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Lattice dynamics and phase transitions in antifluorite crystals: K20sC16

Mark Sutton* and Robin L. Armstrong
Department ofPhysics, University of Toronto, Toronto, Ontario M5S 1A 7, Canada

Brian M. Powell and William J. L. Buyers
Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario EOJ 1JO, Canada

(Received 26 February 1982; revised manuscript received 27 September 1982)

Measurements of the inelastic neutron scattering from the antifluorite crystal K20sC16

are reported. Dispersion relations have been measured for the acoustic phonons in the cubic

phase and for the acoustic and rotary phonons in the tetragonal phase. The rigid-ion model

developed by O' Leary and Wheeler (OW) for antifluorite crystals cannot describe these re-

sults, particularly the low-frequency longitudinal-rotary mode which plays a major role in

driving the phase transitions in certain antifluorite crystals. A simple extension of the OW

model to include interactions between the potassium and osmium ions is found to overcome

these difficulties. The inclusion of this interaction permits good agreement to be achieved

for several optical frequencies and for the observed low-frequency rotary mode while simul-

taneously satisfying the equilibrium conditions. The new model provides a mechanism for

the observed coupling of the order parameter and the elastic strains and suggests that elastic

constant anomalies may be observed. The structural transitions in antifluorite crystals,

which range from those involving ferro- or antiferro-rotative deformations with small atten-

dant lattice distortions to those in which the lattice distortion predominates, appear to have

a common origin in the softening of the longitudinal-rotary mode.

I. INTRODUCTION

From earlier neutron-diffraction measurements of
the structure of the antifluorite crystal K20sC16, ' it
is known that a ferro-rotative transition occurs at
T, =44.5+0.4 K. Subsequent inelastic neutron
scattering measurements showed that the longitudi-
nal rotary mode at I softens and becomes unstable
as T, is approached from above. In the present pa-
per additional inelastic neutron scattering results for
some of the acoustic and rotary modes are reported
in both the high-temperature cubic and low-
temperature tetragonal phases.

In the isomorphous crystal K2ReC16 a ferro-
rotative transition occurs at 111 K followed by an
antiferro-rotative transition at 103 K. The transi-
tions involve the softening of the longitudinal rotary
branch of the dispersion relation at I and at X,
respectively. Since the frequency of the branch
remains low along [001], and is almost independent
of wave vector, it is clear that a delicate balance ex-
ists between the formation of long-range ferro-
rotative and antiferro-rotative order in these anti-
fluorite crystals.

A rigid-ion model was developed by O' Leary and
Wheeler3 (OW) to interpret the early spectroscopic

data available for KqReC16. The model predicted a
frequency for the zone-center rotary mode which
was subsequently found to be too high by more than
a factor of 2. The model has nonetheless been help-
ful in the interpretation of data for a variety of anti-
fluorite crystals.

Similarly, for K20sC16, the OW model cannot
describe the phonon frequencies observed by inelas-
tic neutron scattering. The purpose of the present
work is not to provide a detailed lattice-dynamical
model, but rather to provide increased understand-
ing of the forces controlling the rotary-mode fre-
quency, and to relate them to the qualitative changes
in the lattice dynamics observed at the phase transi-
tion. In Sec. III we present an extension of the OW
model and discuss the calculational procedures. The
new model provides a good description of all avail-
able data for the cubic phase of KzOsC16 and ac-
counts for the changes which occur as a result of the
phase transition.

In addition to structural transitions of the rotative
type, transitions having the nature of a pure tetrago-
nal distortion and transitions involving both a rota-
tion and a lattice distortion have been identified in
antifluorites. Section IV contains comments on the
relation between the qualitatively different types of
transitions that have been observed.
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II. NEUTRON INELASTIC
SCATTERING EXPERIMENTS

Two single crystals of KqOsC16, with a total
volume of -2 cm, were studied at 7 K in the
tetragonal phase and at 77 K in the cubic phase.

