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The temperature dependence of the thermal conductivity of vitreous silica has been calculated
in the temperature range 0.1 to 100 K using an energy-independent density of states for the tun-
neling states. In contrast to a recent suggestion, it appears that this model cannot explain the
‘‘plateau’’ seen in the thermal conductivity between 4 and 20 K.

The temperature dependence of the thermal con-
ductivity of glasses has been a subject of considerable
interest for many years, but as yet no completely
satisfactory explanation of the important physical
processes has been found. Strangely, the best under-
stood temperature region is that below 1 K, where
complementary acoustic measurements have demon-
strated that heat is carried by Debye phonons (sound
waves) which are scattered by two-level systems
(tunneling states).! By contrast, perhaps the least
understood region is that between about 1 and 10 K,
where the thermal conductivity varies only slightly
witzh temperature, before increasing again above 10
K.

The usual approach to calculations of the thermal
conductivity in this intermediate temperature region
has been to assume that as at lower temperatures
heat is carried by Debye phonons and that the
scattering increases rapidly with phonon frequency to
offset the increasing number of phonons (which for
scattering independent of temperature and frequency
gives « proportional to T3). In general it has been
claimed that scattering additional to that provided by
two-level systems is necessary,? although none of the
proposed explanations is completely satisfactory.
However, it has also been suggested that scattering
from two-level systems can explain the plateau in x
by assuming a density of two-level states that in-
creases at least quadratically with energy.’ If this ex-
planation is accepted the discussion then centers on
the physical origin of this rapidly increasing density of
states: A density of states which increases slowly
with energy is easy to justify, but a quadratic form is
not.

However, in a recent paper Dutta and Jackson*
claim to have explained the plateau on the basis of
scattering by two-level states with an almost constant
density of states. Since this appears to conflict with
the conclusions of many other authors, the calcula-

tion is reexamined in this paper with the use of as
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simple an approach as possible, in order to make
clear the physical principles, and to examine the ap-
proximations used by Dutta and Jackson.

The starting point for the calculation is the kinetic
formula

k=3 uzfo“amxcu(“’»T)U..l.(w,T)dw . W

where « is the phonon branch index, v, the velocity,
C.(w,T) the contribution to the heat capacity, and
l.(w,T) the free path of phonons of frequency w.
For the purposes of the calculation given here a
mean sound velocity v can be used provided the De-
bye cutoff energy fw.max >> kT. Using the explicit
Debye form for C.(w,T) and using the reduced vari-
able @ =kw/k, Eq. (1) becomes

4 oo - -
"=€?;2—572'J; @*e¥T(e¥T-1)21(a,T)do .
v

2

Below 1 K resonant scattering from two-level sys-
tems is important, with’

I;;(J,,T)=Amanh[—2"’7] , 3)

where the density of two-level systems has been as-
sumed to have the constant value 7 appropriate to
an average coupling constant (and not equal to that
derived from the heat capacity) and
wioyk
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where p is the density and ¥ is an average coupling
constant. It is clear by using Eq. (3) in Eq. (2) that
resonance scattering gives a T2 dependence of k.

At higher temperatures a relaxation contribution is
important, usually given by**
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where E is the energy of the tunneling state and 7 is the one-phonon relaxation time, with
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The maximum value of 7 is assumed to be very large. The integral over 7 in Eq. (5) can be evaluated in the lim-

itS @Tmin >> 1 and 07 pipn << 1. For otpin << 1,
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This agrees with the result obtained by integrating
Eq. (14) of Dutta and Jackson for a constant density
of states, but does not agree with their Eq. (15),
which is larger by a factor of 3. Equation (8) can be
rewritten as

I = —BT’ 9)
with

—3><10'3 -2,
12pﬁ'3 2 K

using measured values of y2 and v,.° The two limits
can be combined in the interpolation formula’

