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Magnetic field effects on exciton and biexciton states in CuBr

J. C. Merle, A. Bivas, * C. Wecker, and B.Honerlage
Laboratoire de Spectroscopic et d'Optique du Corps Solide,

Associe au Centre National de la Recherche Scientifique No. 232,
Uni Uersite Louis Pasteur,

5 rue de l'Uniuersite, 67000 Strasbourg, France
(Received 29 September 1982)

In CuBr the polariton dispersion E(Q, H) in the presence of a magnetic field H is dissym-

metric with respect to Q and H, Q denoting the polariton wave vector. We study this

dissymmetry using hyper-Raman scattering techniques in the presence of a static magnetic
field which is varied between —70 and 70 kG in a given configuration. The experimental
results are quantitatively explained, considering Q and H-linear terms in the exciton Hamil-

tonian. The effective g values and the C~-linear interaction term are determined with a
good accuracy and an upper limit of the anisotropic exciton-mass parameters is established.
Since biexcitons are involved in the scattering process, the influence of the magnetic field on
their different states and on the selection rules of hyper-Raman scattering are studied. In
agreement with our theoretical considerations, no decomposition of the biexciton ground
state has been observed.

I. INTRODUCTION

Nonlinear spectroscopy has been of increasing in-
terest these last years for the study of crystals, since
the selection rules valid in multiphoton processes are
different from those of linear spectroscopy. There-
fore, complementary information on crystal proper-
ties may be achieved, provided that the level of exci-
tation is kept reasonably low in order to exclude
high-excitation phenomena such as renormalization
effects. This is the case in hyper-Raman scattering,
a process in which the transition probability is
resonantly enhanced by biexcitons, ' which have a
giant oscillator strength. '

Concerning CuBr, experiments on hyper-Raman
scattering have been performed and interpreted in
terms of multicomponent excitonic polaritons.
Since this scattering process permits one to perform
a spectroscopy in momentum space, the anisotropy
and fine structure of the resulting dispersion relation
could be well established. This study was only pos-
sible since the energy, symmetry, and dispersion of
the different intermediate biexciton states were
known from previous two-photon —absorption
(TPA) measurements. 9 "

Since the Hamiltonian, giving rise to the mul-
ticomponent polariton dispersion E(Q), must be in-
variant under time reversal, the equality

E(Q) =E(—Q) (1)

holds for all wave vectors Q in the absence of mag-

netic fields H. However, this relation is not neces-
sarily valid at finite values of Q, when an external
magnetic field is applied. In this case, time-reversal
invariance leads to'

E(Q,H) =E(—Q, —H)~E( —Q, H)

=E(Q, —H) .

An illustration of an effect of this kind due to im-
portant bilinear terms proportional to Q AH has
first been given by Thomas and Hopfield when
studying the reflectivity of the 2p (A) exciton in
CdS. ' In CuBr it should also be possible to estab-
lish relation (2) since H- and Q-linear interactions
are both quite important. ' ' However, in the
exciton region various polariton branches interfere
in a complicated way and therefore no observable ef-
fects could be obtained from reflectivity measure-
ments. ' They should also depend on the direction
of the magnetic field with respect to crystallograph-
ic axes and to the direction of the exciting light
beam. Since hyper-Raman scattering allows the ex-
citation of polaritons with a well-defined wave vec-
tor, we have used this technique to demonstrate the
importance of relation (2). We show that the ob-
served energetic positions of hyper-Raman emission
lines can be well explained by the combined effect of
Q- and H-linear interactions. We can therefore
determine the different g values of the conduction
and of the valence band as well as the Q-linear in-
teraction term C~ with good accuracy. In addition,
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the combined effect of H-linear and anisotropic Q-
quadratic interactions leads to a characteristic non-
linear variation of the energetic positions of hyper-
Raman lines in a magnetic field. Since this varia-
tion was not observed in CuBr, we can give an upper
limit of the anisotropic effective exciton mass
parameters 62 and 63 as defined in Ref. 6.