As the structure factor for the longitudinal-rotary
mode is zero in high-symmetry planes such as (110}
and (001), the crystals were aligned so that the
scattering plane was (530). The experiments were
carried out with the N5 triple-axis spectrometer at
the NRU reactor, Chalk River. The monochroma-
tor and analyzer were the germanium (111) and py-
rolytic graphite (002) planes, respectively. The col-
limations were 0.6' and 0.7' before and after the
specimen. The spectrometer was operated in the
constant-Q mode with fixed analyzer energies E& of
2.6 or 3.0 THz, corresponding to frequency resolu-
tions of 0.15 and 0.18 THz, respectively, for zero-
frequency transfer.

Measurements were made along the [001] direc-
tion in the zones around (351}and (353). Structure-
factor calculations indicated that both the
longitudinal-rotary mode and the transverse-acoustic
mode should be strong scatterers most of the way
across the zone, and that the transverse-rotary mode
should be strong near the zone center. Figure 1

shows the peak that arises from the triply degenerate
longitudinal- and transverse-rotary modes at the
zone center.

Frequencies measured in the [001] direction are
shown in Fig. 2. Calculated structure factors were
used to identify the modes. The solid-line dispersion
curves are those of the model described later. There
is evidence for repulsion in the vicinity of (0,0,0.2)
between the longitudinal-rotary (LR) and

longitudinal-acoustic (LA) branches. This is expect-
ed as they have the same 6& symmetry along [001]
in the tetragonal phase.

Dispersion curves of the acoustic- and transverse-
rotary modes at 77 K in the high-temperature cubic
phase were measured with the crystals aligned in the
(110) scattering plane. Data for the LR mode in this
phase had been obtained previously with crystal
alignment in the (530) plane. The experiments were
carried out on the L3 triple-axis spectrometer. The
monochromator and analyzer were the germanium
(113) and copper (002) planes, respectively. The col-
limations were 0.3' and 0.6' before and after the
specimen. The spectrometer was operated in the
constant-Q mode with a fixed analyzer energy E~ of
8.25 THz. The frequency resolution was 0.45 THz
for zero-energy transfer.

Measurements were made in the [100], [110],and

[111] directions around several reciprocal-lattice
points. The results are shown in Fig. 3 and are in-
cluded in the tabulation in Sec. III. The solid-line
dispersion curves are from the model described later.
As expected from group theory, the longitudinal-
acoustic modes are not coupled to the longitudinal-
rotary modes.

III. RIGID-ION MODEL

Two rigid-ion models for antifluorite crystals
have been discussed in the literature. The model in-

troduced by O' Leary and Wheeler to calculate the
dispersion curves for K2ReCls is based on forces be-

tween individual atoms. A second model proposed
by Bates et al. for the discussion of hexamine nickel
halides is based on interactions between rigid molec-
ular units. ' Since the latter crystals are of the form
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FIG. 1. Typical scan for a wave vector {2m/a)(3, 5,1).
The peak is the rotary mode at the I point. The data
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FIG. 2. Dispersion curves of the transverse- and
longitudinal-rotary modes and the longitudinal-acoustic
mode in the tetragonal phase at 7 K. The lines are from
the model described in the text.
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NiY6X2, where Y=NH3 and X=C1, the model is
also applicable to antifluorite crystals (RzMXs)
which have an isomorphous crystal structure, but
whose ionic structure is reversed, with the negative
ion X replaced by the positive ion R.

The molecular model is not strictly applicable to
KqOsC1~, since the internal molecular frequencies
are not well separated from the external frequencies.
Nonetheless, the model provides insight into the ori-
gin of translation-rotation coupling in the antifluor-
ites. In an attempt to account for the failure of the
OW model to predict the low frequency of the ro-
tary mode, Bates et al. ' claimed that the OW model
neglects translation-rotation coupling. Their claim
is based on the observation that within their molecu-
lar model, if the translation-rotation coupling is set
to zero, the rotary modes are pure and not coupled
to acoustic modes, as illustrated in Fig. 4(a).

