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Different physical problems in one dimension are related to the recurrence relation, whose
solution at most linearly increases with the length of the system. In particular, limitations on
the universality relation in localization are presented; phonon localization length, spectrum, and

eigenstates are determined.

I. INTRODUCTION

Many one-dimensional (1D) problems in thermo-
dynamics and kinetics reduce to the evaluation of the
product of transfer matrices. The problems include a
quantum particle in a given potential'; the Anderson
model with diagonal and/or off-diagonal disorder; the
Bloch electron in a magnetic field%;, phonons in a har-
monic chain®; classical diffusion; Ising alloys, fer-
romagnetics, antiferromagnetics, and ferrimagnetics*;
DNA thermodynamics.’ They are most interesting in
random and quasiperiodic systems. But then they are
most difficult, since the value of the product of ma-
trices may exponentially increase with their number.
In this case the possible localization of eigenstates
may be of special interest. However, a straightfor-
ward calculation of eigenstates in, e.g., a harmonic
chain of 1000 random force constants reduces to
eigenstates of 1000 x 1000 matrix. In this paper I
reduce the calculation of the product of arbitrary
(complex) 2 x 2 matrices to the (real) recurrence re-
lation directly for the exponent at most linearly in-
creasing with the number of matrices. This maps all
indicated problems on each other. To demonstrate
how simple and efficient are the calculations, I show
the limitations on the universality in 1D localization.
The calculations are so accurate that they allow one
to observe extraordinary narrow resonances of the
wave transmission at eigenenergies. In this way, one
may determine the eigenenergies. Then the re-
currence relation determines the eigenfunctions and
their localization. I demonstrate it on the phonon
spectrum of a 1D random chain.

1I. SCHRODINGER EQUATION;
LOCALIZATION AND UNIVERSALITY

First consider the 1D Schrodinger equation with
nonoverlapping potentials:

lp” (x) +

K- EV,(X—-X.)lul:(x)-O )

where x,+ > x,. Between each x, and x,4; there is a
region (maybe infinitesimally small), where the po-
tential is zero. In this region

¥ =a; exp(ikx) + a; exp(— ikx) .

Suppose a single potential ¥,(x —x,) leads to the
transmission coefficient

r,=cos(h,) exp(iB,)
and the reflection coefficient
py=sin(h,)exp(iB,—iv,) ,

where |h,| <#/2. When V,(x —x,)=Y,8(x —x,),
then

tanh,=v,/2k ; B,=h,—ka, ;.

vyo=w/2+ka,;, a,=X,—X,-1.

2
In a general case, a simple calculation leads to

ar =exp(— I'/E.XL)OLOL-l ...0ao ,

g . (ko
o) el o)

[[cos (h,)1'exp(—iB,) tan(h,)exp(—ivy,)
9,

tan(h,) exp(iy,)  [cos(h,) ] exp(iB,)
@)
Here h, determines the transmission: |7,]2=cos?h,,

while 8, and vy, determine the phase shifts for the
waves reflected and transmitted by a single potential.
Equation (4) is a general presentation of a transfer
matrix. So one may investigate how the resistance of
a random system depends on the strength, shape,
and localization of the potentials.

Consider at x,-; < x < x, a currentless wave func-
tion

Y =exp(G,/2)cos(kx — ¢,/2) . (5)

A transmitted (to x < x,) wave function
exp(— ikx) = cos(kx) — i cos(kx —m/2)

corresponds to independent ¢} and o with ¢o=0

3901 ©1983 The American Physical Society



3902 M. YA. AZBEL 2

and ¢o=m, respectively. It generates the incident
and reflected waves at x > x;. Simple algebraic
transformations determine the intensity transmission
coefficient T and the dimensionless Landauer® resis-
tance R=T"1—1:

R =lexp(G) +exp(G) —21/4 . 6)
Applying 0, from Eq. (4) to ¢, from Eq. (5), and de-

fining w,,4,, p, by equations

w,=tan?

%—h,/zl , $y=24,+B8,+7, ,

pPv= ('Yv_'yv—l—ﬁv—ﬁv—l)/z B Av—Pv+l=Bv B
one obtains recurrence relations
exp(G,/2—id,) = w; " exp(G,-1/2)

% (cOSBy—1— iw,sinBy—;) .
If tand ,= X,, then, by the last equation,
X,=w,(X,-1—r,)/ (1 +r,X,); r,=tanp, , (7)

G,= i‘{mm +X3)/ (g +or X)) @)

exp(id,/2) =, expli(B, +7v,)/2]
x(1+iX,)(1+Xx2)"1 )

where o, = +1 (and thus unimportant);
Oy=0y-1 SSH[COSPvﬂ(l + rv+1Xv) 1. If Bo=0,
yo=/2 [cf. Eq. (2)], then independent solutions
correspond to

Xo=tan(¢o/2—n/4)=F1 .