In Fig. 1 the hyper-Raman scattering process' '

is given schematically in a backward scattering con-
figuration. In this process, biexcitons are created
virtually by the absorption of two polaritons with
wave vector qI and energy fuuI. They recombine,
obeying the laws of energy and momentum conser-
vation:

2Acor ——E)(q )+EL,(k),
(3)

2qI ——q+ k,
creating a longitudinal cxciton with wave vector k
and energy EL (k) and a polariton on the lower po-
lariton branch [q,E&(q)]. The latter polariton

[q,E~(q )] is observed as a photon and gives rise to
the hyper-Raman emission line Rl . The same pro-
cess is possible for two polaritons as final states.
The hyper-Raman lines change their spectral posi-
tion if the frequency of the exciting laser is tuned.
When, however, biexcitons are created resonantly,
they may relax because of their finite lifetime before
recombining radiatively. Energy and momentum
conservations [Eq. (3)] would not be guaranteed in
such a biexciton luminescence process, when consid-
ering only two incoming and two outgoing particles.
Therefore, we first had to make sure that the emis-
sion lines observed corresponded to hyper-Raman
emission lines (and not to biexciton luminescence)
even when a magnetic field H is applied. Therefore,
wc first have to study thc field dependence of the
biexciton energies. In addition, selection rules of
hyper-Raman scattering depend on the experimental

configuration. In order to attribute correctly the
emission lines to the different polariton branches
throughout the scattering process, we had to deter-
mine thc selection rules in the presence of a magnet-
ic field in a given direction.

In the next section, we study the biexciton system
experimentally by two-photon absorption and
theoretically by an invariant expansion of thc Ham-
iltonian, describing the biexciton ground state in
magnetic fields. In Sec. III, we present our experi-
mental results, obtained by hyper-Raman scattering.
We then study theoretically the dispersion of exci-
tons and polaritons in magnetic fields and determine
the relevant interaction parameters. Finally, wc give
some concluding remarks on the problem in Sec. IV.

II. SIEXCITONS IN A MAGNETIC FIELD

A. Experimental results of two-photon
absorption

The experimental sct up was quite similar to the
onc described in Refs. 9—11. We have studied
cleaved CuBr platelcts, immersed in pumped 1iquid
helium at 1.6 K. They werc grown by a vapor-phase
transport method and their thickness was about 300
p,m. They had parallel surfaces (110) and were

properly oriented. As indicated in Fig. 2, they were
positioned in the center of a superconducting coil
giving rise to a reversible magnetic field

~
H

~
up to

70 kG.
Biexcitons are created by the simultaneous ab-

sorption of two photons from two different laser
beams, both of which are linearly polarized. They
are propagating along the [110] crystal axis but in
opposite directions. This configuration is obtained
when both beams excite opposite crystal surfaces.

t tesXC 1 t OA
t[«o
Io[0»] l~

Q

FIG. 1. Schematic representation of the hyper-Raman
scattering. The details are discussed in the text.

FIG. 2. Experimental configuration used in two-
photon —absorption measurements. (M: mirror, S: sam-
ple, Spex: spectrometer, H: magnetic field. ) The laser
excitation (fico~) and the continuum (fun, ) propagate along
the [110]crystal axis. The polarization vector e of both
beams may be varied in the (110)plane.
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In this "antiparallel" configuration, ' biexcitons are
created with a small wave vector (K=O). One of
the beams, having a small spectral width (0.35 meV}
and high intensity, is a tunable "laser." The
transmission through the crystal of the other, spec-
trally broad beam, called "continuum, " is detected
with and without excitation of the crystal by the
laser. By these means, three different two-
photon —absorption bands show up in the continu-
urn. Their variation as functions of energy and po-
larization of the two beams with respect to the crys-
tal axis allows us to identify the energy and symme-
try of the final biexciton states, which are I &, I 5,
and I 3, respectively. " Their energies were given
by': Eb;(I'i) =5.9059 eV, Eib(I'5) =5.9103 eV, and
Eb;(I 3)=5.9128 eV, respectively.