When translation-rotation coupling is introduced,
the set of coupled pseudorotary and pseudotransla-
tional modes of Fig. 4(b) are produced. The main
change is the different connectivity along b, -X-X.
The longitudinal-rotary branch remains flat along b,

because the transverse second-neighbor chlorine
force constant is small. Also, from group theory,
these modes do not couple to LA modes.

In fact, the criticism of Bates et al. is invalid, as
may be seen by starting from an atomic model and
summing forces between atoms in different mole-
cules. When this procedure is carried out for the
OW model (see Appendix) a nonzero translation-
rotation coupling results. Thus the suggestion of
Bates et al. that the OW theory fails to account for
the low rotary-mode frequency because it neglects
translation-rotation coupling, is found to be in-
correct. Although the difference between Fig. 4(a)
and 4(b) is dramatic, it arises because a different
connectivity of the branches through 5-X-X has oc-
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FIG. 4. Model dispersion curves for rotary and acous-
tic branches in cubic Auorite and antifluorite crystals. (a)
Intermolecular translational-rotational coupling set to
zero, (b) intermolecular translational-rotational coupling
nonzero, and (c) present model with interatomic interac-
tions.

cured. Three possible connectivities are illustrated
in Fig. 4. We find that the connectivity of our
model [Fig. 4(c)] (and by implication that of the OW
model) depends both on the frequency of the
transverse-rotary (TR) and LR modes at I' and also
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TABLE I. Definition of the parameters used in the rigid-ion model. (See Fig. 5 for index-
ing scheme of bonds. )

Ol

9K QO. Qa
Charges

C4A
5

gK&/os& g Cl

(1) Cl(2}-Cl{4) (0.5,0.5,0)

(2) K(8)-K(9) (0.5,0,0.5)
(3) Cl(2)-Cl(4)
(4) Os(1)-K(8)
(5) Cl(2)-Cl(5) (0.5,0.5,0)

{6} Cl(2)-K{8)

(7) Cl(2)-Cl(3)
(8) Os(1)-Cl(2)

Bonds'
(1) Cl(2) —Cl(4) (0.5,—0.5,0)
(2) Cl(2) —Cl(4) {0.5,0,0.5)
(3) Cl(6) —Cl(7) (0,—0.5,0.5)
(6) Cl(2) —Cl(4) (0.5,0.5,0)
(4) K(8) —K(9) (0.5,0,0.5)
(5) Cl{2) —Cl(4)
(7) Os(1) —K(8)
(8) Cl(2) —Cl(5) (0.5,0.5,0)
(9) Cl{2) —Cl(7) (0.5,0,0.5,)
(10) Cl(2) —K(8) (0,—0.5,—0.5)
(11) Cl(6) —K(8) (—0.5,—0.5,0)
(12) Cl(2) —K(8)
(13) Cl(2) —Cl(3)
(14) Os(1)—Cl(2)

Charges 1

Forces 1

Stress 1

Number of constraints
Charges 1

Forces 3
Stress 2

Independent parameters
25

'Bonds are numbered in decreasing length.
Atoms in unit cells other than the one at the origin are so indicated.

on the amount by which the TR frequency rises
along b, , thus affecting its interaction with the
transverse-acoustic (TA), transverse-optic (TO), and
transverse-lattice (TL) modes (see Figs. 6 and 8).

The interactions included in our modified OW
model for both the cubic (Os) and tetragonal (C4r, )
phases are summarized in Table I and Fig. 5. To
analyze the data, a set of programs was written to
calculate dispersion curves for any crystal structure
using a rigid-ion model. These programs were test-
ed using the constants of O'Leary and %heeler to
reproduce their results for K2ReC16. The equilibri-
um conditions as given by Boyer and Hardy" were
enforced. That is, the net force on each ion must be
zero, as must the macroscopic stress tensor and the
net charge per unit cell. These requirements give
the number of constraints stated in Table I. The
equilibrium conditions were imposed by considering
the constraints as extra data and fitting them to
zero. The procedure was verified by obtaining the
results of Boyer and Hardy for the hexagonal crys-
tal, wurtzite. To distinguish between modes as the
calculation progressed, particularly the nearly de-

generate TQ4 and Q& modes, information on the
eigenvectors was used.

