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Prelocalization in semimetals
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The Fermi energy close to a band edge provides a conventional localization only when a one-

dimensional residual resistance is large compared to nE/e2. Prior to the localization, the resis-

tance increases first quadratically and then oscillates (between large and small values) with the

length ("prelocalization"). There are several temperature regions, where the resistance may in-

crease and decrease with temperature.

Recently it was noticed' that 5-function substitu-
tional impurities at the band edge of the pure system
do not give rise to the localization even in one
dimension (1D). Instead, then' ID residual resis-
tance R, ~ L', L being the length. In semimetals the
Fermi energy is close to the band edge, and a direct
calculation of the localization length LD in a wire
leads to Lo —Sk(v, cotk —k(Slctc2v' when Iv~1« k~tank~. Here u, =vtc2+v2c2, v'=u~ —v, ; v~

and v2 are the dimensionless potentials of an impuri-

ty and a basic atom; c~ and c2 are their concentra-
tions (ct+ c2 =1); k is the Fermi wave vector; S is
the wire cross-section area; the interlattice spacing is
1. In semimetals (where k = n, 2m, . . .)
~cotk( »1. Thus, Lo ~ ~cotk~Sremains large com-
pared to the Thouless inelastic diffusion length LD
down to very low temperatures. This may explain
the absence of the localization in the experiments' on
Bi.

Usually, according to the scaling theory, at zero
temperature the localization follows Ohm's law

(R, ~ L) at the dimensionless R, —1. In this paper I
prove that in semimetals L —Lo implies R, &) 1.
Prior to the localization, the dependence of R, on L
is very special. It is characteristic of each random
system (which is natural for L less than the correla-
tion length —Lo) see Fig. 1. —The representative6 7

ensemble average (R, ) is ~ L only when L is small
compared to an elastic mean free path I (if I —1, this
region is extinct). When L & I, but L & Lo, then
first (R,) ~ L' (Fig. 2), and later oscillates between
large values (Fig. 3). This new region, which is dif-
ferent from both weak and strong localization and
which may exist only in semimetals, I denote as the
"prelocalization. " The temperature dependence of
the resistance R ( I) in this region is also unusual
(see later in this paper). I prove that I —4k'/ctc2u'2,
so Lo —IS(u, cotkl »! Thus, the prelocalization
region where I & L & Lo (and (R,) » 1) is rather
large. To elucidate these results, consider a unity in-
terlattice spacing and a wave vector k = m at the band
edge. Such k implies the wave-function phase shift
(n' n) n on th—e way from the nth to n'th site and
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FIG. 1. Dependence of the one-dimensional (1D) residu-
al resistance R, on the length L. Interlattice spacing is 1,
dimensionless wave vector k =3.14, dimensionless impurity
potentials v~ =10, o2 =0; impurity concentration c& =0.125.
Note a large scale R, change (e.g. , from 70 to 9 x 10~ to
100 at L -1500).

the phase shift 2(n' n)—n for a round trip. Since
the latter phase shift is unimportant, k = m. does not
"see" any randomness in the substitutional impurity
positions. Thus, it does not give rise to any localiza-

tion, and we find instead' R, ~ L ~ When k =~ and
the meaningful phase shift at an average interimpuri-

ty distance is small, then a phase-shift randomization
occurs only at large distances ~

~
m —k ~

'. Impurity
position randomness is averaged out at such dis-

tances, so only impurity concentration fluctuations
matter. When the single impurity scattering is weak,
then the difference of the "total" phase shift
(n —k) L from an integer of 2rr oscillates with L and
this leads to oscillations in R, and (R,). When the
individual scattering is strong, then a particle bounces
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FIG. 2. 1D residual resistance (R,), averaged over 300
samples, Impurity concentration c~ =0.5; k and v are the
same as in Fig. 1.
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back and forth many times between adjacent impuri-
ties, its effective path at L increases significantly, and
thus the period of the oscillations of (R,) and R, de-
creases. If, for instance, vq=0 and v~ )2k =2m
then an individual potential v~ implies the transmis-
sion coefficient t —(1+vzt/4kz) ', thus —t '