In the presence of a magnetic field along the
[110] axis up to 70 kG, no modification of the in-
tensity of the absorption dips is observed and the en-
ergies given above remain unchanged. In addition,
no decomposition of the degenerate I & or I 3 levels
is noticed. Only the absorption band corresponding
to the I 5 biexciton level at vanishing field is slightly
enlarged in our highest inagnetic fields, i.e., the ab-
sorption band has 0.45 meV [full width at half max-
imum (FWHM)] at H=O and 0.6 meV (FWHM) at
H=70 kG if both beams are polarized along the
[110] direction. As we will see, this result can be
fully understood theoretically.

B. Theoretical considerations

In CuBr the biexciton ground state is sixfold de-
generated, having the symmetries I &, I 3, and I 5

(Refs. 21 and 22} at the I' point at vanishing
symmetry-breaking effects. This degeneracy is split
by different exchange interactions between the two
holes, incorporated in the biexciton. " ' By two-

photon —absorption experiments, this splitting as
well as the biexciton dispersion could be deter-
mined. " In the latter experiment it turned out
that the biexciton dispersion is fully understood
from the exciton dispersive terms which were well
known from hyper-Raman scattering.

In general, symmetry-breaking effects in the biex-
citon problem may be accounted for by constructing
the effective Hamiltonian, acting in the 64-fold
space of biexciton states, by means of an invariant
expansion. ' The Hamiltonian is built up from
the subspaces of two electrons [indices i=(1,3)],
each of which is two dimensional, and of two holes
[indices j=(2,4}],each of which is four dimensional.
o ' =(o"o" cr") and I,"' denote the electron-spin
operator (oJ'', e„"',o,"' being the Pauli-spin matrices)
and the two-dimensional unity matrix for the elec-
tron (i), respectively. Accordingly, the angular-
inomentum operators J' =(Jj',J&J',J,'J'} (with Jg',
Jyj', and J'J' being the angular-momentum matrices

3
for J= —,} build up the subspace for the two holes,
l~' denoting the four-dimensional unity matrix.
The exchange interaction between the two holes may
be diagonalized by using the symmetry-adapted
biexciton wave functions given in Refs. 6 and 11,
where the procedure is discussed in detail. Since in
our two-photon —absorption experiments all biexci-
tons are excited in the antiparallel configuration,
the biexciton wave vector K is almost equal to zero.
Therefore we may neglect the symmetry breaking of
the wave vector in our invariant expansion. Terms
that mix H and K may be neglected because of the
smallness of K. Neglecting, furthermore, any
dependence of the exchange interaction on the exter-
nal magnetic field H=(H„,H„,H, ) and restricting
ourselves to magnetic-field-dependent terms linear
in H, the perturbation in the biexciton Hamiltonian
reads

Jfbi 2gcPs[(o 'H) X lq X lii X ls +Pi3] —2Kps[( J H) X ){, X &, X I» +P24]

2qp, [(H„J„' ' +—c.p. )XI,'"Xl,' 'Xl'i, '+P ] .

In Eq. (4) c.p. denotes cyclic permutation and P,b is
an operator that exchanges the particles (a) and (b)
in the foregoing expression. g„~, and q are g values
of conduction and valence bands, well known from
the exciton problem, '"' ' ' and p~ is Bohr's mag-
neton. We may now construct the secular matrix
corresponding to Eq. (4) and the different exchange
interactions in the two-hole and two-electron repre-
sentation as discussed in Refs. 6 and 11. We then
transform the secular equation to the syrnmetry-
adapted two-exciton wave functions in which ex-

I

change interactions are diagonalized. We then
neglect the coupling of the sixfold biexciton ground
state to the excited states (rotational states), which
are probably much higher in energy. By this we ob-
tain the six-dimensional secular matrix as given in
Table I, describing the interacting biexciton states
via a magnetic field. The corresponding dispersive
terms using the same biexciton wave functions are
given in Table II or Ref. 11. It is interesting to no-
tice that the term proportional to the g factor of the
conduction band g, in Eq. (4) has no influence on
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TABLE I. Secular matrix for interacting biexciton ground states in T~ symmetry in a magnetic field. Conjugated com-

plex terms of the upper (lower) part have to be added to the lower (upper) part. The biexciton energies at vanishing mag-
netic field are given in Ref. 10 as follows: Eh(l 1)=5.9059 eV, Eb;(I 5)=5.9103 eV, Eb;(I 3)=5.9128 eV, respectively. The
biexciton wave functions