-1
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giving for the total inverse free path
beam) |
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The importance of this formula is that it shows in a
direct way the relative importance of the resonance
and relaxation, a relation which is almost unchanged
for other forms of the density of states, which ap-
pears simply as a prefactor. Equation (11) is implied
in the discussion following Eq. (15) of Dutta and
Jackson, apart from the factor of (£/kT)? in their
expression for the relaxation scattering rate, a factor
which does not appear explicitly after integration over
the tunnel-state energy E. However, their use of the
high-frequency limit means that they use a term BT
to represent the /7| for all frequencies. The impor-
tance of this approximation is shown in Fig. 1, where
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FIG. 1. Contributions of relaxation (dashed line) and res-
onance scattering (solid line) to the free path at various
temperatures as a function of reduced phonon frequency.
The values are normalized to unity at @ = 1.0 K in the low-
temperature limit (7 < 0.1 K). A dash-dotted line is drawn
to show at 10 K the effect of the high-frequency limit used
in Ref. 4.
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I7! given by Eq. (11) is plotted as a function of & for
various temperatures. It can be seen that use of the
high-frequency approximation overestimates the
scattering of low-frequency phonons at high tempera-
tures, although as will be shown later the effect on «
is not dramatic.

The thermal conductivity as a function of tempera-
ture, calculated using Eq. (11) in Eq. (2), is shown as
curve b in Fig. 2. Also shown is the thermal conduc-
tivity calculated using resonance scattering alone
(curve a) and, following Dutta and Jackson, using
the high-frequency limit for the relaxation term
(curve c). Clearly the relaxation term cannot reduce
the thermal conductivity sufficiently to produce a pla-
teau. Agreement with experiment can only be ob-
tained by using a density of two-level states which in-
creases rapidly with energy, or by introducing addi-
tional scattering as shown in curve d, where a term
proportional to @* has been included to represent
Rayleigh scattering. The parameters used in this fit
(given in the figure caption) are in close agreement
with those of Jickle.’

The effect of the approximation of a mean sound
velocity used in deriving Eq. (2) can be easily exam-
ined by using Eq. (1). Below 1 K the value of A4 re-
quired for agreement with experiment can be divided
into 4; =6.3x10*m™'K~! and 47=1.2x10°
m~!K~! on the basis of measured parameters.® The
upper limits w,max can be chosen consistently within
the Debye model as 360 and 240 K, respectively, on
the basis that in the closest crystalline form of SiO,,
cristobalite, the acoustic modes comprise —; of the to-
tal number. In fact both neutron studies and mea-
surements of the low-temperature heat capacity of
vitreous silica indicate that a lower cutoff for the
transverse modes of about 60 K is more appropriate,’
although it must be emphasized that this is not con-
sistent with the use of the Debye model. A calcula-
tion which includes a ‘‘dispersive’’ effect has already
been published.'® However, ignoring this incon-
sistency, the thermal conductivity was calculated for
both values of the transverse cutoff frequency. With
the use of @7 max=360 K, @7 max=240 K, x at S0 K
was reduced from 40 Wm™'K™! (given by curve b)
to 33 Wm™'K™!, and with @ max=360 K, &7 max= 60
K, x was reduced to 15 Wm™'K~!. In neither case
was there any sign of a plateau, so that it is clear that

the use of mean velocity does not lead to serious error.

What is not clear is the difference between the
results presented here and those given by Dutta and
Jackson.* Equation (11) shows clearly that there is
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FIG. 2. Experimental values (Ref. 8) for the thermal con-
ductivity of SiO, together with various calculated curves.
Curves a to d are calculated using a mean sound velocity of
4.1 x 10° ms™!, together with values A =3.5x 10* m~1K™!
and B =3 x 1073 K~2; a: resonance scattering alone; b: reso-
nance and relaxation contributions included as in Eq. (11); ¢
as in b, but with the high-frequency limit for the relaxation
contribution; d as b, but including a term D &* to represent
Rayleigh scattering with D =110 m~'K~!. Curves e and f
show the longitudinal and one transverse contribution to the
thermal conductivity, each calculated as in curve b but with
upper cutoffs @; may =360 K, @1 mex =60 K. The values of
Aare A; =6.3x10*m™'K™!and A7=1.2x10° m~'K},
while the value of B is unchanged.

little scope for any adjustment of the parameters, and
a comparison of curves b and c in Fig. 2 implies that
the use of the high-frequency limit for /. is not a
major effect. The results presented here show that
the experimental data cannot be explained by scatter-
ing from a constant density of tunneling states. Any
successful fit to the data must therefore involve a
density of states which increases with energy.
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