A. Cubic phase

The data available ' ' for the cubic phase fit are
given in Table II. In addition, several modes have
been measured' by vibronic spectroscopy in the
tetragonal phase at 5 K. These are also listed in
Table II. Noting that for the similar crystal
K2ReC16 little change was observed from room tern-
perature to 4 K in the frequencies of any of the
modes except the rotary-lattice mode, the vibronic
data available for K20sC16 were also used for the
cubic phase fit. The validity of this approximation
is confirmed for the Q2 and Q4 modes by other
spectroscopic data taken in the cubic phase. '

The model is sufficiently complicated that not all
parameters could be varied simultaneously in the
least-squares minimization procedure. Subsets of
force constrants were selected and varied to bring
specific calculated frequencies into agreement with
the measured values. In order to execute the pro-
grams in the time available on the VAX computer
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TABLE II. Spectroscopic data for K20sC16. All data, except that from vibronic spectros-

copy, were measured for T & T,. The vibronic data were taken at 5 K. Typical errors for the
frequencies measured by inelastic neutron scattering are +0.05 THz.

Mode

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0

Q6

Qs
Q4

Qs
Qz

Qi

(0,0,0.2)
(0',0',0.3)
(0,0,0.4)
(0,0,0.5)
(0,0,0.6)
(0,0,0.7)
(0,0,0.8)
(0,0.2,0.2)
(0,0.3,0.3)
(0,0.4,0.4)
(0,0.5,0.5)
(0,0.6,0.6)
(0,0.7,0.7)
(0,0.75,0.75)
(0,0.8,0.8)
(0.1,0.1,0.1)
(0.2,0.2,0.2)
(0.3',0.3',0.3)
(0.4,0.4,0.4)

(0,0,0.3)
(0,0,0.4)
(0,0,0.5)
(0,0,0.8)
(0,0,0)

(0,0,0.1)

(0,0,0.2)
(0,0,0.3)
(0,0,0.4)
(0,0,0.6)
(0,0,0.9)
(0,0,1)
(0.3,0.5,0)/~34
(0.6, 1.0,0)/~34
(0.9,1.5,0)/~34
(0,0,0)
(0,0,0.8)

(0,0,0.9)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

0.5
0.75
1.1
1.25
1.55
1.65
1.75
0.9
1.3
1.5
1.7
1.7
1.7
1.6
1.45
0.6
1.1
1.55
1.75

0.68

0.65
0.62
0.68
0.69
0.72
0.65
0.67
0.7
0.75
0.95
3.15

3.8
5.13
5.46
9.68
9.47

10.49

0.8
1.1
1.3
1.55
1.7
1.7
1.85

0.6
0.8
0.9
1.35
1.60
1.75
2.25

2.52
2.65
2.60
3.8
5.13
5 ~ 16
9.68
9.47

10.49

Type of measurement

Inelastic neutron'

Inelastic neutron

Vibronic'
Inelastic neutron
Inelastic neutron"
Vibronic'
Vibronic'
Vibronic, ' Raman'
Vibronic'
Vibronic, ' infrared'

'Present work, 77 K.
"Reference 2.
'Reference 13.

dReference 9.
'Reference 12.

in Toronto, only the data at q = (0,0,0), q = (0,0,0.6),
and q=(0,0.5,0.5) were used in the fitting. The
quality of fit was essentially the same when other
combinations of three wave vectors, including I,

were used.
The main objective was to lower the frequency of

the rotary mode, calculated with the OW model, so
that it was in better agreement with observation.
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FIG. 5. Diagram to define the atomic numbering

scheme used in Table I. (a) Local environment of an
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chlorine couplings.