~

I'J ) are defined in Table VIII of Ref. 6.
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Eb;(r5,H) =Eb;(r5),

Eb (I'5,H) =Eb;(I 5)+pa(2m+ —,q)H .
(5)

The eigenfunctions corresponding to this block are
given by

(cE b(I 5H))= (
~
ri)+

~

I 5))
2

t( + i (Eb' (r 5 H ) )— (~~i
~
r,' & +

~
r,' &

+ir )),
(6)

where ~r5') are the biexciton Bloch functions de-
fined in Ref. 6 and used as a basis in Table I.

Introducing a= —0.22 and q=0 (from Sec. III C)
in Eq. (5), we find that at our maximal magnetic
field at 70 kG the splitting of the biexciton states is
about 0.3 meV. In order to discuss the transition
probability to the different biexciton states given in
Eq. (5}, we perform a coordinate transformation in
the biexciton wave function of Ref. 6 using

(ix&+ iy&),

/y&'= /z&,

( —/x)+ /y&) .1

2

(7)

(x), ~y), and ~z) denote the I 5-exciton wave func-
tions which are transforming like the vector com-
ponents [r =(x,y,z)] defined in Ref. 6. In this new
basis, selection rules are easily established in

the biexciton ground state. We now specialize to the
experimental configuration, in which —H„=H„
=H/~2 and H, =0. We diagonalize the block of
interacting biexciton states with I 5 symmetry
separately and obtain the following eigenvalues:

second-order perturbation theory. We then find the
two-photon —absorption coefficient F to the dif-
ferent biexciton states with I 5 symmetry for pho-
tons propagating along the [110]direction to be pro-
portional to

W(Eb;(I 5,H)) {ei e", +e,' ei )

W(Eb (I'5,H)} —,(ei e,*)

In Eq. (8), e", ,et denote the components of the po-
larization vector of the laser (I) and continuum (c)
in the [110]and [001]direction, respectively.

From Eq. (8), we see that the transition to the
biexciton states, which split to +(2a+ , q)IJsH in a-
magnetic field, is equally allowed. Since the laser
line has the halfwidth of about the splitting of the
biexciton states in our maximal field H~, we expect
to observe an enlargement of the TPA dip in mag-
netic fields beyond 70 kG rather than a splitting in
well-separated absorption dips. If the polarization
of laser and continuum are along the [001] axis, no
two-photon absorption is expected to be observed.

Concerning the I 3-biexciton states, they interact
with each other only via a coupling to the biexciton
states of I 5 symmetry. The coupling can be treated
in perturbation theory. In this case, the energy
shifts ~(I 3',H) (0.1 meV for H=70 kG, which
cannot be resolved experimentally. Finally the biex-
citon state with I

&
symmetry does not couple to the

magnetic field at all. These results are consistent
with our experimental findings discussed in Sec.
IIA.

In conclusion, we may state that the biexciton en-
ergies and the corresponding wave functions are not
influenced by the magnetic field up to 70 kG at the
I point. Since interactions depending simultaneous-
ly on Q and on H are higher-order perturbations,
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this remains probably true at Q&0. It is confirmed

by the fact that hyper-Raman emission and biexci-
ton luminescence remain well separated even at our
highest magnetic fields. As we will discuss in III B,
a possible mixture of biexciton wave functions by a
magnetic field does not alter the selection rules of
hyper-Raman scattering when working with
wave vectors Q~~[110] and H~~[110]. Our results,
therefore, show that biexcitons do not interfere with
hyper-Raman data if the configuration given above
is chosen.

