 1.69(1)
6 1.52(2) 1.54(2) 1.69(1)
7 1.50(2) 1.46(3)
8 1.48(2) 1.43(5)
9 1.48(3) 1.45(5)
10 1.48(3) 1.45(6)
3 1 1.66(3) 2.15(7)
2 1.66(3) 2.177)
3 1.60(5) 1.92(6)
4 1.59(6) 1.79(7)
5 1.60(5) 1.73(7)
6 1.60(5) 1.74(10)
7 1.53(5)
8 1.44(16)
9 1.45(16)
10 1.45(17)
4 1 2.07(4)
2 2.10(5)
3 1.94(12)
4 1.91(30)
5 1.83(30)
6 1.83(30)

V. FUTURE WORK

The purpose of this paper has been to demonstrate
the power and flexibility of the MCRG method as a
tool for investigating difficult systems in three di-
mensions. Although the accuracy of the method for
the calculation of critical exponents is still far from
that of some older methods,*>*~* it is surprisingly
good. Furthermore, the prospects for further im-
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TABLE XIII. Critical eigenvalue exponent yy for the
d =3 planar model as a function of the number of RG
iterations (N,), the number of coupling constants in the
RG analysis (N,), and the linear dimension of the lattice
(L). K;=0.6744, K, =0.10.

Lattice size (L)

N, N, 32 16 8
1 1 2.427(1) 2.434(2) 2.459(1)
2 2.427(1) 2.434(2) 2.459(1)
3 2.394(1) 2.393(1) - 2.393(1)
4 2.394(2) 2.392(2) 2.392(1)
5 2.394(2) 2.392(2) 2.392(1)
2 1 2.469(3) 2.492(6) 2.570(2)
2 2.469(3) 2.492(6) 2.570(2)
3 2.458(2) 2.456(3) 2.402(3)
4 2.457(2) 2.455(3) 2.397(3)
5 2.457(2) 2.455(3) 2.397(3)
3 1 2.506(7) 2.573(2)
2 2.506(7) 2.573(2)
3 2.474(4) 2.391(2)
4 2.473(4) 2.380(2)
5 2.473(4) 2.380(2)
4 1 2.58(2)
2 2.58(2)
3 2.42(2)
4 2.42(2)
5 2.42(2)

provement are very bright. Aside from the rapid
current progress in the construction of special-
purpose machines that could reduce the costs of
such calculations by orders of magnitude, insights
into the nature of RG transformations should im-

TABLE XIV. Critical eigenvalue exponent yy, for the
d =3 planar model as a function of the number of RG
iterations (N,), the number of coupling constants in the
RG analysis (N,), and the linear dimension of the lattice
(L). K,=0.6744, K, =0.10.

Lattice size (L)

N, N, 32 16 8
1 2 —0.09(7) —0.06(4) 0.09(1)
3 —0.06(4) —0.06(5) 0.08(2)
4 —0.01(8) 0.11(3) 0.17(3)
5 —0.01(9) 0.09(4) 0.16(3)
2 2 0.60(5) 0.70(5) 0.95(1)
3 0.60(5) 0.70(6) 0.95(1)
4 0.61(4) 0.71(5) 0.97(2)
5 0.61(4) 0.72(5) 0.97(2)
3 2 0.74(8) 1.03(7)
3 0.74(7) 1.03(9)
4 0.74(7) 1.08(9)
5 0.74(7) 1.09(9)
4 2 0.93(11)
3 0.93(11)
4 0.93(9)
5 0.93(9)

prove our understanding of phase transitions and
provide practical techniques for optimizing calcula-
tions.
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