"bouncings" and, therefore, the period of oscillations

L, —t/(rr —k) —4rr /vf(rr —k)

(When L ((Li, then (R,) ~ Lz. ) An elastic mean
free path

I 4k /vfcicz =4rz /vfcicz

is small compared to L~ when c~,cq )m —k, i.e., up
to low impurity concentrations. The prelocalization
persists until the length L becomes of order of or
larger than the localization length L p

—8mS/
(n —k) czvi. (Note that L p ~ S, while Li and I are
independent of S.) The latter remains large com-
pared to the inelastic diffusion length LD —Jll;„until
an inelastic mean-free-path length I;„becomes

Ijg Lg)/I 16S ci/(rr k) cz ~

where S (in the dimensionless units) is the number
of sites per cross section. Consider the case of
c~=0.2, v~=10, and m —k=0.01. Then l-2; a
"conventional" Lp —IS —2S, and I;„—LDz/I —2Sz,
while L~ -40, the "true" LD-250Sand
I;„—LDz/I -30000Sz. In a whisker 300 x 300
atoms in a cross section Lp —

L~ only at the tempera-
tures low enough to provide l~„-3 && 10 interlattice
spacings, i.e., l;„—1 m. Since the crucial quantity is
m —k, LD can be significantly affected by a small
change in the Fermi energy eF, which may be provid-
ed by external pressure or magnetic field which leads
to a paramagnetic quantization.

A crucial point in all this reasoning is that the im-

purities are vacancies or 5-function substitutions. A
general case will be considered elsewhere.

According to Ref. 2, the residual resistance R, for
a potential V = X t

i v„5(x —n), where v„ is ran-

domly chosen to be vi (with the probability ci) or vz

(with the probability cz), equals

R, = [exp(G&+ ) +exp(Gt'. ) —2l/4,
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where

X„~i=tp„(X„—r„)/(1+r„X„)

tp„= tan'( h„/2 + rr/2)

r„=tan[k —(h„+h„ i)/2]

h„=arctan(v„/2k), hp=0; Xi =+1(+)

(2)
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FIG. 3. Same as Fig. 2, but on a larger length L scale.
Note large-scale oscillations at L ( 1000 and a conventional
localization when (R ) ) 500.

Equations (1) and (2) lead to the plots in Figs. 1—5.
The approach is readily applicable to any sequence of
arbitrary and arbitrarily located nonoverlapping po-
tentials. In Figs. 1—5 holes localized by impurity po-
tenital barriers were considered. According to the
above recurrence relations, electron (with k & v)
scattering at impurity potential wells is similar. The
energy of electrons between potential barriers and
holes between potential wells lies either in the gap or
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R, = X h„cos(2nk) + $ h„sin(2nk) . (3)
n 1

Then by Eq. (3),

n 1

A large magnetic field, which essentially alters the
distance between the Fermi energy and a band edge
and thus Lo, may change the resistance by orders of
magnitude in the strong localization case.

We introduce X„—= tan [+m/4 —( n —1)k +b„],+

where b1 =0, and derive the recurrence for bn .
When h„(( 1, we determine b„- in a linear approxi-
mation in h„and evaluate R, by Eqs. (1) and (2).
After simple algebraic transformations one obtains

20- (R,) =LIth'+ (h)'sin'(kL)/sin2k (4)
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FIG. 4. Residual resistance R,„, averaged over 9000 sam-

ples and the length; c,k, v are the same as in Fig. 2,

close to an energy gap of the average potential. In
this case their localization differs less from the con-
ventional picture. The scattering of small k's is the
strongest because an electron with a small velocity
proportional to k spends a large time proportional to
1/k near an impurity. Its localization differs from a
conventional one only in the case of a weak well

scattering.
In semimetals, conductivities of electrons and holes

add up, so the larger conductivity dominates. When
electrons are in the first band (k =0), the dominant
hole conductivity is very different for impurity poten-
tial barriers and wells.