III. EXCITONIC POLARITONS
IN MAGNETIC FIELDS

A. Hyper-Raman scattering

Since hyper-Raman scattering has first been used
to determine a complete set of parameters, describ-
ing the dispersion of excitonic polaritons in
CuC1, ' ' this method has been successfully applied
to study more complicated structure such as
CuBr, CdS and ZnO, or PbI2. As reviewed in
Ref. 27, the properties of excitonic polaritons de-
pend on the magnetic field, also. It is the aim of
this section to derive the effective g values of the
conduction- and valence-band electrons as well as to
give further evidence of a Q-linear interaction term.

In this experiment, the setup is essentially the
same as discussed in Sec. II A (cf. Fig. 2). Only the
light beam called continuum is suppressed. As is
well known, the exciton ground state in CuBr is
eightfold degenerate (with symmetries I 3, I'4, and
I s at Q=O and H=O). In the configuration indicat-
ed in Fig. 2, all these states couple to the elec-
tromagnetic radiation field, giving rise to ten polari-
ton branches. Following Ref. 6, they are labeled A

&

to A5 for the X& and B& to B5 for the X2 irreducible
representation, respectively.

As was mentioned in the Introduction, biexcitons
are virtually created by two-photon absorption from
the laser beam, which excites the crystal at an angle
of incidence of a=10'. They may recombine to
various couples of polaritons with wave vectors k"
and q' ' due to the multicomponent structure of po-
laritons. Therefore, Eq. (3) must be changed to

( i ) ~(i) ( & )

2qI ——k + q;
(3')

2E&(qI, H) =E;(k,H)+E&(q;, H),
~(i) ~

where E;(Q,H) denotes th~. energy of the polariton
branch (i) at wave vector Q in the presence of the
magnetic field H. The final state, which is observed
as a photon outside the crystal, is situated on the
lower polariton branch (index 1). Since we are
working in a backward scattering configuration, the

C

C
(Ii

C

0kG

70kG

2.938
E (eV)

2.944

FIG. 3. Emission spectra of CuBr at different magnet-
ic fields for the configuration of Fig. 2. The laser excita-
tion is at fuuI ——2.9532 eV; exciting and observed photons
are polarized along the [110]direction.

wave vectors k"' of the different polaritons left
behind are quite important, i.e., ~

k;
~

=3
~ qt

These polaritons may belong to different branches
(i), which gives rise to a fine structure of the hyper-
Raman emission as it is discussed in Ref. 6. As in-

dicated in Fig. 1, the wave vectors qI and q; are
~(1) ~(1)

on the lower polariton branch in a region, where the
group velocity is quite large. This part is not sensi-
tively influenced by the magnetic field. Owing to
momentum conservation [Eq. (3'}], this statement
holds also for k". Moreover, a small variation of
k" does not affect E;(k ',H}, since the group velo-
city of the final states k" is small for all branches.
Therefore, hyper-Raman scattering enables us to
determine from the conservation laws [Eq. (3')]
the energies of different Iiolariton states as function
of H, the wave vector k' being constant, if the scat-
tering configuration is kept fixed.

We have first tuned the laser frequency for vari-
ous values of the magnetic field around the biexci-
ton resonance in order to distinguish hyper-Raman
lines from biexciton luminescence. As shown in Sec.
II, the energy of the biexciton ground state does not
depend on the magnetic field. Therefore, biexciton
luminescence may always be avoided for a given ex-
citation frequency and in the presence of a magnetic
field.

For RcoI ——2.9532 eV, mainly biexcitons with I
&

symmetry [Eb;(I'iH) =5.9059 eV from Ref. 10] are
excited. For polarizations along the [001] direction
(X~), we observe a transition corresponding to the
creation of a longitudinal exciton and a lower polari-
ton [branches (A4,A ~ ) of Ref. 6] as final states. This
emission line (Rr ) is not affected by the presence of
the magnetic field. As shown in Fig. 3, we observe
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two additional hyper-Raman lines at higher energies
in the same polarization configuration. These lines

change their spectral positions when the magnetic
field is tuned. The integrated intensity of the
hyper-Raman emission lines remains independent of
the magnetic field. They correspond to the Rz and

R, lines of Ref. 6. Similar spectra are observed for
the polarization parallel to the [110] direction (Xi
irreducible representation).