This caused the Q5 mode to be too high in frequen-
cy while the longitudinal-optic (LO) modes were too
low. The separation of these two modes could only
be adjusted, within the 0% model, if the equilibri-
um conditions (particularly stress equilibrium) were
broken. The introduction of the additional bond
Os—K allowed the rotary, Q&, and LO modes to be
simultaneously fitted while still maintaining equili-
brium.

The final results are summarized in Table III and
Figs. 3 and 6. The table lists the model parameters
deduced from the fitting procedure and the figures
show the calculated dispersion curves and all the
measured spectroscopic data. It may be concluded
that the model provides a good description of the
available cubic-phase data except in the [111]direc-
tion. In particular, it is able to account for the abso-
lute magnitude and the dispersion of the
longitudinal- and transverse-rotary modes whereas
the original OW model could not. Note the large
splitting (Fig. 6) of the LR and TR modes along b.

As shown in Table III, the force constants of the
present improved model differ from those of
O' Leary and Wheeler in having an internal Cl-Cl xy
radial force constant that is 3 times weaker, an
external K-Cl radial force constant that is 50%
stronger, and a long interoctahedral Cl-Cl radial
force constant Ai, that is 4 times larger but of the
opposite sign. O' Leary and Wheeler showed that
the rotary-mode frequency could be lowered by a

TABLE III. Model parameters for K2MC16 (T & T,).

Force constants (Nm ')
Bond' Bond length

(A) Bond type OW" Present' OW' Present'

4.896
4.890
4.652
4.235
3.627
3.460
3.289
2.326

Cl—Cl
K—K
Cl—Cl
M—K
Cl—Cl
K—Cl
Cl—Cl
M—K

(long inter)

(intra- xx}

(short inter)

(intra xy)

0.67
0.66

31
0
6.3
6.7

15
131

—2.7+0.3
—1.2+0.6
30.8+0.2
0.6+0.4
5.8+0.2

10.0+0.1

4.9+0.3
150.9+0.8

—1.5
0

—2.0
0
0.27

—1.1
—2.7
19

0.006%0.0040
3.4+0.3

—5.6+0.5
—0.10+0.03
—0.9+0.1
—2.0+0.1

—2.2+0.1

19.3+0.4

Ion

K
Os
Cl

Charge
(units of e)

0.77+0.05
0.26+0.05

—0.30+0.01

'Bond numbering scheme as defined in Table I.
A„=(B V„/3r ), B„=(1/r„)(3V„/9),where V„ is the pair potential for bond n.

'Parameter values of present force model for K20sC16.
Parameter values of the model of O' Leary and Wheeler for K2ReC16.
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INTERNAL MODES TABLE IV. Model parameters for K20sC16 (T & T,).

Bond' Bond length
{A)

Force constants (Nm ')

A„

Ql (4l ) Q~ (E )

.)(

1

2
3
4
5
6
7
8

9
10
11
12
13
14

5.141
4.858
4.848
4.845
4.665
4.556
4.196
3.566
3.560
3.532
3.427
3.325
3.299
2.332

—2.5
—0.91
—3.2
—2.0
31.4

—2.4
0.32
7.7
4.4

10.0
10.1
10.2
4.88

151

—0.28
—0.51

3.6
—5.6
—0.3

0.37
0.07
0.12

—1.8
—0.20
—2.2
—2.4
20.1

Q5 (Tp ) Q (T„)
'Bond numbering scheme is defined in Table I.