In the case of the §-function potentials (considered in
Ref. 7), by Eq. (2),

r,=tanlka,— (h,+h,—1)/2] .

Important implications follow directly from the ob-
tained equations. In a random system at large (com-
pared to the correlation length L) distances, the ab-
sence of the long-range order means that the terms
in Eq. (8) ““forget” the boundary conditions and be-
come independent of each other and of the initial X
for any chain (numerical calculations verify it).
Thus, in a single system, when L — oo, then
(Gt — G[) —const, while (G + G )<L (and yields,
together with InR, to the Gaussian distribution, in
agreement with Ref. 8). Therefore, by Eq. (6),

Ry =[B,exp(GL)-11/2 ,

where

B, =cosh[(G—G[)/2] , GL=(GF+Gr)/2 .

When L — o, then in virtue of G;' — G — const,
B; —const, while G./L —2/L,, where

Lo=lim; ~ (2L /InR) is the wave-function localiza-
tion length. Since according to initial conditions,
G&=Gg =0, so Go=0, Bo=1.

Simple calculations show that in the case of a weak
scattering (dA;/dL ) ;—o=2L /L, where the angular
brackets denote the ensemble averaging. So,

L << Loimplies (R(L) ) =2L/Lo, and L >> L,
implies (InR (L) > =2L /L, This agrees with the
scaling universality equation,® which can be presented
as (In(R +1)) =2L/L, When the scattering is
strong, then the classical region is practically nonex-
istent, and this equation should also be valid. How-
ever, on a lattice (x,=v) there exists a special case’
(k =), when Lo >> 1; B, may be large; at

L >>Ly

(InR) =2L/Lo+In(B./2) ; (10

(In(R +1)) is a complicated function of L at

L < Ly, and its universality is violated. The obtained
Egs. (7)—(9) are very convenient for analytical as
well as for numerical calculations, since they deter-
mine directly the exponent of the wave function. I
consider Eq. (2) with a,=1 and v, randomly chosen
to be v (with the probability ¢ =0.5) or zero (with
the probability ¢;=1-—c¢ =0.5). Figure 1 presents
(In(R +1)) against the “‘universality variable”’
L/L,. The averaging is performed over 10000 ran-
dom systems. Outside the immediate vicinity of
k=m when L > 1, the argeement with the universal-
ity relation is remarkable—see k =1.6; v=10 and
v=0.3. The dimensionless energy k?>=n2=10, so
v=10 is an intermediate and v=0.3 is a weak poten-
tial. When k approaches =, the universality is invali-
dated. At L > Ly, (InR) yields to Eq. (10), where
B, increases when (7 — k) decreases. The results
for other than in Fig. 1 v and c are similar. The re-
gion of the nonuniversality is m# —k << 1, vc/m.
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FIG. 1. The universality of the ensemble average of
(In(R +1)), R is the resistance, for the wave vector k =1.6
and impurity concentration ¢ =0.5. The nonuniversality of
(In(R +1)) in the vicinity of k == for v=10, ¢ =0.5. All
plots continue as straight lines for L/L larger than in the
figure.
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III. ACOUSTIC PHONONS; LOCALIZATION
AND EIGENSTATES

An harmonic chain with force constants A;, dis-
placements g;exp(—iwt), (¢is time), and equal
masses yields to the dimensionless equation,*

—w2(11=>‘1(qj+1—q;)+Aj-1(q;_1—q/) . a1

(In the continuous case, when g, \; slowly change
with j, Eq. (11) reduces to the equation for sound
waves.] Introduce {;=\;(g;+1—q;), gy=1—1;}, and
w?=2(1—cosk), |k| <. Then, by Eq. (11),

Lat+-1—2cos(k)g;=2(1—cosk)gig;. (12)

Two real quantities {,-, {, can be expressed through
one complex ‘‘amplitude” 3,: {;=Reld,exp(ikj)];
j=v,v+1; a bar denotes the complex conjugation.
By this equation, {, can be related to §,—; [if
j=(=1)+1]or to 8, (if j =v). This leads to the
equation for §,—;, 5,. Another relation between §,-;
and 8, is provided by Eq. (12) with j =v. The two
equations for complex §,-;, 8, determine the re-
currence from

— 8v—l
8 1= gv—l

to 5, and thus from 8o to 5.:
gL =exp(— ikAL )0.6;;... 918—0 .