As discussed above, we may calculate E;(k,H}
from Eq. (3'},knowing the energy of the exciting po-
laritons and of the observed polaritons. Figure 4
shows the resulting energy variation of the final
states as a function of the magnetic field H for the
two polarizations discussed above. Their positions
depend strongly on the magnetic field, reflecting the
field dependence of the polariton dispersion which
we will discuss in the next part.

B. Excitons and polaritons in magnetic fields

In CuBr the exciton ground state is eightfold de-

generate at the I point, due to the fourfold degen-
eracy of the valence-band edge (I's symmetry) and
the twofold degeneracy of the conduction band (I 6

symmetry). If we neglect all other states, the exci-
ton Hamiltonian acting in this space may be con-
structed from an invariant expansion in function of
the electron-spin operator o=(u„,o~,a, ) (rr; being
the Pauli matrices for spin- —, particles) and the

2966—
A3

2965—

W 2964—

2963—

Bg

2962—

—'] 00 —50

Ag

I I I I I I I I

0 50
H (kG)

'100

3
angular-momentum operator for J= —,

[J =(J„,J„,J, )] as defined in Sec. II and Ref. 6. In
the presence of magnetic fields, the Hamiltonian
reads as follows:

FIG. 4. Energy of the final states E;(k ) in the

hyper-Raman process as function of the magnetic field

for the configuration of Fig. 2. The energy of the exciting

photons is fixed at %col ——2.9532 eV. Crosses (X) corre-

spond to emission lines polarized along the [001] direc-

tion, circles (0) to polarizations along [110]. Solid lines

give the calculated positions of the branches A &,B&, and

A3, B4.

&=4p&z X &s+Aio'' 1+GiQ Iz XIs+Cg[Qz [Jz,Jy —Jz )+c p ]XI,. .

+Gz[Q„(J„—1/3J )+c.p. ]XI,+2G&[QyQ, [Jy,J,]+c.p. ]XI,

+ , g,@acr HXla—2ps[aJ H+q—(H„J„+cp )]Xl,. .. (9)

Here c.p. stands for cyclic permutation and

[A,BJ =(AB+BA)/2 The firs.t six terms in Eq. (9)
are detailed in Ref. 6. We consider here only the
spherical part of the exchange interaction (b,o, di},
which decomposes the exciton ground state in I 5-

singlet states and in triplet states, having the sym-
metries I 3 and I 4. All other exchange interaction
terms and their variations, e.g., with the finite wave

vector g, are neglected for simplicity. As discussed
in Refs. 6 and 23, the solution of the Schrodinger
equation related to Eq. (9) gives rise to an anisotro-

pic dispersion of the 1s exciton ground state.
Concerning the interaction with the magnetic

field, g, is the effect g value of the conduction-band
electrons, and z and q that of the valence electrons
in degenerate bands. The diamagnetic terms are

negligible even for our maximal magnetic field
H,„=70ko and are therefore not mentioned here
nor is a possible variation of the exchange interac-
tion as function of the magnetic field. The interac-
tion introduced by Thomas and Hopfield' would
correspond to an electric field proportional to g A H
and is important only if the exciton radius is large.
Taking into account the results on electroreflectance
in Ref. 31, we can conclude that these effects are not
important in CuBr.

The interaction matrix corresponding to the Ham-
iltonian given in Eq. (9) is transformed to the
symmetry-adapted exciton functions, which are the
same as in Refs. 6 and 23. The resulting matrix is
found in the upper part of Table IX of Ref. 23, with
the following definitions:
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P=H„, Q=Hv, R =H, ,

gi ————,(6a+ —,q —g, }Iz~,
1 1

g2
————,(2~+-, q+g, )p,&,

gs = —
4 (6K+ i q —ge )izB,

g4 ———V'3/4(2a+ —,q +g, )(us,
1 41

gs = ——,(I«+ —,q+g, )ps .