EXTERNAL MODES

L(r„)

R(Ti ) A (Ti„)

FIG. 7. Molecular-symmetry modes for a cubic anti-
.fluorite crystal.

data, the fitting procedure based on varying subsets
of parameters is far removed from a true least-
squares fit; no errors are therefore quoted in Table
IV. At best it might be expected qualitative agree-
ment would be obtained, and this indeed is the case.
In particular, the model is able to account for the
LR-LA mode interaction along [001]. Interaction of
the TO and TL modes is also expected from symme-
try considerations. However, the rather large split-
tings of the LQ4 and Q6 modes at the I' point are
surprising. Whether or not these features are real
should be checked in a future experiment. Nonethe-
less, the dispersion curves are very similar in the cu-
bic and tetragonal phases and it may be concluded
that the modified OW model is able to account for
the dynamics of K20sC16 in both phases.

IV. DISCUSSION AND CONCLUSIONS

as a result of the phase transition. Therefore, the
optical data available for the cubic phase of
KiOsC16 were also used for the tetragonal phase.
The neutron scattering data at wave vectors

q =(0,0,0), q =(0,0,0.2), q =(0,0,0.3), and

q =(0,0,0.5) used in the fitting were weighted more
heavily than the optical data. To increase the num-
ber of constraints in the model, the charges on the
ions were fixed at the values given by the cubic-
phase fit.

The final results are summarized in Table IV and
Figs. 2 and 8. The table lists the model parameters
deduced from the fitting procedure and the figure
shows the calculated dispersion curves and the neu-
tron scattering data. In view of the larger number
of adjustable parameters and the smaller number of

We have seen in Sec. III that a rigid-ion model
gives a good description of the dispersion curves of
K20sC16. The observation that in the cubic phase
the LR branch is flat along [001]but rises rapidly in
the [350] direction indicates that the motions of the
OsC16 octahedra are highly correlated within x-y
planes but weakly correlated between planes. In the
model this correlation is determined by bond 1, the
longest chlorine —chlorine interoctahedral bond.
Mintz et al. noted that the frequency co(q, ) of the
LR mode for a wave vector (0,0,q, ) is given by

Mcico (q, ) =4.21B5+4A i+2A6+2. 21B6

+4.42Bi+4Bisin (q,a /4)+

=1.06+0.02sini(q, a /4)+
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FIG. 8. Calculated dispersion curves for the tetragonal-phase rigid-ion model. All spectroscopic data used for the cal-
culation are shown.

TABLE V. Relationship between v, (I ) and the radial
force constant A~. Approximate temperatures are shown
at which v, (I ) was measured.

(Nm ')
v, (I ) (THz)

Expt. Calc.

—2.70
—2.79
—2.83

0.65(220 K)
0.55(150 K)
0.45(126 K)

0.66
0.53
0.46

where the ellipsis stands for Coulomb terms and
where Mc& is the mass of a chlorine atom. Since the
Coulomb term was shown to be small and almost in-
dependent of q„ it was concluded from the weak
correlation between x-y planes that Bi must be
small. This prediction is confirmed by the present
analysis which yields B~ ——0.006, the smallest force
constant in the model. The low frequency of the LR
mode arises because of the near cancellation of op-
positely contributing force constants; the first four
terms in Eq. (1) contribute —3.75, —10.8, + 20.0,
and —4.42, respectively. Thus the strong repulsive
short-range K-C1 radial force constant balances the
sum of the attractive effects of the transverse part of
the same force, the short interoctahedral Cl-Cl

transverse force constant, and the long interoc-
tahedral Cl-Cl radial force constant. Any of these
four force constants can play a dominant role in the
phase transition in antifluorites. In Table V we
focus on the effect of the long interoctahedral radial
force constant 3 i, to show how sensitive the I.R fre-
quency is to the value of this force constant.

The results were obtained by selecting three dif-
ferent values of v, (f'j and letting only A i change in
least-squares fits to all the frequencies. The values
of Ai and v„(D deduced from the fits are given in
the table. No other calculated frequencies changed
significantly over this range of A ~.