Here k and 9, are the same as in Egs. (3) and (4)
with h,, B,, v, from Eq. (2) and

a,=1, v,=2kg,tan(k/2) . (13)

Equation (13) maps the phonon problem!° onto the
extensively studied®!! problem of a particle in a ran-
dom potential. Different masses in a harmonic chain
are considered similarly; they just complicate the
mapping equation. Now I demonstrate the approach
(of the previous section) to the determination of the
eigenstates. Figure 2(a) presents the ‘‘resistance”

R =T"'—1 for the wave {;=38,exp(—ikj); g, in Eq.
(13) is randomly chosen to be g =0.9 or 0 with equal
probability ¢ =0.5. The step in k is 0.001. The oscil-
lations and the resonance minima of R at eigenvalues
are pronounced. One of the minima is at kK =0.314.
Figure 2(b) presents R (k) in the vicinity of this
minimum on the blown-up scale, with the step in k
equal to 10~7. Note that the resonance at this eigen-
value (k =0.3139650, all digits are meaningful) has
a half-width 8k ~ 2.107% and (see Fig. 2) leads to the
decrease in R to R =4.06, i.e., by seven orders of
magnitude. For this eigenvalue, the average relative
amplitude of the displacments {; is determined ac-
cording to Egs. (5)—(8) and (13) as a function of j
and is presented in Fig. 3. It demonstrates a pro-
nounced localization at L =420. The localization
length Lo=lim ~,(2L/InR ) is in agreement with
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FIG. 2. Phonon resistance R against the wave vector k.
The chain length L =1000; k; =0.313 964, k,=0.313 966.

the general formula’ for Lo(k ), which in the case of
k << 1 reads

Lo=8(1—gc)/lg’c(1—c)k=nA/k? .

The detailed numerical analysis verifies the following
general considerations. In the interval k ~ & there
are ~— L randomly located eigenstates at the length L;
thus, at the localization length L, there are ~— Lo
eigenvalues in the same interval of k. Therefore, a
““local’’ characteristic distance Ak between eigenstates
in Ak ~ m/L,. This equation determines the charac-
teristic local energy spectrum (and therefore the aver-
age local density of states) by a kind of the ‘‘Bohr

LENGTH L

400 600 800 1000
T T T T T T

o

200
T

~

T T

T

10%

)

£n R
O— N W dHOON®O
RESISTANCE R

600 800 1000
LENGTH L
FIG. 3. The localization of the phonon eigenfunction on
the regular and logarithmic scales.
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quantization equation’’: fLodk ~ nw. The distance
between the eigenstates, adjacent in their localization
regions, is Ak ~ w/Lo~ k*/A, and thus the nth local
level has k, — A /n; Lo=mn*/A. So, the density of
states increases with n. Of course, this spectrum is
valid only until the localization length L is less than
the total length L. Since k, < kmax — A, when

g >> 1, the Debye temperature decreases

@ 1/ (1-¢ )g.

IV. OTHER APPLICATIONS

The harmonic chain equation describes a number
of other systems.* For instance, in the case of a dif-
fusion, ¢, in Eq. (11) is the Laplace transform of the
density p,;(¢):

q= J; p;(t) exp(—w?t)dt ,

while A; is the hopping probability from the jth to
the (j +1)st site. The same type of equation
describes the Bloch electron in a magnetic field.2 An
electromagnetic wave in 1D also reduces to the
Schrodinger-type equation: E''(x) + w?€E =0, if
p=1, H'(z) +o’uH =0, if ¢=1, where electric E
and magnetic H fields are perpendicular to x.

As an example, for thermodynamics, consider the
Ising model with the Hamiltonian

== Z(JJSJSI-I+HJSJ); Sj=il .

The partition function Z,U) for j sites with the spin s
at the jth site yields to the equation

20-359z9

s

where
69 =exp(Jjs +H,s') =[2sinh(2])1"% ),
jj=J//T, ﬁj=Hj/T .

The matrix 0:’/,) is the matrix from Eq. (4) with
h;=arcsin[exp(—2J;)] ; y;=B;=—iH; .

It leads to Egs. (7)—(9) with the corresponding
changes. For instance, one obtains the free energy

L
Fo=-G/2+ 3 Inl2sinh(27)] .
J=1
Here

G;=3ImlU-X}/(a,—a]'XP] ,
X’,+1=a';_,(f,+tanth)/(l +X’,tanhH,)

and @;=tanhJ;. The spin correlation function Q (L)
at the distance L reduces to the ensemble average of
VA ’(‘-’,), where s and s’ are correspondingly the spins at

the first and the (L +1)st sites.

Clearly, the application of the presented approach
to different physical problems, listed in the Introduc-
tion, is straightforward in all cases (random, quasi-
periodic and periodic with many atoms in a unit cell).
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