(10)

This matrix is now specialized to our experi-
mental configuration in which all wave vectors Q
are taken along the [110]direction and the magnetic
field parallel to the [110] direction as indicated in
Fig. 2. In this configuration the 8)(8 matrix men-
tioned above may be partly diagonalized if using the
wave functions for the high-symmetry case as given
in Table IV of Ref. 6. The resulting two block ma-
trices are given in Table II. Here hsT denotes the
singlet-triplet splitting and hiT the longitudinal-
transverse splitting at Q=O and H=O. In this con-
figuration, only the states labeled ~y&' (irreducible
representation Xi} and

~

x ) '
(X2) are coupled to the

electromagnetic light field which transforms like the
same irreducible representation. We notice in Table

II that exciton states belonging to different irreduci-
ble representations are not coupled by the magnetic
field in our configuration. When partly diagonaliz-
ing the biexciton interaction matrix as described in
Sec. IIB by using the transformed biexciton states

fp aild /+i one can show that the selection rules of
the hyper-Raman scattering for this configuration
are the same as the ones for vanishing magnetic
fields, which are given in Table X of Ref. 6. This
means essentially that for a given polarization of the
emitted light all final states belong to the same ir-
reducible representation. This statement remains
valid even if the biexciton wave functions are modi-
fied appreciably by the magnetic field (which is not
the case here as discussed in Sec. IIB) or if biexci-
tons with I 5 symmetry are excited resonantly. This
is in agreement with the experimental results. It is
important to notice in Table II that some matrix ele-
ments contain simultaneously terms proportional to
Q and H.

Therefore, the exciton dispersion is dissymmetric
when, e.g., the wave vector is fixed and the direction
of the magnetic field is inverted as indicated in rela-
tion (2). The terms proportional to Q do not con-
tribute to this effect.

Concerning the calculation of the polariton
dispersion, we may proceed as discussed in Ref. 6,

TABLE II. Diagonal blocks of the exciton Hamiltonian for g ~ ~

[110]and H
~ ~
[110]. Only terms linear in

~

H
~

are con-
sidered. Complex conjugate terms of the lower (upper) part have to be added to the upper (lower) part. The zero of energy
is that of the (I i+I 4)-triplet state for Q=o and H=o.

(2—/'

(z /'
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;~3C gl Q

/2 —)'
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(2oi'
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(x i'
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3 2

4
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—CgQ
3

5——v 3Cgg
8

[2o)

G|——G2 ——Gs Q
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4 4

v3
8 Q
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3
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—H ( —3g1+g3)
1

2

v3
H(g1+g3)

2

G|+—Gi ——Gs Q
1 3
4 4

(G2+Gs)g'
4

[x &'

H( —V 3gz —g—4)
1

2

1
H(g2 v3g4)—— —

2

~sr+ Gi ——Gz+ —G3 Q
1 3
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C. Discussion of the experim lmenta results

In Fi s. 5'g . and 6 we have labeled the
1 'to b h f A 3 1 4es rom A~ to A

01 'to b h
e ongitudinal exciton (A

edh bec f h
rane es 5,B ) are

sy poy l
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compared to hL&. This explains why the A4 state
and therefore the RL -emission line is not affected by
the magnetic field as discussed in Sec. III A. Let us
now simplify the problem further: Some of the
parameters describing the polariton dispersion have
already been studied previously (cf. Refs. 6, 33, and
34) and are well established. This is the case for the
background dielectric constant eb ——5.4 and the
longitudinal-transverse splitting b Lz

——12.2 meV.
Since the excitation energy %co~ and the geometrical
configuration remain fixed throughout the experi-
ment, all.wave vectors k ' have nearly the same~i)
value

~

k
~

=3
~ q& ~. (A more rigorous numerical

calculation shows that
~

k'
~

=1.44X 10 cm ' can
be used for all final states. ) Therefore, the energies
at Q=O and the isotropic (diagonal) effective exci-
ton mass parameter 6 I cannot be determined
separately. The same argument holds for a possible
isotropic variation of the exchange b,sz with Q .
Therefore, we will not bother about their absolute
values but will determine only the splitting of singlet
and triplet states b, (Q) at the wave vector

~ Q
~

=1.44X10 cm '. This does not introduce
any restriction on the band parameters, which we
will determine below.