Another important conclusion from the cubic-
phase model relates to the connectivity of the rotary
and acoustic branches as discussed earlier with refer-
ence to Fig. 4. %hereas for the OW model the ro-
tary and acoustic branches are distinct, such is not
the case for our modified model. The coupling of
rotary and acoustic branches should mean that the
order parameter of the phase transition is strongly
coupled to the elastic strains and should produce a
decrease in certain elastic constants near the phase
transition. The observed thermal-expansion anoma-
ly' near T, might be explained by this type of cou-
pling. The previous discussion of the anomaly" had
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assumed that the elastic constants would not change
significantly.

In the tetragonal phase the flatness of the LR
mode along [001] is lost. A comparison of the force
constants in the two phases shows that most of them
remain close to their high-temperature values. Ex-
ceptions are those force constants associated with
bond 1 of the cubic phase which becomes bonds

1,2,3,6 of the tetragonal phase. Since the behavior
of the LR mode in the cubic phase is dominated by
these Cl—Cl bond constants, it is not surprising that
these parameters change as a result of the phase
transition. The force constant Bi shows the largest
change in going from the cubic to the tetragonal
phase and accounts for the increase in the dispersion
of the LR mode along [001]. Physically this means
that the two-dimensional nature of the correlations
existing in the cubic phase is weaker in the tetrago-
nal phase.

Finally, it is worthwhile to put the phase transi-
tion in KzOsC16 into perspective with those in other
antifluorite crystals. For example, K2SnC16 under-

goes a purely antiferro-rotative distortion'6 and

Rb2PtI6 a purely tetragonal-lattice distortion. The
antiferro-rotative distortion in KzSnC16 obviously
depends on the rotary mode. However, the tetrago-
nal distortion in Rb2PtI6 also involves the rotary
mode, at least indirectly, as evidenced by the
nuclear-quadrupole-resonance spin-lattice relaxation
data. ' ' Further evidence of the relation between
transitions which exhibit tetragonal distortions and
those which show rotative deformations is given by
measurements of elastic constants. ' ' For both
KzSnC16 and K2ReC16 the elastic constant C~~ —C~2
decreases dramatically near the phase transition; this
is the elastic constant that governs the tetragonal
distortion ' in RbqPtI6. Note also that this constant
gives the velocity of the T2A [110]mode, and it is
this mode which connects to the LR mode at the X
point. It would seem reasonable, therefore, to sug-

gest that both rotative and tetragonal distortions can
be explained by a softening of the LR mode. This
mode, since it is so flat, can go soft at either the I
or the X point. Because of its connectivity to the
TA mode along [110], the order parameter for the
rotative distortion must be coupled to the elastic
strains. This coupling can lead to a phase transition
which is first order as in K2SnC16, to a phase transi-
tion which involves only a tetragonal distortion as in

R12PtI6 or to a phase transition which involves both
an antiferro-rotation and a tetragonal distortion7 as
in (NH4)&Pt16.
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APPENDIX: RELATIONSHIP BETWEEN
ATOMIC AND MOLECULAR RIGID-ION

MODELS

This appendix is based on the discussion given by
Venkataraman and Sahni. For a rigid molecule,
whose atoms are at positions x(~) away from the
center of mass the rotation-translation force-
constant tensor 4"can be expressed as a summation
over the interatomic force constants as

n n
4", =—gx(~) 4 n n'

KK
K K

To prove that the atomic rigid-ion model of OW
includes a rotation-translation coupling, we need
only calculate the coupling of a translation of one of
the 8 ions in the R2MX6 unit cell to a rotation of
the MX6 molecule. In the model there are only
three such bonds of length r (Fig. 5) to consider-
the bonds between the K(8) ion at ( —, , —,, —,) and the
Cl ious at Cl(2) = (u, 0,0), Cl(3) = (0,u, 0), and
Cl(6)=(0,0, u), for which the force tensor has the
schematic form

where

1

0

and

f 2

where 5= I/4 —u. This is obviously not zero in gen-
eral and shows explicitly the coupling of the rota-
tions of the MX6 octahedra to the translations of the
R ions.

ah b

8
= b C

bde
The other force-constant matrices are obtained by
symmetry to give a total contribution
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