(R,) —L/Sl +v,'„sin'(kL )/4k'sin'k . (5)

The first term is the classical Ohmic term with the
elastic mean free path I -4k2/cictv'2.

At finite temperature T, when the inelastic diffu-
sion length Lo (i.e., the direct distance between two

consecutive inelastic collisions, LD ~ 7; 7' being an
inelastic mean-free-path time) is small compared to
Lo, then one should average over all lengths L of the
order of LD, and the conductivity proportional to L is

obtained in the leading approximation for L » LD.
Therefore a resistance R ( T) is related to

where hht = (h') —(h ) 2, and where triangular
brackets denote ensemble average.

In the general case in the prelocalization region

(R,) can be evaluated following the approach of
Refs. 2 and 8. In the localization region a representa-
tive R, and Lo were evaluated in Ref. 2.

In Ref. 3 the calculation of the resistance of a wire

was mapped on that of a 1D random potential. The
latter equals the wire impurity potential averaged
over all possible cross-section impurity positions.
The resulting equation, replacing Eq. (4), reads
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FIG. 5. Residual resistance R,„,averaged over 300 sam-

ples and the length, for impurity concentrations c1 =0.125,
0.25, 0.5; k and v are the same as in Fig. 1. Note that at
L )9000 resistance decreases when impurity concentration
increases, in agreement with Ref. 2.

R,„(L)=L ' X (R,(L'))
L 1

by the equation R ( T) —R,„(LD)(L/LD).
According to Eq. (4), when L & 1/ln —kl, then

R~L',,„while L && 1/In —k I leads to

R,„(L)—L/2SI+v,'„/Sk'sin'k=A +BL . (6)

Weak oscillations, provided by Eq. (4), are neglected
in Eq. (5). The numerical calculation of R,„(L),ac-
cording to Eqs. (1) and (2), is presented in Fig. 4
and, for different impurity concentrations, in Fig. 5.

When the temperature Tdecreases, R(T) ~ r;„'
and decreases with T (the "classical" temperature
dependence), if LD & I. Then, when I & L &1/
ln —kl and R„(L)a: L2, a prelocalization regime
starts: R(T) cc r„~2 and increases with T. Then,
when R,„(L) =A +BL; R ( T) = r;„' 2 and decreases
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with T. This decrease continues as long as R,„/L de-
creases, i.e., until a straight line from L =0 to a
given L becomes tangent to R,„(L). Weak R(T)
oscillations with T, related to R,„oscillations with L,
may also be possible in the prelocalization region. Fi-
nally, R(T) gives rise to the Thouless regime':
R(F) car;„'when LD&LoandlnR(T) cc? 'atvery
low temperatures. Usually even at high temperatures
LD» 1/~m —k~, l; this may extinguish the first two
regions [R(T) ~r;„'and R(T) ~r„'], unlessacer-
tain pressure, and/or magnetic field, and/or impurity
concentration provide )m —k~ & 1/LD and/or LD & I.

Since the prelocalization region persists up to very
large values of R,„, the R(T) decrease with T per
sists up to extremely low temperatures. This was ac-
tually observed im experiments' on Bi.

In this calculation T has everywhere been assumed
to be small compared to the Fermi energy ~~ and
thus it does not affect available values of ~m —k~.
The increase in T & ~F would decrease the available

values of ~m
—k~ and thus decrease the correspond-

ing resistance.
Since Lo is very different for electrons and holes in

semimetals, 2 at low temperatures electrons may be lo-
calized while holes are not, or the other way around.
This may be verified in a strong magnetic field H, be-
cause then the effective electron and hole densities
are no longer compensated, and R ~ H' should be re-
placed by the R(H) dependence, which exhibits sa-
turation.
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