In addition, we will neglect all possible variations
of the exchange interaction with magnetic field or
wave vector. This seems to be justified, since they
are related to higher-order processes. In addition,
we know from reflectivity measurements that q in
Eqs. (4) and (9) must be very small since it does not
give rise to any observable effect. ' Therefore, we
neglect q in the following discussion as well as in-
teractions proportional to higher orders in H.

With these approximations, the unknown parame-
ters in the polariton dispersion resulting from Eq.
(9) are Z(k"'), Cti, Gi, Gi, g„and ir. These param-
eters are now adjusted in order to account for the
energies of final states given in Fig. 4. The best re-
sult is obtained for

~{k"')=0.9+0.1,
Cg ——69+4' 10

z= —0.22+0.05,

gc =1 84+0 1

[where h(k"') is in units of meV, and Cti is in units
of meVcm]. In addition, the attribution of the final
states to the hyper-Raman lines discussed above
turns out to be unique.

Concerning G~ and G3, their influence would
result in a nonlinear dependence of the energies of
the different branches as function of the magnetic
field. This effect is shown in Fig. 7, where we tried
to fit the energy difference ~ of the branches A I

I I I ( I I I I

)
~2F
LLI0

i I I I I I I I I I I i I I I

-50 50 100

FIG. 7. Energy difference hE=E& (k"')—Eq (k"') of
the two branches. Crosses (X) are experimental points.
The dotted line (--) is calculated with the use of
Gz ——G3 ——0 and the parameters of Eq. (11). The solid line
(—) is calculated with the use of Gq ——G3 ———0.2 and
5(k"')=0.72 meV, C~ ——58)(10 meV cm, g, =2.10,
]c=—0.25.

and A3 assuming Gq ——63———0.2. The best result is
indicated by the solid line, but the overall agreement
with this choice of Gz and G3 is quite poor. Since
no nonlinear variation of ~ with magnetic field is
observed, we may give as an upper limit

and (12)

~(Q) =~sr —4&iQ'. (13)

On the other hand, the nonanalytic exchange in-
teraction hzz is expected to depend on the wave vec-
tor. This dependence is, however, so small that it
is not important at wave vectors k"=1.44)&10
cm studied here. Concerning the anisotropic ex-
change parameters 5q and 53 of Ref. 6, they would
result in similar nonlinear variations of hE in Fig. 7
as is the case for Gq and G3. The parameters given
in Eq. (11) are in rather good agreement with
hyper-Raman scattering results given in Refs. 5—8
and with reflectance measurements. ' ' ' ' Con-
cerning resonant Brillouin scattering in CuBr,
our values are compatible with the interpretation
given in Ref. 38.

Let us now discuss the influence of some ex-
change interactions which we have neglected up to
now. As stated in Ref. 6, the exchange interaction
may depend on the wave vector. The term which is
probably most important reads 5io" JQ~. This ef-
fect would only influence the definition of b,(Q) and
we would obtain
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IV. CONCLUSION

We have studied excitonic polaritons and biexci-
tons in CuBr in magnetic fields up to 70 kG. Con-
cerning the biexcitons, only an enlargement but no
splitting of the biexciton states with I 5 symmetry
(at vanishing symmetry-breaking effects} could be
observed. This is due to the fact that the big g,
value of the conducting band, which is mainly re-
sponsible for the splitting and mixing of the exciton
states in magnetic fields, does not influence the biex-
citon ground state. The other biexciton states are
not essentially affected by the magnetic field.

For the geometric configuration given in Fig. 2, it
turned out that the selection rules of hyper-Raman
scattering do not depend on the strength of the mag-
netic field. Our analysis of observed shifts of
hyper-Raman lines then enables us to determine ex-

citon dispersive terms and effective g values in an
original way. The simultaneous presence of g- and
H-liner interactions gives rise to a dissymmetry in
the polariton dispersion, which is clearly established
in this work. In addition, the attribution of the final
states in previous hyper-Raman scattering experi-
ments is verified and the magnitude of anisotropic
mass parameters is discussed.
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